|
|
//////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
// File: d3dx9mesh.h
// Content: D3DX mesh types and functions
//
//////////////////////////////////////////////////////////////////////////////
#include "d3dx9.h"
#ifndef __D3DX9MESH_H__
#define __D3DX9MESH_H__
// {7ED943DD-52E8-40b5-A8D8-76685C406330}
DEFINE_GUID(IID_ID3DXBaseMesh, 0x7ed943dd, 0x52e8, 0x40b5, 0xa8, 0xd8, 0x76, 0x68, 0x5c, 0x40, 0x63, 0x30);
// {4020E5C2-1403-4929-883F-E2E849FAC195}
DEFINE_GUID(IID_ID3DXMesh, 0x4020e5c2, 0x1403, 0x4929, 0x88, 0x3f, 0xe2, 0xe8, 0x49, 0xfa, 0xc1, 0x95);
// {8875769A-D579-4088-AAEB-534D1AD84E96}
DEFINE_GUID(IID_ID3DXPMesh, 0x8875769a, 0xd579, 0x4088, 0xaa, 0xeb, 0x53, 0x4d, 0x1a, 0xd8, 0x4e, 0x96);
// {667EA4C7-F1CD-4386-B523-7C0290B83CC5}
DEFINE_GUID(IID_ID3DXSPMesh, 0x667ea4c7, 0xf1cd, 0x4386, 0xb5, 0x23, 0x7c, 0x2, 0x90, 0xb8, 0x3c, 0xc5);
// {11EAA540-F9A6-4d49-AE6A-E19221F70CC4}
DEFINE_GUID(IID_ID3DXSkinInfo, 0x11eaa540, 0xf9a6, 0x4d49, 0xae, 0x6a, 0xe1, 0x92, 0x21, 0xf7, 0xc, 0xc4);
// {3CE6CC22-DBF2-44f4-894D-F9C34A337139}
DEFINE_GUID(IID_ID3DXPatchMesh, 0x3ce6cc22, 0xdbf2, 0x44f4, 0x89, 0x4d, 0xf9, 0xc3, 0x4a, 0x33, 0x71, 0x39);
//patch mesh can be quads or tris
typedef enum _D3DXPATCHMESHTYPE { D3DXPATCHMESH_RECT = 0x001, D3DXPATCHMESH_TRI = 0x002, D3DXPATCHMESH_NPATCH = 0x003,
D3DXPATCHMESH_FORCE_DWORD = 0x7fffffff, /* force 32-bit size enum */ } D3DXPATCHMESHTYPE;
// Mesh options - lower 3 bytes only, upper byte used by _D3DXMESHOPT option flags
enum _D3DXMESH { D3DXMESH_32BIT = 0x001, // If set, then use 32 bit indices, if not set use 16 bit indices.
D3DXMESH_DONOTCLIP = 0x002, // Use D3DUSAGE_DONOTCLIP for VB & IB.
D3DXMESH_POINTS = 0x004, // Use D3DUSAGE_POINTS for VB & IB.
D3DXMESH_RTPATCHES = 0x008, // Use D3DUSAGE_RTPATCHES for VB & IB.
D3DXMESH_NPATCHES = 0x4000,// Use D3DUSAGE_NPATCHES for VB & IB.
D3DXMESH_VB_SYSTEMMEM = 0x010, // Use D3DPOOL_SYSTEMMEM for VB. Overrides D3DXMESH_MANAGEDVERTEXBUFFER
D3DXMESH_VB_MANAGED = 0x020, // Use D3DPOOL_MANAGED for VB.
D3DXMESH_VB_WRITEONLY = 0x040, // Use D3DUSAGE_WRITEONLY for VB.
D3DXMESH_VB_DYNAMIC = 0x080, // Use D3DUSAGE_DYNAMIC for VB.
D3DXMESH_VB_SOFTWAREPROCESSING = 0x8000, // Use D3DUSAGE_SOFTWAREPROCESSING for VB.
D3DXMESH_IB_SYSTEMMEM = 0x100, // Use D3DPOOL_SYSTEMMEM for IB. Overrides D3DXMESH_MANAGEDINDEXBUFFER
D3DXMESH_IB_MANAGED = 0x200, // Use D3DPOOL_MANAGED for IB.
D3DXMESH_IB_WRITEONLY = 0x400, // Use D3DUSAGE_WRITEONLY for IB.
D3DXMESH_IB_DYNAMIC = 0x800, // Use D3DUSAGE_DYNAMIC for IB.
D3DXMESH_IB_SOFTWAREPROCESSING= 0x10000, // Use D3DUSAGE_SOFTWAREPROCESSING for IB.
D3DXMESH_VB_SHARE = 0x1000, // Valid for Clone* calls only, forces cloned mesh/pmesh to share vertex buffer
D3DXMESH_USEHWONLY = 0x2000, // Valid for ID3DXSkinInfo::ConvertToBlendedMesh
// Helper options
D3DXMESH_SYSTEMMEM = 0x110, // D3DXMESH_VB_SYSTEMMEM | D3DXMESH_IB_SYSTEMMEM
D3DXMESH_MANAGED = 0x220, // D3DXMESH_VB_MANAGED | D3DXMESH_IB_MANAGED
D3DXMESH_WRITEONLY = 0x440, // D3DXMESH_VB_WRITEONLY | D3DXMESH_IB_WRITEONLY
D3DXMESH_DYNAMIC = 0x880, // D3DXMESH_VB_DYNAMIC | D3DXMESH_IB_DYNAMIC
D3DXMESH_SOFTWAREPROCESSING = 0x18000, // D3DXMESH_VB_SOFTWAREPROCESSING | D3DXMESH_IB_SOFTWAREPROCESSING
};
//patch mesh options
enum _D3DXPATCHMESH { D3DXPATCHMESH_DEFAULT = 000, }; // option field values for specifying min value in D3DXGeneratePMesh and D3DXSimplifyMesh
enum _D3DXMESHSIMP { D3DXMESHSIMP_VERTEX = 0x1, D3DXMESHSIMP_FACE = 0x2,
};
typedef enum _D3DXCLEANTYPE { D3DXCLEAN_BACKFACING = 0x00000001, D3DXCLEAN_BOWTIES = 0x00000002, // Helper options
D3DXCLEAN_SKINNING = D3DXCLEAN_BACKFACING, // Bowtie cleaning modifies geometry and breaks skinning
D3DXCLEAN_OPTIMIZATION = D3DXCLEAN_BACKFACING, D3DXCLEAN_SIMPLIFICATION= D3DXCLEAN_BACKFACING | D3DXCLEAN_BOWTIES, } D3DXCLEANTYPE;
enum _MAX_FVF_DECL_SIZE { MAX_FVF_DECL_SIZE = MAXD3DDECLLENGTH + 1 // +1 for END
};
typedef enum _D3DXTANGENT { D3DXTANGENT_WRAP_U = 0x01, D3DXTANGENT_WRAP_V = 0x02, D3DXTANGENT_WRAP_UV = 0x03, D3DXTANGENT_DONT_NORMALIZE_PARTIALS = 0x04, D3DXTANGENT_DONT_ORTHOGONALIZE = 0x08, D3DXTANGENT_ORTHOGONALIZE_FROM_V = 0x010, D3DXTANGENT_ORTHOGONALIZE_FROM_U = 0x020, D3DXTANGENT_WEIGHT_BY_AREA = 0x040, D3DXTANGENT_WEIGHT_EQUAL = 0x080, D3DXTANGENT_WIND_CW = 0x0100, D3DXTANGENT_CALCULATE_NORMALS = 0x0200, D3DXTANGENT_GENERATE_IN_PLACE = 0x0400, } D3DXTANGENT;
// D3DXIMT_WRAP_U means the texture wraps in the U direction
// D3DXIMT_WRAP_V means the texture wraps in the V direction
// D3DXIMT_WRAP_UV means the texture wraps in both directions
typedef enum _D3DXIMT { D3DXIMT_WRAP_U = 0x01, D3DXIMT_WRAP_V = 0x02, D3DXIMT_WRAP_UV = 0x03, } D3DXIMT;
// These options are only valid for UVAtlasCreate and UVAtlasPartition, we may add more for UVAtlasPack if necessary
// D3DXUVATLAS_DEFAULT - Meshes with more than 25k faces go through fast, meshes with fewer than 25k faces go through quality
// D3DXUVATLAS_GEODESIC_FAST - Uses approximations to improve charting speed at the cost of added stretch or more charts.
// D3DXUVATLAS_GEODESIC_QUALITY - Provides better quality charts, but requires more time and memory than fast.
typedef enum _D3DXUVATLAS { D3DXUVATLAS_DEFAULT = 0x00, D3DXUVATLAS_GEODESIC_FAST = 0x01, D3DXUVATLAS_GEODESIC_QUALITY = 0x02, } D3DXUVATLAS;
typedef struct ID3DXBaseMesh *LPD3DXBASEMESH; typedef struct ID3DXMesh *LPD3DXMESH; typedef struct ID3DXPMesh *LPD3DXPMESH; typedef struct ID3DXSPMesh *LPD3DXSPMESH; typedef struct ID3DXSkinInfo *LPD3DXSKININFO; typedef struct ID3DXPatchMesh *LPD3DXPATCHMESH; typedef interface ID3DXTextureGutterHelper *LPD3DXTEXTUREGUTTERHELPER; typedef interface ID3DXPRTBuffer *LPD3DXPRTBUFFER;
typedef struct _D3DXATTRIBUTERANGE { DWORD AttribId; DWORD FaceStart; DWORD FaceCount; DWORD VertexStart; DWORD VertexCount; } D3DXATTRIBUTERANGE;
typedef D3DXATTRIBUTERANGE* LPD3DXATTRIBUTERANGE;
typedef struct _D3DXMATERIAL { D3DMATERIAL9 MatD3D; LPSTR pTextureFilename; } D3DXMATERIAL; typedef D3DXMATERIAL *LPD3DXMATERIAL;
typedef enum _D3DXEFFECTDEFAULTTYPE { D3DXEDT_STRING = 0x1, // pValue points to a null terminated ASCII string
D3DXEDT_FLOATS = 0x2, // pValue points to an array of floats - number of floats is NumBytes / sizeof(float)
D3DXEDT_DWORD = 0x3, // pValue points to a DWORD
D3DXEDT_FORCEDWORD = 0x7fffffff } D3DXEFFECTDEFAULTTYPE;
typedef struct _D3DXEFFECTDEFAULT { LPSTR pParamName; D3DXEFFECTDEFAULTTYPE Type; // type of the data pointed to by pValue
DWORD NumBytes; // size in bytes of the data pointed to by pValue
LPVOID pValue; // data for the default of the effect
} D3DXEFFECTDEFAULT, *LPD3DXEFFECTDEFAULT;
typedef struct _D3DXEFFECTINSTANCE { LPSTR pEffectFilename; DWORD NumDefaults; LPD3DXEFFECTDEFAULT pDefaults; } D3DXEFFECTINSTANCE, *LPD3DXEFFECTINSTANCE;
typedef struct _D3DXATTRIBUTEWEIGHTS { FLOAT Position; FLOAT Boundary; FLOAT Normal; FLOAT Diffuse; FLOAT Specular; FLOAT Texcoord[8]; FLOAT Tangent; FLOAT Binormal; } D3DXATTRIBUTEWEIGHTS, *LPD3DXATTRIBUTEWEIGHTS;
enum _D3DXWELDEPSILONSFLAGS { D3DXWELDEPSILONS_WELDALL = 0x1, // weld all vertices marked by adjacency as being overlapping
D3DXWELDEPSILONS_WELDPARTIALMATCHES = 0x2, // if a given vertex component is within epsilon, modify partial matched
// vertices so that both components identical AND if all components "equal"
// remove one of the vertices
D3DXWELDEPSILONS_DONOTREMOVEVERTICES = 0x4, // instructs weld to only allow modifications to vertices and not removal
// ONLY valid if D3DXWELDEPSILONS_WELDPARTIALMATCHES is set
// useful to modify vertices to be equal, but not allow vertices to be removed
D3DXWELDEPSILONS_DONOTSPLIT = 0x8, // instructs weld to specify the D3DXMESHOPT_DONOTSPLIT flag when doing an Optimize(ATTR_SORT)
// if this flag is not set, all vertices that are in separate attribute groups
// will remain split and not welded. Setting this flag can slow down software vertex processing
};
typedef struct _D3DXWELDEPSILONS { FLOAT Position; // NOTE: This does NOT replace the epsilon in GenerateAdjacency
// in general, it should be the same value or greater than the one passed to GeneratedAdjacency
FLOAT BlendWeights; FLOAT Normal; FLOAT PSize; FLOAT Specular; FLOAT Diffuse; FLOAT Texcoord[8]; FLOAT Tangent; FLOAT Binormal; FLOAT TessFactor; } D3DXWELDEPSILONS;
typedef D3DXWELDEPSILONS* LPD3DXWELDEPSILONS;
#undef INTERFACE
#define INTERFACE ID3DXBaseMesh
DECLARE_INTERFACE_(ID3DXBaseMesh, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE; STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(GetAttributeTable)( THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE; STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE; STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; };
#undef INTERFACE
#define INTERFACE ID3DXMesh
DECLARE_INTERFACE_(ID3DXMesh, ID3DXBaseMesh) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE; STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(GetAttributeTable)( THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE; STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE; STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// ID3DXMesh
STDMETHOD(LockAttributeBuffer)(THIS_ DWORD Flags, DWORD** ppData) PURE; STDMETHOD(UnlockAttributeBuffer)(THIS) PURE; STDMETHOD(Optimize)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, LPD3DXMESH* ppOptMesh) PURE; STDMETHOD(OptimizeInplace)(THIS_ DWORD Flags, CONST DWORD* pAdjacencyIn, DWORD* pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap) PURE; STDMETHOD(SetAttributeTable)(THIS_ CONST D3DXATTRIBUTERANGE *pAttribTable, DWORD cAttribTableSize) PURE; };
#undef INTERFACE
#define INTERFACE ID3DXPMesh
DECLARE_INTERFACE_(ID3DXPMesh, ID3DXBaseMesh) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXBaseMesh
STDMETHOD(DrawSubset)(THIS_ DWORD AttribId) PURE; STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetNumBytesPerVertex)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD Flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(GetAttributeTable)( THIS_ D3DXATTRIBUTERANGE *pAttribTable, DWORD* pAttribTableSize) PURE;
STDMETHOD(ConvertPointRepsToAdjacency)(THIS_ CONST DWORD* pPRep, DWORD* pAdjacency) PURE; STDMETHOD(ConvertAdjacencyToPointReps)(THIS_ CONST DWORD* pAdjacency, DWORD* pPRep) PURE; STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Epsilon, DWORD* pAdjacency) PURE;
STDMETHOD(UpdateSemantics)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// ID3DXPMesh
STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(ClonePMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(SetNumFaces)(THIS_ DWORD Faces) PURE; STDMETHOD(SetNumVertices)(THIS_ DWORD Vertices) PURE; STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE; STDMETHOD_(DWORD, GetMinFaces)(THIS) PURE; STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE; STDMETHOD_(DWORD, GetMinVertices)(THIS) PURE; STDMETHOD(Save)(THIS_ IStream *pStream, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials) PURE;
STDMETHOD(Optimize)(THIS_ DWORD Flags, DWORD* pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, LPD3DXMESH* ppOptMesh) PURE;
STDMETHOD(OptimizeBaseLOD)(THIS_ DWORD Flags, DWORD* pFaceRemap) PURE; STDMETHOD(TrimByFaces)(THIS_ DWORD NewFacesMin, DWORD NewFacesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE; STDMETHOD(TrimByVertices)(THIS_ DWORD NewVerticesMin, DWORD NewVerticesMax, DWORD *rgiFaceRemap, DWORD *rgiVertRemap) PURE;
STDMETHOD(GetAdjacency)(THIS_ DWORD* pAdjacency) PURE;
// Used to generate the immediate "ancestor" for each vertex when it is removed by a vsplit. Allows generation of geomorphs
// Vertex buffer must be equal to or greater than the maximum number of vertices in the pmesh
STDMETHOD(GenerateVertexHistory)(THIS_ DWORD* pVertexHistory) PURE; };
#undef INTERFACE
#define INTERFACE ID3DXSPMesh
DECLARE_INTERFACE_(ID3DXSPMesh, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXSPMesh
STDMETHOD_(DWORD, GetNumFaces)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9* ppDevice) PURE; STDMETHOD(CloneMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pAdjacencyOut, DWORD *pVertexRemapOut, LPD3DXMESH* ppCloneMesh) PURE; STDMETHOD(ClonePMeshFVF)(THIS_ DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsByFace, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(ClonePMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, DWORD *pVertexRemapOut, FLOAT *pErrorsbyFace, LPD3DXPMESH* ppCloneMesh) PURE; STDMETHOD(ReduceFaces)(THIS_ DWORD Faces) PURE; STDMETHOD(ReduceVertices)(THIS_ DWORD Vertices) PURE; STDMETHOD_(DWORD, GetMaxFaces)(THIS) PURE; STDMETHOD_(DWORD, GetMaxVertices)(THIS) PURE; STDMETHOD(GetVertexAttributeWeights)(THIS_ LPD3DXATTRIBUTEWEIGHTS pVertexAttributeWeights) PURE; STDMETHOD(GetVertexWeights)(THIS_ FLOAT *pVertexWeights) PURE; };
#define UNUSED16 (0xffff)
#define UNUSED32 (0xffffffff)
// ID3DXMesh::Optimize options - upper byte only, lower 3 bytes used from _D3DXMESH option flags
enum _D3DXMESHOPT { D3DXMESHOPT_COMPACT = 0x01000000, D3DXMESHOPT_ATTRSORT = 0x02000000, D3DXMESHOPT_VERTEXCACHE = 0x04000000, D3DXMESHOPT_STRIPREORDER = 0x08000000, D3DXMESHOPT_IGNOREVERTS = 0x10000000, // optimize faces only, don't touch vertices
D3DXMESHOPT_DONOTSPLIT = 0x20000000, // do not split vertices shared between attribute groups when attribute sorting
D3DXMESHOPT_DEVICEINDEPENDENT = 0x00400000, // Only affects VCache. uses a static known good cache size for all cards
// D3DXMESHOPT_SHAREVB has been removed, please use D3DXMESH_VB_SHARE instead
};
// Subset of the mesh that has the same attribute and bone combination.
// This subset can be rendered in a single draw call
typedef struct _D3DXBONECOMBINATION { DWORD AttribId; DWORD FaceStart; DWORD FaceCount; DWORD VertexStart; DWORD VertexCount; DWORD* BoneId; } D3DXBONECOMBINATION, *LPD3DXBONECOMBINATION;
// The following types of patch combinations are supported:
// Patch type Basis Degree
// Rect Bezier 2,3,5
// Rect B-Spline 2,3,5
// Rect Catmull-Rom 3
// Tri Bezier 2,3,5
// N-Patch N/A 3
typedef struct _D3DXPATCHINFO { D3DXPATCHMESHTYPE PatchType; D3DDEGREETYPE Degree; D3DBASISTYPE Basis; } D3DXPATCHINFO, *LPD3DXPATCHINFO;
#undef INTERFACE
#define INTERFACE ID3DXPatchMesh
DECLARE_INTERFACE_(ID3DXPatchMesh, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPatchMesh
// Return creation parameters
STDMETHOD_(DWORD, GetNumPatches)(THIS) PURE; STDMETHOD_(DWORD, GetNumVertices)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE; STDMETHOD_(DWORD, GetControlVerticesPerPatch)(THIS) PURE; STDMETHOD_(DWORD, GetOptions)(THIS) PURE; STDMETHOD(GetDevice)(THIS_ LPDIRECT3DDEVICE9 *ppDevice) PURE; STDMETHOD(GetPatchInfo)(THIS_ LPD3DXPATCHINFO PatchInfo) PURE;
// Control mesh access
STDMETHOD(GetVertexBuffer)(THIS_ LPDIRECT3DVERTEXBUFFER9* ppVB) PURE; STDMETHOD(GetIndexBuffer)(THIS_ LPDIRECT3DINDEXBUFFER9* ppIB) PURE; STDMETHOD(LockVertexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE; STDMETHOD(UnlockVertexBuffer)(THIS) PURE; STDMETHOD(LockIndexBuffer)(THIS_ DWORD flags, LPVOID *ppData) PURE; STDMETHOD(UnlockIndexBuffer)(THIS) PURE; STDMETHOD(LockAttributeBuffer)(THIS_ DWORD flags, DWORD** ppData) PURE; STDMETHOD(UnlockAttributeBuffer)(THIS) PURE;
// This function returns the size of the tessellated mesh given a tessellation level.
// This assumes uniform tessellation. For adaptive tessellation the Adaptive parameter must
// be set to TRUE and TessellationLevel should be the max tessellation.
// This will result in the max mesh size necessary for adaptive tessellation.
STDMETHOD(GetTessSize)(THIS_ FLOAT fTessLevel,DWORD Adaptive, DWORD *NumTriangles,DWORD *NumVertices) PURE; //GenerateAdjacency determines which patches are adjacent with provided tolerance
//this information is used internally to optimize tessellation
STDMETHOD(GenerateAdjacency)(THIS_ FLOAT Tolerance) PURE; //CloneMesh Creates a new patchmesh with the specified decl, and converts the vertex buffer
//to the new decl. Entries in the new decl which are new are set to 0. If the current mesh
//has adjacency, the new mesh will also have adjacency
STDMETHOD(CloneMesh)(THIS_ DWORD Options, CONST D3DVERTEXELEMENT9 *pDecl, LPD3DXPATCHMESH *pMesh) PURE; // Optimizes the patchmesh for efficient tessellation. This function is designed
// to perform one time optimization for patch meshes that need to be tessellated
// repeatedly by calling the Tessellate() method. The optimization performed is
// independent of the actual tessellation level used.
// Currently Flags is unused.
// If vertices are changed, Optimize must be called again
STDMETHOD(Optimize)(THIS_ DWORD flags) PURE;
//gets and sets displacement parameters
//displacement maps can only be 2D textures MIP-MAPPING is ignored for non adapative tessellation
STDMETHOD(SetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 Texture, D3DTEXTUREFILTERTYPE MinFilter, D3DTEXTUREFILTERTYPE MagFilter, D3DTEXTUREFILTERTYPE MipFilter, D3DTEXTUREADDRESS Wrap, DWORD dwLODBias) PURE;
STDMETHOD(GetDisplaceParam)(THIS_ LPDIRECT3DBASETEXTURE9 *Texture, D3DTEXTUREFILTERTYPE *MinFilter, D3DTEXTUREFILTERTYPE *MagFilter, D3DTEXTUREFILTERTYPE *MipFilter, D3DTEXTUREADDRESS *Wrap, DWORD *dwLODBias) PURE; // Performs the uniform tessellation based on the tessellation level.
// This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call.
STDMETHOD(Tessellate)(THIS_ FLOAT fTessLevel,LPD3DXMESH pMesh) PURE;
// Performs adaptive tessellation based on the Z based adaptive tessellation criterion.
// pTrans specifies a 4D vector that is dotted with the vertices to get the per vertex
// adaptive tessellation amount. Each edge is tessellated to the average of the criterion
// at the 2 vertices it connects.
// MaxTessLevel specifies the upper limit for adaptive tesselation.
// This function will perform more efficiently if the patch mesh has been optimized using the Optimize() call.
STDMETHOD(TessellateAdaptive)(THIS_ CONST D3DXVECTOR4 *pTrans, DWORD dwMaxTessLevel, DWORD dwMinTessLevel, LPD3DXMESH pMesh) PURE;
};
#undef INTERFACE
#define INTERFACE ID3DXSkinInfo
DECLARE_INTERFACE_(ID3DXSkinInfo, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// Specify the which vertices do each bones influence and by how much
STDMETHOD(SetBoneInfluence)(THIS_ DWORD bone, DWORD numInfluences, CONST DWORD* vertices, CONST FLOAT* weights) PURE; STDMETHOD(SetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float weight) PURE; STDMETHOD_(DWORD, GetNumBoneInfluences)(THIS_ DWORD bone) PURE; STDMETHOD(GetBoneInfluence)(THIS_ DWORD bone, DWORD* vertices, FLOAT* weights) PURE; STDMETHOD(GetBoneVertexInfluence)(THIS_ DWORD boneNum, DWORD influenceNum, float *pWeight, DWORD *pVertexNum) PURE; STDMETHOD(GetMaxVertexInfluences)(THIS_ DWORD* maxVertexInfluences) PURE; STDMETHOD_(DWORD, GetNumBones)(THIS) PURE; STDMETHOD(FindBoneVertexInfluenceIndex)(THIS_ DWORD boneNum, DWORD vertexNum, DWORD *pInfluenceIndex) PURE;
// This gets the max face influences based on a triangle mesh with the specified index buffer
STDMETHOD(GetMaxFaceInfluences)(THIS_ LPDIRECT3DINDEXBUFFER9 pIB, DWORD NumFaces, DWORD* maxFaceInfluences) PURE; // Set min bone influence. Bone influences that are smaller than this are ignored
STDMETHOD(SetMinBoneInfluence)(THIS_ FLOAT MinInfl) PURE; // Get min bone influence.
STDMETHOD_(FLOAT, GetMinBoneInfluence)(THIS) PURE; // Bone names are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object
STDMETHOD(SetBoneName)(THIS_ DWORD Bone, LPCSTR pName) PURE; // pName is copied to an internal string buffer
STDMETHOD_(LPCSTR, GetBoneName)(THIS_ DWORD Bone) PURE; // A pointer to an internal string buffer is returned. Do not free this.
// Bone offset matrices are returned by D3DXLoadSkinMeshFromXof. They are not used by any other method of this object
STDMETHOD(SetBoneOffsetMatrix)(THIS_ DWORD Bone, CONST D3DXMATRIX *pBoneTransform) PURE; // pBoneTransform is copied to an internal buffer
STDMETHOD_(LPD3DXMATRIX, GetBoneOffsetMatrix)(THIS_ DWORD Bone) PURE; // A pointer to an internal matrix is returned. Do not free this.
// Clone a skin info object
STDMETHOD(Clone)(THIS_ LPD3DXSKININFO* ppSkinInfo) PURE; // Update bone influence information to match vertices after they are reordered. This should be called
// if the target vertex buffer has been reordered externally.
STDMETHOD(Remap)(THIS_ DWORD NumVertices, DWORD* pVertexRemap) PURE;
// These methods enable the modification of the vertex layout of the vertices that will be skinned
STDMETHOD(SetFVF)(THIS_ DWORD FVF) PURE; STDMETHOD(SetDeclaration)(THIS_ CONST D3DVERTEXELEMENT9 *pDeclaration) PURE; STDMETHOD_(DWORD, GetFVF)(THIS) PURE; STDMETHOD(GetDeclaration)(THIS_ D3DVERTEXELEMENT9 Declaration[MAX_FVF_DECL_SIZE]) PURE;
// Apply SW skinning based on current pose matrices to the target vertices.
STDMETHOD(UpdateSkinnedMesh)(THIS_ CONST D3DXMATRIX* pBoneTransforms, CONST D3DXMATRIX* pBoneInvTransposeTransforms, LPCVOID pVerticesSrc, PVOID pVerticesDst) PURE;
// Takes a mesh and returns a new mesh with per vertex blend weights and a bone combination
// table that describes which bones affect which subsets of the mesh
STDMETHOD(ConvertToBlendedMesh)(THIS_ LPD3DXMESH pMesh, DWORD Options, CONST DWORD *pAdjacencyIn, LPDWORD pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, DWORD* pMaxFaceInfl, DWORD* pNumBoneCombinations, LPD3DXBUFFER* ppBoneCombinationTable, LPD3DXMESH* ppMesh) PURE;
// Takes a mesh and returns a new mesh with per vertex blend weights and indices
// and a bone combination table that describes which bones palettes affect which subsets of the mesh
STDMETHOD(ConvertToIndexedBlendedMesh)(THIS_ LPD3DXMESH pMesh, DWORD Options, DWORD paletteSize, CONST DWORD *pAdjacencyIn, LPDWORD pAdjacencyOut, DWORD* pFaceRemap, LPD3DXBUFFER *ppVertexRemap, DWORD* pMaxVertexInfl, DWORD* pNumBoneCombinations, LPD3DXBUFFER* ppBoneCombinationTable, LPD3DXMESH* ppMesh) PURE; };
#ifdef __cplusplus
extern "C" { #endif //__cplusplus
HRESULT WINAPI D3DXCreateMesh( DWORD NumFaces, DWORD NumVertices, DWORD Options, CONST D3DVERTEXELEMENT9 *pDeclaration, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppMesh);
HRESULT WINAPI D3DXCreateMeshFVF( DWORD NumFaces, DWORD NumVertices, DWORD Options, DWORD FVF, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH* ppMesh);
HRESULT WINAPI D3DXCreateSPMesh( LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights, CONST FLOAT *pVertexWeights, LPD3DXSPMESH* ppSMesh);
// clean a mesh up for simplification, try to make manifold
HRESULT WINAPI D3DXCleanMesh( D3DXCLEANTYPE CleanType, LPD3DXMESH pMeshIn, CONST DWORD* pAdjacencyIn, LPD3DXMESH* ppMeshOut, DWORD* pAdjacencyOut, LPD3DXBUFFER* ppErrorsAndWarnings);
HRESULT WINAPI D3DXValidMesh( LPD3DXMESH pMeshIn, CONST DWORD* pAdjacency, LPD3DXBUFFER* ppErrorsAndWarnings);
HRESULT WINAPI D3DXGeneratePMesh( LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights, CONST FLOAT *pVertexWeights, DWORD MinValue, DWORD Options, LPD3DXPMESH* ppPMesh);
HRESULT WINAPI D3DXSimplifyMesh( LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXATTRIBUTEWEIGHTS *pVertexAttributeWeights, CONST FLOAT *pVertexWeights, DWORD MinValue, DWORD Options, LPD3DXMESH* ppMesh);
HRESULT WINAPI D3DXComputeBoundingSphere( CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position
DWORD NumVertices, DWORD dwStride, // count in bytes to subsequent position vectors
D3DXVECTOR3 *pCenter, FLOAT *pRadius);
HRESULT WINAPI D3DXComputeBoundingBox( CONST D3DXVECTOR3 *pFirstPosition, // pointer to first position
DWORD NumVertices, DWORD dwStride, // count in bytes to subsequent position vectors
D3DXVECTOR3 *pMin, D3DXVECTOR3 *pMax);
HRESULT WINAPI D3DXComputeNormals( LPD3DXBASEMESH pMesh, CONST DWORD *pAdjacency);
HRESULT WINAPI D3DXCreateBuffer( DWORD NumBytes, LPD3DXBUFFER *ppBuffer);
HRESULT WINAPI D3DXLoadMeshFromXA( LPCSTR pFilename, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh);
HRESULT WINAPI D3DXLoadMeshFromXW( LPCWSTR pFilename, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh);
#ifdef UNICODE
#define D3DXLoadMeshFromX D3DXLoadMeshFromXW
#else
#define D3DXLoadMeshFromX D3DXLoadMeshFromXA
#endif
HRESULT WINAPI D3DXLoadMeshFromXInMemory( LPCVOID Memory, DWORD SizeOfMemory, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh);
HRESULT WINAPI D3DXLoadMeshFromXResource( HMODULE Module, LPCSTR Name, LPCSTR Type, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh);
HRESULT WINAPI D3DXSaveMeshToXA( LPCSTR pFilename, LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials, DWORD Format );
HRESULT WINAPI D3DXSaveMeshToXW( LPCWSTR pFilename, LPD3DXMESH pMesh, CONST DWORD* pAdjacency, CONST D3DXMATERIAL* pMaterials, CONST D3DXEFFECTINSTANCE* pEffectInstances, DWORD NumMaterials, DWORD Format ); #ifdef UNICODE
#define D3DXSaveMeshToX D3DXSaveMeshToXW
#else
#define D3DXSaveMeshToX D3DXSaveMeshToXA
#endif
HRESULT WINAPI D3DXCreatePMeshFromStream( IStream *pStream, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD* pNumMaterials, LPD3DXPMESH *ppPMesh);
// Creates a skin info object based on the number of vertices, number of bones, and a declaration describing the vertex layout of the target vertices
// The bone names and initial bone transforms are not filled in the skin info object by this method.
HRESULT WINAPI D3DXCreateSkinInfo( DWORD NumVertices, CONST D3DVERTEXELEMENT9 *pDeclaration, DWORD NumBones, LPD3DXSKININFO* ppSkinInfo); // Creates a skin info object based on the number of vertices, number of bones, and a FVF describing the vertex layout of the target vertices
// The bone names and initial bone transforms are not filled in the skin info object by this method.
HRESULT WINAPI D3DXCreateSkinInfoFVF( DWORD NumVertices, DWORD FVF, DWORD NumBones, LPD3DXSKININFO* ppSkinInfo); #ifdef __cplusplus
}
extern "C" { #endif //__cplusplus
HRESULT WINAPI D3DXLoadMeshFromXof( LPD3DXFILEDATA pxofMesh, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppAdjacency, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pNumMaterials, LPD3DXMESH *ppMesh);
// This similar to D3DXLoadMeshFromXof, except also returns skinning info if present in the file
// If skinning info is not present, ppSkinInfo will be NULL
HRESULT WINAPI D3DXLoadSkinMeshFromXof( LPD3DXFILEDATA pxofMesh, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER* ppAdjacency, LPD3DXBUFFER* ppMaterials, LPD3DXBUFFER *ppEffectInstances, DWORD *pMatOut, LPD3DXSKININFO* ppSkinInfo, LPD3DXMESH* ppMesh);
// The inverse of D3DXConvertTo{Indexed}BlendedMesh() functions. It figures out the skinning info from
// the mesh and the bone combination table and populates a skin info object with that data. The bone
// names and initial bone transforms are not filled in the skin info object by this method. This works
// with either a non-indexed or indexed blended mesh. It examines the FVF or declarator of the mesh to
// determine what type it is.
HRESULT WINAPI D3DXCreateSkinInfoFromBlendedMesh( LPD3DXBASEMESH pMesh, DWORD NumBones, CONST D3DXBONECOMBINATION *pBoneCombinationTable, LPD3DXSKININFO* ppSkinInfo); HRESULT WINAPI D3DXTessellateNPatches( LPD3DXMESH pMeshIn, CONST DWORD* pAdjacencyIn, FLOAT NumSegs, BOOL QuadraticInterpNormals, // if false use linear intrep for normals, if true use quadratic
LPD3DXMESH *ppMeshOut, LPD3DXBUFFER *ppAdjacencyOut);
//generates implied outputdecl from input decl
//the decl generated from this should be used to generate the output decl for
//the tessellator subroutines.
HRESULT WINAPI D3DXGenerateOutputDecl( D3DVERTEXELEMENT9 *pOutput, CONST D3DVERTEXELEMENT9 *pInput);
//loads patches from an XFileData
//since an X file can have up to 6 different patch meshes in it,
//returns them in an array - pNumPatches will contain the number of
//meshes in the actual file.
HRESULT WINAPI D3DXLoadPatchMeshFromXof( LPD3DXFILEDATA pXofObjMesh, DWORD Options, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXBUFFER *ppMaterials, LPD3DXBUFFER *ppEffectInstances, PDWORD pNumMaterials, LPD3DXPATCHMESH *ppMesh);
//computes the size a single rect patch.
HRESULT WINAPI D3DXRectPatchSize( CONST FLOAT *pfNumSegs, //segments for each edge (4)
DWORD *pdwTriangles, //output number of triangles
DWORD *pdwVertices); //output number of vertices
//computes the size of a single triangle patch
HRESULT WINAPI D3DXTriPatchSize( CONST FLOAT *pfNumSegs, //segments for each edge (3)
DWORD *pdwTriangles, //output number of triangles
DWORD *pdwVertices); //output number of vertices
//tessellates a patch into a created mesh
//similar to D3D RT patch
HRESULT WINAPI D3DXTessellateRectPatch( LPDIRECT3DVERTEXBUFFER9 pVB, CONST FLOAT *pNumSegs, CONST D3DVERTEXELEMENT9 *pdwInDecl, CONST D3DRECTPATCH_INFO *pRectPatchInfo, LPD3DXMESH pMesh);
HRESULT WINAPI D3DXTessellateTriPatch( LPDIRECT3DVERTEXBUFFER9 pVB, CONST FLOAT *pNumSegs, CONST D3DVERTEXELEMENT9 *pInDecl, CONST D3DTRIPATCH_INFO *pTriPatchInfo, LPD3DXMESH pMesh);
//creates an NPatch PatchMesh from a D3DXMESH
HRESULT WINAPI D3DXCreateNPatchMesh( LPD3DXMESH pMeshSysMem, LPD3DXPATCHMESH *pPatchMesh);
//creates a patch mesh
HRESULT WINAPI D3DXCreatePatchMesh( CONST D3DXPATCHINFO *pInfo, //patch type
DWORD dwNumPatches, //number of patches
DWORD dwNumVertices, //number of control vertices
DWORD dwOptions, //options
CONST D3DVERTEXELEMENT9 *pDecl, //format of control vertices
LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXPATCHMESH *pPatchMesh);
//returns the number of degenerates in a patch mesh -
//text output put in string.
HRESULT WINAPI D3DXValidPatchMesh(LPD3DXPATCHMESH pMesh, DWORD *dwcDegenerateVertices, DWORD *dwcDegeneratePatches, LPD3DXBUFFER *ppErrorsAndWarnings);
UINT WINAPI D3DXGetFVFVertexSize(DWORD FVF);
UINT WINAPI D3DXGetDeclVertexSize(CONST D3DVERTEXELEMENT9 *pDecl,DWORD Stream);
UINT WINAPI D3DXGetDeclLength(CONST D3DVERTEXELEMENT9 *pDecl);
HRESULT WINAPI D3DXDeclaratorFromFVF( DWORD FVF, D3DVERTEXELEMENT9 pDeclarator[MAX_FVF_DECL_SIZE]);
HRESULT WINAPI D3DXFVFFromDeclarator( CONST D3DVERTEXELEMENT9 *pDeclarator, DWORD *pFVF);
HRESULT WINAPI D3DXWeldVertices( LPD3DXMESH pMesh, DWORD Flags, CONST D3DXWELDEPSILONS *pEpsilons, CONST DWORD *pAdjacencyIn, DWORD *pAdjacencyOut, DWORD *pFaceRemap, LPD3DXBUFFER *ppVertexRemap);
typedef struct _D3DXINTERSECTINFO { DWORD FaceIndex; // index of face intersected
FLOAT U; // Barycentric Hit Coordinates
FLOAT V; // Barycentric Hit Coordinates
FLOAT Dist; // Ray-Intersection Parameter Distance
} D3DXINTERSECTINFO, *LPD3DXINTERSECTINFO;
HRESULT WINAPI D3DXIntersect( LPD3DXBASEMESH pMesh, CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir, BOOL *pHit, // True if any faces were intersected
DWORD *pFaceIndex, // index of closest face intersected
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist, // Ray-Intersection Parameter Distance
LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest)
DWORD *pCountOfHits); // Number of entries in AllHits array
HRESULT WINAPI D3DXIntersectSubset( LPD3DXBASEMESH pMesh, DWORD AttribId, CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir, BOOL *pHit, // True if any faces were intersected
DWORD *pFaceIndex, // index of closest face intersected
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist, // Ray-Intersection Parameter Distance
LPD3DXBUFFER *ppAllHits, // Array of D3DXINTERSECTINFOs for all hits (not just closest)
DWORD *pCountOfHits); // Number of entries in AllHits array
HRESULT WINAPI D3DXSplitMesh ( LPD3DXMESH pMeshIn, CONST DWORD *pAdjacencyIn, CONST DWORD MaxSize, CONST DWORD Options, DWORD *pMeshesOut, LPD3DXBUFFER *ppMeshArrayOut, LPD3DXBUFFER *ppAdjacencyArrayOut, LPD3DXBUFFER *ppFaceRemapArrayOut, LPD3DXBUFFER *ppVertRemapArrayOut );
BOOL WINAPI D3DXIntersectTri ( CONST D3DXVECTOR3 *p0, // Triangle vertex 0 position
CONST D3DXVECTOR3 *p1, // Triangle vertex 1 position
CONST D3DXVECTOR3 *p2, // Triangle vertex 2 position
CONST D3DXVECTOR3 *pRayPos, // Ray origin
CONST D3DXVECTOR3 *pRayDir, // Ray direction
FLOAT *pU, // Barycentric Hit Coordinates
FLOAT *pV, // Barycentric Hit Coordinates
FLOAT *pDist); // Ray-Intersection Parameter Distance
BOOL WINAPI D3DXSphereBoundProbe( CONST D3DXVECTOR3 *pCenter, FLOAT Radius, CONST D3DXVECTOR3 *pRayPosition, CONST D3DXVECTOR3 *pRayDirection);
BOOL WINAPI D3DXBoxBoundProbe( CONST D3DXVECTOR3 *pMin, CONST D3DXVECTOR3 *pMax, CONST D3DXVECTOR3 *pRayPosition, CONST D3DXVECTOR3 *pRayDirection);
HRESULT WINAPI D3DXComputeTangentFrame(ID3DXMesh *pMesh, DWORD dwOptions);
HRESULT WINAPI D3DXComputeTangentFrameEx(ID3DXMesh *pMesh, DWORD dwTextureInSemantic, DWORD dwTextureInIndex, DWORD dwUPartialOutSemantic, DWORD dwUPartialOutIndex, DWORD dwVPartialOutSemantic, DWORD dwVPartialOutIndex, DWORD dwNormalOutSemantic, DWORD dwNormalOutIndex, DWORD dwOptions, CONST DWORD *pdwAdjacency, FLOAT fPartialEdgeThreshold, FLOAT fSingularPointThreshold, FLOAT fNormalEdgeThreshold, ID3DXMesh **ppMeshOut, ID3DXBuffer **ppVertexMapping);
//D3DXComputeTangent
//
//Computes the Tangent vectors for the TexStage texture coordinates
//and places the results in the TANGENT[TangentIndex] specified in the meshes' DECL
//puts the binorm in BINORM[BinormIndex] also specified in the decl.
//
//If neither the binorm or the tangnet are in the meshes declaration,
//the function will fail.
//
//If a tangent or Binorm field is in the Decl, but the user does not
//wish D3DXComputeTangent to replace them, then D3DX_DEFAULT specified
//in the TangentIndex or BinormIndex will cause it to ignore the specified
//semantic.
//
//Wrap should be specified if the texture coordinates wrap.
HRESULT WINAPI D3DXComputeTangent(LPD3DXMESH Mesh, DWORD TexStage, DWORD TangentIndex, DWORD BinormIndex, DWORD Wrap, CONST DWORD *pAdjacency);
//============================================================================
//
// UVAtlas apis
//
//============================================================================
typedef HRESULT (WINAPI *LPD3DXUVATLASCB)(FLOAT fPercentDone, LPVOID lpUserContext);
// This function creates atlases for meshes. There are two modes of operation,
// either based on the number of charts, or the maximum allowed stretch. If the
// maximum allowed stretch is 0, then each triangle will likely be in its own
// chart.
//
// The parameters are as follows:
// pMesh - Input mesh to calculate an atlas for. This must have a position
// channel and at least a 2-d texture channel.
// uMaxChartNumber - The maximum number of charts required for the atlas.
// If this is 0, it will be parameterized based solely on
// stretch.
// fMaxStretch - The maximum amount of stretch, if 0, no stretching is allowed,
// if 1, then any amount of stretching is allowed.
// uWidth - The width of the texture the atlas will be used on.
// uHeight - The height of the texture the atlas will be used on.
// fGutter - The minimum distance, in texels between two charts on the atlas.
// this gets scaled by the width, so if fGutter is 2.5, and it is
// used on a 512x512 texture, then the minimum distance will be
// 2.5 / 512 in u-v space.
// dwTextureIndex - Specifies which texture coordinate to write to in the
// output mesh (which is cloned from the input mesh). Useful
// if your vertex has multiple texture coordinates.
// pdwAdjacency - a pointer to an array with 3 DWORDs per face, indicating
// which triangles are adjacent to each other.
// pdwFalseEdgeAdjacency - a pointer to an array with 3 DWORDS per face, indicating
// at each face, whether an edge is a false edge or not (using
// the same ordering as the adjacency data structure). If this
// is NULL, then it is assumed that there are no false edges. If
// not NULL, then a non-false edge is indicated by -1 and a false
// edge is indicated by any other value (it is not required, but
// it may be useful for the caller to use the original adjacency
// value). This allows you to parameterize a mesh of quads, and
// the edges down the middle of each quad will not be cut when
// parameterizing the mesh.
// pfIMTArray - a pointer to an array with 3 FLOATs per face, describing the
// integrated metric tensor for that face. This lets you control
// the way this triangle may be stretched in the atlas. The IMT
// passed in will be 3 floats (a,b,c) and specify a symmetric
// matrix (a b) that, given a vector (s,t), specifies the
// (b c)
// distance between a vector v1 and a vector v2 = v1 + (s,t) as
// sqrt((s, t) * M * (s, t)^T).
// In other words, this lets one specify the magnitude of the
// stretch in an arbitrary direction in u-v space. For example
// if a = b = c = 1, then this scales the vector (1,1) by 2, and
// the vector (1,-1) by 0. Note that this is multiplying the edge
// length by the square of the matrix, so if you want the face to
// stretch to twice its
// size with no shearing, the IMT value should be (2, 0, 2), which
// is just the identity matrix times 2.
// Note that this assumes you have an orientation for the triangle
// in some 2-D space. For D3DXUVAtlas, this space is created by
// letting S be the direction from the first to the second
// vertex, and T be the cross product between the normal and S.
//
// pStatusCallback - Since the atlas creation process can be very CPU intensive,
// this allows the programmer to specify a function to be called
// periodically, similarly to how it is done in the PRT simulation
// engine.
// fCallbackFrequency - This lets you specify how often the callback will be
// called. A decent default should be 0.0001f.
// pUserContext - a void pointer to be passed back to the callback function
// dwOptions - A combination of flags in the D3DXUVATLAS enum
// ppMeshOut - A pointer to a location to store a pointer for the newly created
// mesh.
// ppFacePartitioning - A pointer to a location to store a pointer for an array,
// one DWORD per face, giving the final partitioning
// created by the atlasing algorithm.
// ppVertexRemapArray - A pointer to a location to store a pointer for an array,
// one DWORD per vertex, giving the vertex it was copied
// from, if any vertices needed to be split.
// pfMaxStretchOut - A location to store the maximum stretch resulting from the
// atlasing algorithm.
// puNumChartsOut - A location to store the number of charts created, or if the
// maximum number of charts was too low, this gives the minimum
// number of charts needed to create an atlas.
HRESULT WINAPI D3DXUVAtlasCreate(LPD3DXMESH pMesh, UINT uMaxChartNumber, FLOAT fMaxStretch, UINT uWidth, UINT uHeight, FLOAT fGutter, DWORD dwTextureIndex, CONST DWORD *pdwAdjacency, CONST DWORD *pdwFalseEdgeAdjacency, CONST FLOAT *pfIMTArray, LPD3DXUVATLASCB pStatusCallback, FLOAT fCallbackFrequency, LPVOID pUserContext, DWORD dwOptions, LPD3DXMESH *ppMeshOut, LPD3DXBUFFER *ppFacePartitioning, LPD3DXBUFFER *ppVertexRemapArray, FLOAT *pfMaxStretchOut, UINT *puNumChartsOut);
// This has the same exact arguments as Create, except that it does not perform the
// final packing step. This method allows one to get a partitioning out, and possibly
// modify it before sending it to be repacked. Note that if you change the
// partitioning, you'll also need to calculate new texture coordinates for any faces
// that have switched charts.
//
// The partition result adjacency output parameter is meant to be passed to the
// UVAtlasPack function, this adjacency cuts edges that are between adjacent
// charts, and also can include cuts inside of a chart in order to make it
// equivalent to a disc. For example:
//
// _______
// | ___ |
// | |_| |
// |_____|
//
// In order to make this equivalent to a disc, we would need to add a cut, and it
// Would end up looking like:
// _______
// | ___ |
// | |_|_|
// |_____|
//
// The resulting partition adjacency parameter cannot be NULL, because it is
// required for the packing step.
HRESULT WINAPI D3DXUVAtlasPartition(LPD3DXMESH pMesh, UINT uMaxChartNumber, FLOAT fMaxStretch, DWORD dwTextureIndex, CONST DWORD *pdwAdjacency, CONST DWORD *pdwFalseEdgeAdjacency, CONST FLOAT *pfIMTArray, LPD3DXUVATLASCB pStatusCallback, FLOAT fCallbackFrequency, LPVOID pUserContext, DWORD dwOptions, LPD3DXMESH *ppMeshOut, LPD3DXBUFFER *ppFacePartitioning, LPD3DXBUFFER *ppVertexRemapArray, LPD3DXBUFFER *ppPartitionResultAdjacency, FLOAT *pfMaxStretchOut, UINT *puNumChartsOut);
// This takes the face partitioning result from Partition and packs it into an
// atlas of the given size. pdwPartitionResultAdjacency should be derived from
// the adjacency returned from the partition step. This value cannot be NULL
// because Pack needs to know where charts were cut in the partition step in
// order to find the edges of each chart.
// The options parameter is currently reserved.
HRESULT WINAPI D3DXUVAtlasPack(ID3DXMesh *pMesh, UINT uWidth, UINT uHeight, FLOAT fGutter, DWORD dwTextureIndex, CONST DWORD *pdwPartitionResultAdjacency, LPD3DXUVATLASCB pStatusCallback, FLOAT fCallbackFrequency, LPVOID pUserContext, DWORD dwOptions, LPD3DXBUFFER pFacePartitioning);
//============================================================================
//
// IMT Calculation apis
//
// These functions all compute the Integrated Metric Tensor for use in the
// UVAtlas API. They all calculate the IMT with respect to the canonical
// triangle, where the coordinate system is set up so that the u axis goes
// from vertex 0 to 1 and the v axis is N x u. So, for example, the second
// vertex's canonical uv coordinates are (d,0) where d is the distance between
// vertices 0 and 1. This way the IMT does not depend on the parameterization
// of the mesh, and if the signal over the surface doesn't change, then
// the IMT doesn't need to be recalculated.
//============================================================================
// This callback is used by D3DXComputeIMTFromSignal.
//
// uv - The texture coordinate for the vertex.
// uPrimitiveID - Face ID of the triangle on which to compute the signal.
// uSignalDimension - The number of floats to store in pfSignalOut.
// pUserData - The pUserData pointer passed in to ComputeIMTFromSignal.
// pfSignalOut - A pointer to where to store the signal data.
typedef HRESULT (WINAPI* LPD3DXIMTSIGNALCALLBACK) (CONST D3DXVECTOR2 *uv, UINT uPrimitiveID, UINT uSignalDimension, VOID *pUserData, FLOAT *pfSignalOut);
// This function is used to calculate the IMT from per vertex data. It sets
// up a linear system over the triangle, solves for the jacobian J, then
// constructs the IMT from that (J^TJ).
// This function allows you to calculate the IMT based off of any value in a
// mesh (color, normal, etc) by specifying the correct stride of the array.
// The IMT computed will cause areas of the mesh that have similar values to
// take up less space in the texture.
//
// pMesh - The mesh to calculate the IMT for.
// pVertexSignal - A float array of size uSignalStride * v, where v is the
// number of vertices in the mesh.
// uSignalDimension - How many floats per vertex to use in calculating the IMT.
// uSignalStride - The number of bytes per vertex in the array. This must be
// a multiple of sizeof(float)
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromPerVertexSignal ( LPD3DXMESH pMesh, CONST FLOAT *pfVertexSignal, // uSignalDimension floats per vertex
UINT uSignalDimension, UINT uSignalStride, // stride of signal in bytes
DWORD dwOptions, // reserved for future use
LPD3DXUVATLASCB pStatusCallback, LPVOID pUserContext, LPD3DXBUFFER *ppIMTData);
// This function is used to calculate the IMT from data that varies over the
// surface of the mesh (generally at a higher frequency than vertex data).
// This function requires the mesh to already be parameterized (so it already
// has texture coordinates). It allows the user to define a signal arbitrarily
// over the surface of the mesh.
//
// pMesh - The mesh to calculate the IMT for.
// dwTextureIndex - This describes which set of texture coordinates in the
// mesh to use.
// uSignalDimension - How many components there are in the signal.
// fMaxUVDistance - The subdivision will continue until the distance between
// all vertices is at most fMaxUVDistance.
// dwOptions - reserved for future use
// pSignalCallback - The callback to use to get the signal.
// pUserData - A pointer that will be passed in to the callback.
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromSignal( LPD3DXMESH pMesh, DWORD dwTextureIndex, UINT uSignalDimension, FLOAT fMaxUVDistance, DWORD dwOptions, // reserved for future use
LPD3DXIMTSIGNALCALLBACK pSignalCallback, VOID *pUserData, LPD3DXUVATLASCB pStatusCallback, LPVOID pUserContext, LPD3DXBUFFER *ppIMTData);
// This function is used to calculate the IMT from texture data. Given a texture
// that maps over the surface of the mesh, the algorithm computes the IMT for
// each face. This will cause large areas that are very similar to take up less
// room when parameterized with UVAtlas. The texture is assumed to be
// interpolated over the mesh bilinearly.
//
// pMesh - The mesh to calculate the IMT for.
// pTexture - The texture to load data from.
// dwTextureIndex - This describes which set of texture coordinates in the
// mesh to use.
// dwOptions - Combination of one or more D3DXIMT flags.
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromTexture ( LPD3DXMESH pMesh, LPDIRECT3DTEXTURE9 pTexture, DWORD dwTextureIndex, DWORD dwOptions, LPD3DXUVATLASCB pStatusCallback, LPVOID pUserContext, LPD3DXBUFFER *ppIMTData);
// This function is very similar to ComputeIMTFromTexture, but it uses a
// float array to pass in the data, and it can calculate higher dimensional
// values than 4.
//
// pMesh - The mesh to calculate the IMT for.
// dwTextureIndex - This describes which set of texture coordinates in the
// mesh to use.
// pfFloatArray - a pointer to a float array of size
// uWidth*uHeight*uComponents
// uWidth - The width of the texture
// uHeight - The height of the texture
// uSignalDimension - The number of floats per texel in the signal
// uComponents - The number of floats in each texel
// dwOptions - Combination of one or more D3DXIMT flags
// ppIMTData - Where to store the buffer holding the IMT data
HRESULT WINAPI D3DXComputeIMTFromPerTexelSignal( LPD3DXMESH pMesh, DWORD dwTextureIndex, FLOAT *pfTexelSignal, UINT uWidth, UINT uHeight, UINT uSignalDimension, UINT uComponents, DWORD dwOptions, LPD3DXUVATLASCB pStatusCallback, LPVOID pUserContext, LPD3DXBUFFER *ppIMTData);
HRESULT WINAPI D3DXConvertMeshSubsetToSingleStrip( LPD3DXBASEMESH MeshIn, DWORD AttribId, DWORD IBOptions, LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer, DWORD *pNumIndices);
HRESULT WINAPI D3DXConvertMeshSubsetToStrips( LPD3DXBASEMESH MeshIn, DWORD AttribId, DWORD IBOptions, LPDIRECT3DINDEXBUFFER9 *ppIndexBuffer, DWORD *pNumIndices, LPD3DXBUFFER *ppStripLengths, DWORD *pNumStrips);
//============================================================================
//
// D3DXOptimizeFaces:
// --------------------
// Generate a face remapping for a triangle list that more effectively utilizes
// vertex caches. This optimization is identical to the one provided
// by ID3DXMesh::Optimize with the hardware independent option enabled.
//
// Parameters:
// pbIndices
// Triangle list indices to use for generating a vertex ordering
// NumFaces
// Number of faces in the triangle list
// NumVertices
// Number of vertices referenced by the triangle list
// b32BitIndices
// TRUE if indices are 32 bit, FALSE if indices are 16 bit
// pFaceRemap
// Destination buffer to store face ordering
// The number stored for a given element is where in the new ordering
// the face will have come from. See ID3DXMesh::Optimize for more info.
//
//============================================================================
HRESULT WINAPI D3DXOptimizeFaces( LPCVOID pbIndices, UINT cFaces, UINT cVertices, BOOL b32BitIndices, DWORD* pFaceRemap); //============================================================================
//
// D3DXOptimizeVertices:
// --------------------
// Generate a vertex remapping to optimize for in order use of vertices for
// a given set of indices. This is commonly used after applying the face
// remap generated by D3DXOptimizeFaces
//
// Parameters:
// pbIndices
// Triangle list indices to use for generating a vertex ordering
// NumFaces
// Number of faces in the triangle list
// NumVertices
// Number of vertices referenced by the triangle list
// b32BitIndices
// TRUE if indices are 32 bit, FALSE if indices are 16 bit
// pVertexRemap
// Destination buffer to store vertex ordering
// The number stored for a given element is where in the new ordering
// the vertex will have come from. See ID3DXMesh::Optimize for more info.
//
//============================================================================
HRESULT WINAPI D3DXOptimizeVertices( LPCVOID pbIndices, UINT cFaces, UINT cVertices, BOOL b32BitIndices, DWORD* pVertexRemap);
#ifdef __cplusplus
} #endif //__cplusplus
//===========================================================================
//
// Data structures for Spherical Harmonic Precomputation
//
//
//============================================================================
typedef enum _D3DXSHCOMPRESSQUALITYTYPE { D3DXSHCQUAL_FASTLOWQUALITY = 1, D3DXSHCQUAL_SLOWHIGHQUALITY = 2, D3DXSHCQUAL_FORCE_DWORD = 0x7fffffff } D3DXSHCOMPRESSQUALITYTYPE;
typedef enum _D3DXSHGPUSIMOPT { D3DXSHGPUSIMOPT_SHADOWRES256 = 1, D3DXSHGPUSIMOPT_SHADOWRES512 = 0, D3DXSHGPUSIMOPT_SHADOWRES1024 = 2, D3DXSHGPUSIMOPT_SHADOWRES2048 = 3,
D3DXSHGPUSIMOPT_HIGHQUALITY = 4, D3DXSHGPUSIMOPT_FORCE_DWORD = 0x7fffffff } D3DXSHGPUSIMOPT;
// for all properties that are colors the luminance is computed
// if the simulator is run with a single channel using the following
// formula: R * 0.2125 + G * 0.7154 + B * 0.0721
typedef struct _D3DXSHMATERIAL { D3DCOLORVALUE Diffuse; // Diffuse albedo of the surface. (Ignored if object is a Mirror)
BOOL bMirror; // Must be set to FALSE. bMirror == TRUE not currently supported
BOOL bSubSurf; // true if the object does subsurface scattering - can't do this and be a mirror
// subsurface scattering parameters
FLOAT RelativeIndexOfRefraction; D3DCOLORVALUE Absorption; D3DCOLORVALUE ReducedScattering;
} D3DXSHMATERIAL;
// allocated in D3DXSHPRTCompSplitMeshSC
// vertices are duplicated into multiple super clusters but
// only have a valid status in one super cluster (fill in the rest)
typedef struct _D3DXSHPRTSPLITMESHVERTDATA { UINT uVertRemap; // vertex in original mesh this corresponds to
UINT uSubCluster; // cluster index relative to super cluster
UCHAR ucVertStatus; // 1 if vertex has valid data, 0 if it is "fill"
} D3DXSHPRTSPLITMESHVERTDATA;
// used in D3DXSHPRTCompSplitMeshSC
// information for each super cluster that maps into face/vert arrays
typedef struct _D3DXSHPRTSPLITMESHCLUSTERDATA { UINT uVertStart; // initial index into remapped vertex array
UINT uVertLength; // number of vertices in this super cluster
UINT uFaceStart; // initial index into face array
UINT uFaceLength; // number of faces in this super cluster
UINT uClusterStart; // initial index into cluster array
UINT uClusterLength; // number of clusters in this super cluster
} D3DXSHPRTSPLITMESHCLUSTERDATA;
// call back function for simulator
// return S_OK to keep running the simulator - anything else represents
// failure and the simulator will abort.
typedef HRESULT (WINAPI *LPD3DXSHPRTSIMCB)(float fPercentDone, LPVOID lpUserContext);
// interfaces for PRT buffers/simulator
// GUIDs
// {F1827E47-00A8-49cd-908C-9D11955F8728}
DEFINE_GUID(IID_ID3DXPRTBuffer, 0xf1827e47, 0xa8, 0x49cd, 0x90, 0x8c, 0x9d, 0x11, 0x95, 0x5f, 0x87, 0x28);
// {A758D465-FE8D-45ad-9CF0-D01E56266A07}
DEFINE_GUID(IID_ID3DXPRTCompBuffer, 0xa758d465, 0xfe8d, 0x45ad, 0x9c, 0xf0, 0xd0, 0x1e, 0x56, 0x26, 0x6a, 0x7);
// {838F01EC-9729-4527-AADB-DF70ADE7FEA9}
DEFINE_GUID(IID_ID3DXTextureGutterHelper, 0x838f01ec, 0x9729, 0x4527, 0xaa, 0xdb, 0xdf, 0x70, 0xad, 0xe7, 0xfe, 0xa9);
// {683A4278-CD5F-4d24-90AD-C4E1B6855D53}
DEFINE_GUID(IID_ID3DXPRTEngine, 0x683a4278, 0xcd5f, 0x4d24, 0x90, 0xad, 0xc4, 0xe1, 0xb6, 0x85, 0x5d, 0x53);
// interface defenitions
typedef interface ID3DXTextureGutterHelper ID3DXTextureGutterHelper; typedef interface ID3DXPRTBuffer ID3DXPRTBuffer;
#undef INTERFACE
#define INTERFACE ID3DXPRTBuffer
// Buffer interface - contains "NumSamples" samples
// each sample in memory is stored as NumCoeffs scalars per channel (1 or 3)
// Same interface is used for both Vertex and Pixel PRT buffers
DECLARE_INTERFACE_(ID3DXPRTBuffer, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPRTBuffer
STDMETHOD_(UINT, GetNumSamples)(THIS) PURE; STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE; STDMETHOD_(UINT, GetNumChannels)(THIS) PURE;
STDMETHOD_(BOOL, IsTexture)(THIS) PURE; STDMETHOD_(UINT, GetWidth)(THIS) PURE; STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// changes the number of samples allocated in the buffer
STDMETHOD(Resize)(THIS_ UINT NewSize) PURE;
// ppData will point to the memory location where sample Start begins
// pointer is valid for at least NumSamples samples
STDMETHOD(LockBuffer)(THIS_ UINT Start, UINT NumSamples, FLOAT **ppData) PURE; STDMETHOD(UnlockBuffer)(THIS) PURE;
// every scalar in buffer is multiplied by Scale
STDMETHOD(ScaleBuffer)(THIS_ FLOAT Scale) PURE; // every scalar contains the sum of this and pBuffers values
// pBuffer must have the same storage class/dimensions
STDMETHOD(AddBuffer)(THIS_ LPD3DXPRTBUFFER pBuffer) PURE;
// GutterHelper (described below) will fill in the gutter
// regions of a texture by interpolating "internal" values
STDMETHOD(AttachGH)(THIS_ LPD3DXTEXTUREGUTTERHELPER) PURE; STDMETHOD(ReleaseGH)(THIS) PURE; // Evaluates attached gutter helper on the contents of this buffer
STDMETHOD(EvalGH)(THIS) PURE;
// extracts a given channel into texture pTexture
// NumCoefficients starting from StartCoefficient are copied
STDMETHOD(ExtractTexture)(THIS_ UINT Channel, UINT StartCoefficient, UINT NumCoefficients, LPDIRECT3DTEXTURE9 pTexture) PURE;
// extracts NumCoefficients coefficients into mesh - only applicable on single channel
// buffers, otherwise just lockbuffer and copy data. With SHPRT data NumCoefficients
// should be Order^2
STDMETHOD(ExtractToMesh)(THIS_ UINT NumCoefficients, D3DDECLUSAGE Usage, UINT UsageIndexStart, LPD3DXMESH pScene) PURE;
};
typedef interface ID3DXPRTCompBuffer ID3DXPRTCompBuffer; typedef interface ID3DXPRTCompBuffer *LPD3DXPRTCOMPBUFFER;
#undef INTERFACE
#define INTERFACE ID3DXPRTCompBuffer
// compressed buffers stored a compressed version of a PRTBuffer
DECLARE_INTERFACE_(ID3DXPRTCompBuffer, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DPRTCompBuffer
// NumCoeffs and NumChannels are properties of input buffer
STDMETHOD_(UINT, GetNumSamples)(THIS) PURE; STDMETHOD_(UINT, GetNumCoeffs)(THIS) PURE; STDMETHOD_(UINT, GetNumChannels)(THIS) PURE;
STDMETHOD_(BOOL, IsTexture)(THIS) PURE; STDMETHOD_(UINT, GetWidth)(THIS) PURE; STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// number of clusters, and PCA vectors per-cluster
STDMETHOD_(UINT, GetNumClusters)(THIS) PURE; STDMETHOD_(UINT, GetNumPCA)(THIS) PURE;
// normalizes PCA weights so that they are between [-1,1]
// basis vectors are modified to reflect this
STDMETHOD(NormalizeData)(THIS) PURE;
// copies basis vectors for cluster "Cluster" into pClusterBasis
// (NumPCA+1)*NumCoeffs*NumChannels floats
STDMETHOD(ExtractBasis)(THIS_ UINT Cluster, FLOAT *pClusterBasis) PURE; // UINT per sample - which cluster it belongs to
STDMETHOD(ExtractClusterIDs)(THIS_ UINT *pClusterIDs) PURE; // copies NumExtract PCA projection coefficients starting at StartPCA
// into pPCACoefficients - NumSamples*NumExtract floats copied
STDMETHOD(ExtractPCA)(THIS_ UINT StartPCA, UINT NumExtract, FLOAT *pPCACoefficients) PURE;
// copies NumPCA projection coefficients starting at StartPCA
// into pTexture - should be able to cope with signed formats
STDMETHOD(ExtractTexture)(THIS_ UINT StartPCA, UINT NumpPCA, LPDIRECT3DTEXTURE9 pTexture) PURE; // copies NumPCA projection coefficients into mesh pScene
// Usage is D3DDECLUSAGE where coefficients are to be stored
// UsageIndexStart is starting index
STDMETHOD(ExtractToMesh)(THIS_ UINT NumPCA, D3DDECLUSAGE Usage, UINT UsageIndexStart, LPD3DXMESH pScene) PURE; };
#undef INTERFACE
#define INTERFACE ID3DXTextureGutterHelper
// ID3DXTextureGutterHelper will build and manage
// "gutter" regions in a texture - this will allow for
// bi-linear interpolation to not have artifacts when rendering
// It generates a map (in texture space) where each texel
// is in one of 3 states:
// 0 Invalid - not used at all
// 1 Inside triangle
// 2 Gutter texel
// 4 represents a gutter texel that will be computed during PRT
// For each Inside/Gutter texel it stores the face it
// belongs to and barycentric coordinates for the 1st two
// vertices of that face. Gutter vertices are assigned to
// the closest edge in texture space.
//
// When used with PRT this requires a unique parameterization
// of the model - every texel must correspond to a single point
// on the surface of the model and vice versa
DECLARE_INTERFACE_(ID3DXTextureGutterHelper, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXTextureGutterHelper
// dimensions of texture this is bound too
STDMETHOD_(UINT, GetWidth)(THIS) PURE; STDMETHOD_(UINT, GetHeight)(THIS) PURE;
// Applying gutters recomputes all of the gutter texels of class "2"
// based on texels of class "1" or "4"
// Applies gutters to a raw float buffer - each texel is NumCoeffs floats
// Width and Height must match GutterHelper
STDMETHOD(ApplyGuttersFloat)(THIS_ FLOAT *pDataIn, UINT NumCoeffs, UINT Width, UINT Height); // Applies gutters to pTexture
// Dimensions must match GutterHelper
STDMETHOD(ApplyGuttersTex)(THIS_ LPDIRECT3DTEXTURE9 pTexture); // Applies gutters to a D3DXPRTBuffer
// Dimensions must match GutterHelper
STDMETHOD(ApplyGuttersPRT)(THIS_ LPD3DXPRTBUFFER pBuffer); // Resamples a texture from a mesh onto this gutterhelpers
// parameterization. It is assumed that the UV coordinates
// for this gutter helper are in TEXTURE 0 (usage/usage index)
// and the texture coordinates should all be within [0,1] for
// both sets.
//
// pTextureIn - texture represented using parameterization in pMeshIn
// pMeshIn - Mesh with texture coordinates that represent pTextureIn
// pTextureOut texture coordinates are assumed to be in
// TEXTURE 0
// Usage - field in DECL for pMeshIn that stores texture coordinates
// for pTextureIn
// UsageIndex - which index for Usage above for pTextureIn
// pTextureOut- Resampled texture
//
// Usage would generally be D3DDECLUSAGE_TEXCOORD and UsageIndex other than zero
STDMETHOD(ResampleTex)(THIS_ LPDIRECT3DTEXTURE9 pTextureIn, LPD3DXMESH pMeshIn, D3DDECLUSAGE Usage, UINT UsageIndex, LPDIRECT3DTEXTURE9 pTextureOut); // the routines below provide access to the data structures
// used by the Apply functions
// face map is a UINT per texel that represents the
// face of the mesh that texel belongs too -
// only valid if same texel is valid in pGutterData
// pFaceData must be allocated by the user
STDMETHOD(GetFaceMap)(THIS_ UINT *pFaceData) PURE; // BaryMap is a D3DXVECTOR2 per texel
// the 1st two barycentric coordinates for the corresponding
// face (3rd weight is always 1-sum of first two)
// only valid if same texel is valid in pGutterData
// pBaryData must be allocated by the user
STDMETHOD(GetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE; // TexelMap is a D3DXVECTOR2 per texel that
// stores the location in pixel coordinates where the
// corresponding texel is mapped
// pTexelData must be allocated by the user
STDMETHOD(GetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE; // GutterMap is a BYTE per texel
// 0/1/2 for Invalid/Internal/Gutter texels
// 4 represents a gutter texel that will be computed
// during PRT
// pGutterData must be allocated by the user
STDMETHOD(GetGutterMap)(THIS_ BYTE *pGutterData) PURE; // face map is a UINT per texel that represents the
// face of the mesh that texel belongs too -
// only valid if same texel is valid in pGutterData
STDMETHOD(SetFaceMap)(THIS_ UINT *pFaceData) PURE; // BaryMap is a D3DXVECTOR2 per texel
// the 1st two barycentric coordinates for the corresponding
// face (3rd weight is always 1-sum of first two)
// only valid if same texel is valid in pGutterData
STDMETHOD(SetBaryMap)(THIS_ D3DXVECTOR2 *pBaryData) PURE; // TexelMap is a D3DXVECTOR2 per texel that
// stores the location in pixel coordinates where the
// corresponding texel is mapped
STDMETHOD(SetTexelMap)(THIS_ D3DXVECTOR2 *pTexelData) PURE; // GutterMap is a BYTE per texel
// 0/1/2 for Invalid/Internal/Gutter texels
// 4 represents a gutter texel that will be computed
// during PRT
STDMETHOD(SetGutterMap)(THIS_ BYTE *pGutterData) PURE; };
typedef interface ID3DXPRTEngine ID3DXPRTEngine; typedef interface ID3DXPRTEngine *LPD3DXPRTENGINE;
#undef INTERFACE
#define INTERFACE ID3DXPRTEngine
// ID3DXPRTEngine is used to compute a PRT simulation
// Use the following steps to compute PRT for SH
// (1) create an interface (which includes a scene)
// (2) call SetSamplingInfo
// (3) [optional] Set MeshMaterials/albedo's (required if doing bounces)
// (4) call ComputeDirectLightingSH
// (5) [optional] call ComputeBounce
// repeat step 5 for as many bounces as wanted.
// if you want to model subsurface scattering you
// need to call ComputeSS after direct lighting and
// each bounce.
// If you want to bake the albedo into the PRT signal, you
// must call MutliplyAlbedo, otherwise the user has to multiply
// the albedo themselves. Not multiplying the albedo allows you
// to model albedo variation at a finer scale then illumination, and
// can result in better compression results.
// Luminance values are computed from RGB values using the following
// formula: R * 0.2125 + G * 0.7154 + B * 0.0721
DECLARE_INTERFACE_(ID3DXPRTEngine, IUnknown) { // IUnknown
STDMETHOD(QueryInterface)(THIS_ REFIID iid, LPVOID *ppv) PURE; STDMETHOD_(ULONG, AddRef)(THIS) PURE; STDMETHOD_(ULONG, Release)(THIS) PURE;
// ID3DXPRTEngine
// This sets a material per attribute in the scene mesh and it is
// the only way to specify subsurface scattering parameters. if
// bSetAlbedo is FALSE, NumChannels must match the current
// configuration of the PRTEngine. If you intend to change
// NumChannels (through some other SetAlbedo function) it must
// happen before SetMeshMaterials is called.
//
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// bSetAlbedo sets albedo from material if TRUE - which clobbers per texel/vertex
// albedo that might have been set before. FALSE won't clobber.
// fLengthScale is used for subsurface scattering - scene is mapped into a 1mm unit cube
// and scaled by this amount
STDMETHOD(SetMeshMaterials)(THIS_ CONST D3DXSHMATERIAL **ppMaterials, UINT NumMeshes, UINT NumChannels, BOOL bSetAlbedo, FLOAT fLengthScale) PURE; // setting albedo per-vertex or per-texel over rides the albedos stored per mesh
// but it does not over ride any other settings
// sets an albedo to be used per vertex - the albedo is represented as a float
// pDataIn input pointer (pointint to albedo of 1st sample)
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// Stride - stride in bytes to get to next samples albedo
STDMETHOD(SetPerVertexAlbedo)(THIS_ CONST VOID *pDataIn, UINT NumChannels, UINT Stride) PURE; // represents the albedo per-texel instead of per-vertex (even if per-vertex PRT is used)
// pAlbedoTexture - texture that stores the albedo (dimension arbitrary)
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
// pGH - optional gutter helper, otherwise one is constructed in computation routines and
// destroyed (if not attached to buffers)
STDMETHOD(SetPerTexelAlbedo)(THIS_ LPDIRECT3DTEXTURE9 pAlbedoTexture, UINT NumChannels, LPD3DXTEXTUREGUTTERHELPER pGH) PURE; // gets the per-vertex albedo
STDMETHOD(GetVertexAlbedo)(THIS_ D3DXCOLOR *pVertColors, UINT NumVerts) PURE; // If pixel PRT is being computed normals default to ones that are interpolated
// from the vertex normals. This specifies a texture that stores an object
// space normal map instead (must use a texture format that can represent signed values)
// pNormalTexture - normal map, must be same dimensions as PRTBuffers, signed
STDMETHOD(SetPerTexelNormal)(THIS_ LPDIRECT3DTEXTURE9 pNormalTexture) PURE; // Copies per-vertex albedo from mesh
// pMesh - mesh that represents the scene. It must have the same
// properties as the mesh used to create the PRTEngine
// Usage - D3DDECLUSAGE to extract albedos from
// NumChannels 1 implies "grayscale" materials, set this to 3 to enable
// color bleeding effects
STDMETHOD(ExtractPerVertexAlbedo)(THIS_ LPD3DXMESH pMesh, D3DDECLUSAGE Usage, UINT NumChannels) PURE;
// Resamples the input buffer into the output buffer
// can be used to move between per-vertex and per-texel buffers. This can also be used
// to convert single channel buffers to 3-channel buffers and vice-versa.
STDMETHOD(ResampleBuffer)(THIS_ LPD3DXPRTBUFFER pBufferIn, LPD3DXPRTBUFFER pBufferOut) PURE; // Returns the scene mesh - including modifications from adaptive spatial sampling
// The returned mesh only has positions, normals and texture coordinates (if defined)
// pD3DDevice - d3d device that will be used to allocate the mesh
// pFaceRemap - each face has a pointer back to the face on the original mesh that it comes from
// if the face hasn't been subdivided this will be an identity mapping
// pVertRemap - each vertex contains 3 vertices that this is a linear combination of
// pVertWeights - weights for each of above indices (sum to 1.0f)
// ppMesh - mesh that will be allocated and filled
STDMETHOD(GetAdaptedMesh)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice,UINT *pFaceRemap, UINT *pVertRemap, FLOAT *pfVertWeights, LPD3DXMESH *ppMesh) PURE;
// Number of vertices currently allocated (includes new vertices from adaptive sampling)
STDMETHOD_(UINT, GetNumVerts)(THIS) PURE; // Number of faces currently allocated (includes new faces)
STDMETHOD_(UINT, GetNumFaces)(THIS) PURE;
// Sets the Minimum/Maximum intersection distances, this can be used to control
// maximum distance that objects can shadow/reflect light, and help with "bad"
// art that might have near features that you don't want to shadow. This does not
// apply for GPU simulations.
// fMin - minimum intersection distance, must be positive and less than fMax
// fMax - maximum intersection distance, if 0.0f use the previous value, otherwise
// must be strictly greater than fMin
STDMETHOD(SetMinMaxIntersection)(THIS_ FLOAT fMin, FLOAT fMax) PURE;
// This will subdivide faces on a mesh so that adaptively simulations can
// use a more conservative threshold (it won't miss features.)
// MinEdgeLength - minimum edge length that will be generated, if 0.0f a
// reasonable default will be used
// MaxSubdiv - maximum level of subdivision, if 0 is specified a default
// value will be used (5)
STDMETHOD(RobustMeshRefine)(THIS_ FLOAT MinEdgeLength, UINT MaxSubdiv) PURE;
// This sets to sampling information used by the simulator. Adaptive sampling
// parameters are currently ignored.
// NumRays - number of rays to shoot per sample
// UseSphere - if TRUE uses spherical samples, otherwise samples over
// the hemisphere. Should only be used with GPU and Vol computations
// UseCosine - if TRUE uses a cosine weighting - not used for Vol computations
// or if only the visiblity function is desired
// Adaptive - if TRUE adaptive sampling (angular) is used
// AdaptiveThresh - threshold used to terminate adaptive angular sampling
// ignored if adaptive sampling is not set
STDMETHOD(SetSamplingInfo)(THIS_ UINT NumRays, BOOL UseSphere, BOOL UseCosine, BOOL Adaptive, FLOAT AdaptiveThresh) PURE;
// Methods that compute the direct lighting contribution for objects
// always represente light using spherical harmonics (SH)
// the albedo is not multiplied by the signal - it just integrates
// incoming light. If NumChannels is not 1 the vector is replicated
//
// SHOrder - order of SH to use
// pDataOut - PRT buffer that is generated. Can be single channel
STDMETHOD(ComputeDirectLightingSH)(THIS_ UINT SHOrder, LPD3DXPRTBUFFER pDataOut) PURE; // Adaptive variant of above function. This will refine the mesh
// generating new vertices/faces to approximate the PRT signal
// more faithfully.
// SHOrder - order of SH to use
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - PRT buffer that is generated. Can be single channel.
STDMETHOD(ComputeDirectLightingSHAdaptive)(THIS_ UINT SHOrder, FLOAT AdaptiveThresh, FLOAT MinEdgeLength, UINT MaxSubdiv, LPD3DXPRTBUFFER pDataOut) PURE; // Function that computes the direct lighting contribution for objects
// light is always represented using spherical harmonics (SH)
// This is done on the GPU and is much faster then using the CPU.
// The albedo is not multiplied by the signal - it just integrates
// incoming light. If NumChannels is not 1 the vector is replicated.
// ZBias/ZAngleBias are akin to parameters used with shadow zbuffers.
// A reasonable default for both values is 0.005, but the user should
// experiment (ZAngleBias can be zero, ZBias should not be.)
// Callbacks should not use the Direct3D9Device the simulator is using.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
//
// pD3DDevice - device used to run GPU simulator - must support PS2.0
// and FP render targets
// Flags - parameters for the GPU simulator, combination of one or more
// D3DXSHGPUSIMOPT flags. Only one SHADOWRES setting should be set and
// the defaults is 512
// SHOrder - order of SH to use
// ZBias - bias in normal direction (for depth test)
// ZAngleBias - scaled by one minus cosine of angle with light (offset in depth)
// pDataOut - PRT buffer that is filled in. Can be single channel
STDMETHOD(ComputeDirectLightingSHGPU)(THIS_ LPDIRECT3DDEVICE9 pD3DDevice, UINT Flags, UINT SHOrder, FLOAT ZBias, FLOAT ZAngleBias, LPD3DXPRTBUFFER pDataOut) PURE;
// Functions that computes subsurface scattering (using material properties)
// Albedo is not multiplied by result. This only works for per-vertex data
// use ResampleBuffer to move per-vertex data into a texture and back.
//
// pDataIn - input data (previous bounce)
// pDataOut - result of subsurface scattering simulation
// pDataTotal - [optional] results can be summed into this buffer
STDMETHOD(ComputeSS)(THIS_ LPD3DXPRTBUFFER pDataIn, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// Adaptive version of ComputeSS.
//
// pDataIn - input data (previous bounce)
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - result of subsurface scattering simulation
// pDataTotal - [optional] results can be summed into this buffer
STDMETHOD(ComputeSSAdaptive)(THIS_ LPD3DXPRTBUFFER pDataIn, FLOAT AdaptiveThresh, FLOAT MinEdgeLength, UINT MaxSubdiv, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// computes a single bounce of inter-reflected light
// works for SH based PRT or generic lighting
// Albedo is not multiplied by result
//
// pDataIn - previous bounces data
// pDataOut - PRT buffer that is generated
// pDataTotal - [optional] can be used to keep a running sum
STDMETHOD(ComputeBounce)(THIS_ LPD3DXPRTBUFFER pDataIn, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// Adaptive version of above function.
//
// pDataIn - previous bounces data, can be single channel
// AdaptiveThresh - threshold for adaptive subdivision (in PRT vector error)
// if value is less then 1e-6f, 1e-6f is specified
// MinEdgeLength - minimum edge length that will be generated
// if value is too small a fairly conservative model dependent value
// is used
// MaxSubdiv - maximum subdivision level, if 0 is specified it
// will default to 4
// pDataOut - PRT buffer that is generated
// pDataTotal - [optional] can be used to keep a running sum
STDMETHOD(ComputeBounceAdaptive)(THIS_ LPD3DXPRTBUFFER pDataIn, FLOAT AdaptiveThresh, FLOAT MinEdgeLength, UINT MaxSubdiv, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// Computes projection of distant SH radiance into a local SH radiance
// function. This models how direct lighting is attenuated by the
// scene and is a form of "neighborhood transfer." The result is
// a linear operator (matrix) at every sample point, if you multiply
// this matrix by the distant SH lighting coefficients you get an
// approximation of the local incident radiance function from
// direct lighting. These resulting lighting coefficients can
// than be projected into another basis or used with any rendering
// technique that uses spherical harmonics as input.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
// Generates SHOrderIn*SHOrderIn*SHOrderOut*SHOrderOut scalars
// per channel at each sample location.
//
// SHOrderIn - Order of the SH representation of distant lighting
// SHOrderOut - Order of the SH representation of local lighting
// NumVolSamples - Number of sample locations
// pSampleLocs - position of sample locations
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeVolumeSamplesDirectSH)(THIS_ UINT SHOrderIn, UINT SHOrderOut, UINT NumVolSamples, CONST D3DXVECTOR3 *pSampleLocs, LPD3DXPRTBUFFER pDataOut) PURE; // At each sample location computes a linear operator (matrix) that maps
// the representation of source radiance (NumCoeffs in pSurfDataIn)
// into a local incident radiance function approximated with spherical
// harmonics. For example if a light map data is specified in pSurfDataIn
// the result is an SH representation of the flow of light at each sample
// point. If PRT data for an outdoor scene is used, each sample point
// contains a matrix that models how distant lighting bounces of the objects
// in the scene and arrives at the given sample point. Combined with
// ComputeVolumeSamplesDirectSH this gives the complete representation for
// how light arrives at each sample point parameterized by distant lighting.
// SetSamplingInfo must be called with TRUE for UseSphere and
// FALSE for UseCosine before this method is called.
// Generates pSurfDataIn->NumCoeffs()*SHOrder*SHOrder scalars
// per channel at each sample location.
//
// pSurfDataIn - previous bounce data
// SHOrder - order of SH to generate projection with
// NumVolSamples - Number of sample locations
// pSampleLocs - position of sample locations
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeVolumeSamples)(THIS_ LPD3DXPRTBUFFER pSurfDataIn, UINT SHOrder, UINT NumVolSamples, CONST D3DXVECTOR3 *pSampleLocs, LPD3DXPRTBUFFER pDataOut) PURE;
// Computes direct lighting (SH) for a point not on the mesh
// with a given normal - cannot use texture buffers.
//
// SHOrder - order of SH to use
// NumSamples - number of sample locations
// pSampleLocs - position for each sample
// pSampleNorms - normal for each sample
// pDataOut - PRT Buffer that will store output results
STDMETHOD(ComputeSurfSamplesDirectSH)(THIS_ UINT SHOrder, UINT NumSamples, CONST D3DXVECTOR3 *pSampleLocs, CONST D3DXVECTOR3 *pSampleNorms, LPD3DXPRTBUFFER pDataOut) PURE;
// given the solution for PRT or light maps, computes transfer vector at arbitrary
// position/normal pairs in space
//
// pSurfDataIn - input data
// NumSamples - number of sample locations
// pSampleLocs - position for each sample
// pSampleNorms - normal for each sample
// pDataOut - PRT Buffer that will store output results
// pDataTotal - optional buffer to sum results into - can be NULL
STDMETHOD(ComputeSurfSamplesBounce)(THIS_ LPD3DXPRTBUFFER pSurfDataIn, UINT NumSamples, CONST D3DXVECTOR3 *pSampleLocs, CONST D3DXVECTOR3 *pSampleNorms, LPD3DXPRTBUFFER pDataOut, LPD3DXPRTBUFFER pDataTotal) PURE;
// Frees temporary data structures that can be created for subsurface scattering
// this data is freed when the PRTComputeEngine is freed and is lazily created
STDMETHOD(FreeSSData)(THIS) PURE; // Frees temporary data structures that can be created for bounce simulations
// this data is freed when the PRTComputeEngine is freed and is lazily created
STDMETHOD(FreeBounceData)(THIS) PURE;
// This computes the Local Deformable PRT (LDPRT) coefficients relative to the
// per sample normals that minimize error in a least squares sense with respect
// to the input PRT data set. These coefficients can be used with skinned/transformed
// normals to model global effects with dynamic objects. Shading normals can
// optionally be solved for - these normals (along with the LDPRT coefficients) can
// more accurately represent the PRT signal. The coefficients are for zonal
// harmonics oriented in the normal/shading normal direction.
//
// pDataIn - SH PRT dataset that is input
// SHOrder - Order of SH to compute conv coefficients for
// pNormOut - Optional array of vectors (passed in) that will be filled with
// "shading normals", LDPRT coefficients are optimized for
// these normals. This array must be the same size as the number of
// samples in pDataIn
// pDataOut - Output buffer (SHOrder zonal harmonic coefficients per channel per sample)
STDMETHOD(ComputeLDPRTCoeffs)(THIS_ LPD3DXPRTBUFFER pDataIn, UINT SHOrder, D3DXVECTOR3 *pNormOut, LPD3DXPRTBUFFER pDataOut) PURE;
// scales all the samples associated with a given sub mesh
// can be useful when using subsurface scattering
// fScale - value to scale each vector in submesh by
STDMETHOD(ScaleMeshChunk)(THIS_ UINT uMeshChunk, FLOAT fScale, LPD3DXPRTBUFFER pDataOut) PURE; // mutliplies each PRT vector by the albedo - can be used if you want to have the albedo
// burned into the dataset, often better not to do this. If this is not done the user
// must mutliply the albedo themselves when rendering - just multiply the albedo times
// the result of the PRT dot product.
// If pDataOut is a texture simulation result and there is an albedo texture it
// must be represented at the same resolution as the simulation buffer. You can use
// LoadSurfaceFromSurface and set a new albedo texture if this is an issue - but must
// be careful about how the gutters are handled.
//
// pDataOut - dataset that will get albedo pushed into it
STDMETHOD(MultiplyAlbedo)(THIS_ LPD3DXPRTBUFFER pDataOut) PURE; // Sets a pointer to an optional call back function that reports back to the
// user percentage done and gives them the option of quitting
// pCB - pointer to call back function, return S_OK for the simulation
// to continue
// Frequency - 1/Frequency is roughly the number of times the call back
// will be invoked
// lpUserContext - will be passed back to the users call back
STDMETHOD(SetCallBack)(THIS_ LPD3DXSHPRTSIMCB pCB, FLOAT Frequency, LPVOID lpUserContext) PURE; // Returns TRUE if the ray intersects the mesh, FALSE if it does not. This function
// takes into account settings from SetMinMaxIntersection. If the closest intersection
// is not needed this function is more efficient compared to the ClosestRayIntersection
// method.
// pRayPos - origin of ray
// pRayDir - normalized ray direction (normalization required for SetMinMax to be meaningful)
STDMETHOD_(BOOL, ShadowRayIntersects)(THIS_ CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir) PURE; // Returns TRUE if the ray intersects the mesh, FALSE if it does not. If there is an
// intersection the closest face that was intersected and its first two barycentric coordinates
// are returned. This function takes into account settings from SetMinMaxIntersection.
// This is a slower function compared to ShadowRayIntersects and should only be used where
// needed. The third vertices barycentric coordinates will be 1 - pU - pV.
// pRayPos - origin of ray
// pRayDir - normalized ray direction (normalization required for SetMinMax to be meaningful)
// pFaceIndex - Closest face that intersects. This index is based on stacking the pBlockerMesh
// faces before the faces from pMesh
// pU - Barycentric coordinate for vertex 0
// pV - Barycentric coordinate for vertex 1
// pDist - Distance along ray where the intersection occured
STDMETHOD_(BOOL, ClosestRayIntersects)(THIS_ CONST D3DXVECTOR3 *pRayPos, CONST D3DXVECTOR3 *pRayDir, DWORD *pFaceIndex, FLOAT *pU, FLOAT *pV, FLOAT *pDist) PURE; };
// API functions for creating interfaces
#ifdef __cplusplus
extern "C" { #endif //__cplusplus
//============================================================================
//
// D3DXCreatePRTBuffer:
// --------------------
// Generates a PRT Buffer that can be compressed or filled by a simulator
// This function should be used to create per-vertex or volume buffers.
// When buffers are created all values are initialized to zero.
//
// Parameters:
// NumSamples
// Number of sample locations represented
// NumCoeffs
// Number of coefficients per sample location (order^2 for SH)
// NumChannels
// Number of color channels to represent (1 or 3)
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI D3DXCreatePRTBuffer( UINT NumSamples, UINT NumCoeffs, UINT NumChannels, LPD3DXPRTBUFFER* ppBuffer);
//============================================================================
//
// D3DXCreatePRTBufferTex:
// --------------------
// Generates a PRT Buffer that can be compressed or filled by a simulator
// This function should be used to create per-pixel buffers.
// When buffers are created all values are initialized to zero.
//
// Parameters:
// Width
// Width of texture
// Height
// Height of texture
// NumCoeffs
// Number of coefficients per sample location (order^2 for SH)
// NumChannels
// Number of color channels to represent (1 or 3)
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI D3DXCreatePRTBufferTex( UINT Width, UINT Height, UINT NumCoeffs, UINT NumChannels, LPD3DXPRTBUFFER* ppBuffer);
//============================================================================
//
// D3DXLoadPRTBufferFromFile:
// --------------------
// Loads a PRT buffer that has been saved to disk.
//
// Parameters:
// pFilename
// Name of the file to load
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI D3DXLoadPRTBufferFromFileA( LPCSTR pFilename, LPD3DXPRTBUFFER* ppBuffer); HRESULT WINAPI D3DXLoadPRTBufferFromFileW( LPCWSTR pFilename, LPD3DXPRTBUFFER* ppBuffer);
#ifdef UNICODE
#define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileW
#else
#define D3DXLoadPRTBufferFromFile D3DXLoadPRTBufferFromFileA
#endif
//============================================================================
//
// D3DXSavePRTBufferToFile:
// --------------------
// Saves a PRTBuffer to disk.
//
// Parameters:
// pFilename
// Name of the file to save
// pBuffer
// Buffer that will be saved
//
//============================================================================
HRESULT WINAPI D3DXSavePRTBufferToFileA( LPCSTR pFileName, LPD3DXPRTBUFFER pBuffer); HRESULT WINAPI D3DXSavePRTBufferToFileW( LPCWSTR pFileName, LPD3DXPRTBUFFER pBuffer);
#ifdef UNICODE
#define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileW
#else
#define D3DXSavePRTBufferToFile D3DXSavePRTBufferToFileA
#endif
//============================================================================
//
// D3DXLoadPRTCompBufferFromFile:
// --------------------
// Loads a PRTComp buffer that has been saved to disk.
//
// Parameters:
// pFilename
// Name of the file to load
// ppBuffer
// Buffer that will be allocated
//
//============================================================================
HRESULT WINAPI D3DXLoadPRTCompBufferFromFileA( LPCSTR pFilename, LPD3DXPRTCOMPBUFFER* ppBuffer); HRESULT WINAPI D3DXLoadPRTCompBufferFromFileW( LPCWSTR pFilename, LPD3DXPRTCOMPBUFFER* ppBuffer);
#ifdef UNICODE
#define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileW
#else
#define D3DXLoadPRTCompBufferFromFile D3DXLoadPRTCompBufferFromFileA
#endif
//============================================================================
//
// D3DXSavePRTCompBufferToFile:
// --------------------
// Saves a PRTCompBuffer to disk.
//
// Parameters:
// pFilename
// Name of the file to save
// pBuffer
// Buffer that will be saved
//
//============================================================================
HRESULT WINAPI D3DXSavePRTCompBufferToFileA( LPCSTR pFileName, LPD3DXPRTCOMPBUFFER pBuffer); HRESULT WINAPI D3DXSavePRTCompBufferToFileW( LPCWSTR pFileName, LPD3DXPRTCOMPBUFFER pBuffer);
#ifdef UNICODE
#define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileW
#else
#define D3DXSavePRTCompBufferToFile D3DXSavePRTCompBufferToFileA
#endif
//============================================================================
//
// D3DXCreatePRTCompBuffer:
// --------------------
// Compresses a PRT buffer (vertex or texel)
//
// Parameters:
// D3DXSHCOMPRESSQUALITYTYPE
// Quality of compression - low is faster (computes PCA per voronoi cluster)
// high is slower but better quality (clusters based on distance to affine subspace)
// NumClusters
// Number of clusters to compute
// NumPCA
// Number of basis vectors to compute
// pCB
// Optional Callback function
// lpUserContext
// Optional user context
// pBufferIn
// Buffer that will be compressed
// ppBufferOut
// Compressed buffer that will be created
//
//============================================================================
HRESULT WINAPI D3DXCreatePRTCompBuffer( D3DXSHCOMPRESSQUALITYTYPE Quality, UINT NumClusters, UINT NumPCA, LPD3DXSHPRTSIMCB pCB, LPVOID lpUserContext, LPD3DXPRTBUFFER pBufferIn, LPD3DXPRTCOMPBUFFER *ppBufferOut );
//============================================================================
//
// D3DXCreateTextureGutterHelper:
// --------------------
// Generates a "GutterHelper" for a given set of meshes and texture
// resolution
//
// Parameters:
// Width
// Width of texture
// Height
// Height of texture
// pMesh
// Mesh that represents the scene
// GutterSize
// Number of texels to over rasterize in texture space
// this should be at least 1.0
// ppBuffer
// GutterHelper that will be created
//
//============================================================================
HRESULT WINAPI D3DXCreateTextureGutterHelper( UINT Width, UINT Height, LPD3DXMESH pMesh, FLOAT GutterSize, LPD3DXTEXTUREGUTTERHELPER* ppBuffer);
//============================================================================
//
// D3DXCreatePRTEngine:
// --------------------
// Computes a PRTEngine which can efficiently generate PRT simulations
// of a scene
//
// Parameters:
// pMesh
// Mesh that represents the scene - must have an AttributeTable
// where vertices are in a unique attribute.
// pAdjacency
// Optional adjacency information
// ExtractUVs
// Set this to true if textures are going to be used for albedos
// or to store PRT vectors
// pBlockerMesh
// Optional mesh that just blocks the scene
// ppEngine
// PRTEngine that will be created
//
//============================================================================
HRESULT WINAPI D3DXCreatePRTEngine( LPD3DXMESH pMesh, DWORD *pAdjacency, BOOL ExtractUVs, LPD3DXMESH pBlockerMesh, LPD3DXPRTENGINE* ppEngine);
//============================================================================
//
// D3DXConcatenateMeshes:
// --------------------
// Concatenates a group of meshes into one common mesh. This can optionaly transform
// each sub mesh or its texture coordinates. If no DECL is given it will
// generate a union of all of the DECL's of the sub meshes, promoting channels
// and types if neccesary. It will create an AttributeTable if possible, one can
// call OptimizeMesh with attribute sort and compacting enabled to ensure this.
//
// Parameters:
// ppMeshes
// Array of pointers to meshes that can store PRT vectors
// NumMeshes
// Number of meshes
// Options
// Passed through to D3DXCreateMesh
// pGeomXForms
// [optional] Each sub mesh is transformed by the corresponding
// matrix if this array is supplied
// pTextureXForms
// [optional] UV coordinates for each sub mesh are transformed
// by corresponding matrix if supplied
// pDecl
// [optional] Only information in this DECL is used when merging
// data
// pD3DDevice
// D3D device that is used to create the new mesh
// ppMeshOut
// Mesh that will be created
//
//============================================================================
HRESULT WINAPI D3DXConcatenateMeshes( LPD3DXMESH *ppMeshes, UINT NumMeshes, DWORD Options, CONST D3DXMATRIX *pGeomXForms, CONST D3DXMATRIX *pTextureXForms, CONST D3DVERTEXELEMENT9 *pDecl, LPDIRECT3DDEVICE9 pD3DDevice, LPD3DXMESH *ppMeshOut);
//============================================================================
//
// D3DXSHPRTCompSuperCluster:
// --------------------------
// Used with compressed results of D3DXSHPRTSimulation.
// Generates "super clusters" - groups of clusters that can be drawn in
// the same draw call. A greedy algorithm that minimizes overdraw is used
// to group the clusters.
//
// Parameters:
// pClusterIDs
// NumVerts cluster ID's (extracted from a compressed buffer)
// pScene
// Mesh that represents composite scene passed to the simulator
// MaxNumClusters
// Maximum number of clusters allocated per super cluster
// NumClusters
// Number of clusters computed in the simulator
// pSuperClusterIDs
// Array of length NumClusters, contains index of super cluster
// that corresponding cluster was assigned to
// pNumSuperClusters
// Returns the number of super clusters allocated
//
//============================================================================
HRESULT WINAPI D3DXSHPRTCompSuperCluster( UINT *pClusterIDs, LPD3DXMESH pScene, UINT MaxNumClusters, UINT NumClusters, UINT *pSuperClusterIDs, UINT *pNumSuperClusters);
//============================================================================
//
// D3DXSHPRTCompSplitMeshSC:
// -------------------------
// Used with compressed results of the vertex version of the PRT simulator.
// After D3DXSHRTCompSuperCluster has been called this function can be used
// to split the mesh into a group of faces/vertices per super cluster.
// Each super cluster contains all of the faces that contain any vertex
// classified in one of its clusters. All of the vertices connected to this
// set of faces are also included with the returned array ppVertStatus
// indicating whether or not the vertex belongs to the supercluster.
//
// Parameters:
// pClusterIDs
// NumVerts cluster ID's (extracted from a compressed buffer)
// NumVertices
// Number of vertices in original mesh
// NumClusters
// Number of clusters (input parameter to compression)
// pSuperClusterIDs
// Array of size NumClusters that will contain super cluster ID's (from
// D3DXSHCompSuerCluster)
// NumSuperClusters
// Number of superclusters allocated in D3DXSHCompSuerCluster
// pInputIB
// Raw index buffer for mesh - format depends on bInputIBIs32Bit
// InputIBIs32Bit
// Indicates whether the input index buffer is 32-bit (otherwise 16-bit
// is assumed)
// NumFaces
// Number of faces in the original mesh (pInputIB is 3 times this length)
// ppIBData
// LPD3DXBUFFER holds raw index buffer that will contain the resulting split faces.
// Format determined by bIBIs32Bit. Allocated by function
// pIBDataLength
// Length of ppIBData, assigned in function
// OutputIBIs32Bit
// Indicates whether the output index buffer is to be 32-bit (otherwise
// 16-bit is assumed)
// ppFaceRemap
// LPD3DXBUFFER mapping of each face in ppIBData to original faces. Length is
// *pIBDataLength/3. Optional paramter, allocated in function
// ppVertData
// LPD3DXBUFFER contains new vertex data structure. Size of pVertDataLength
// pVertDataLength
// Number of new vertices in split mesh. Assigned in function
// pSCClusterList
// Array of length NumClusters which pSCData indexes into (Cluster* fields)
// for each SC, contains clusters sorted by super cluster
// pSCData
// Structure per super cluster - contains indices into ppIBData,
// pSCClusterList and ppVertData
//
//============================================================================
HRESULT WINAPI D3DXSHPRTCompSplitMeshSC( UINT *pClusterIDs, UINT NumVertices, UINT NumClusters, UINT *pSuperClusterIDs, UINT NumSuperClusters, LPVOID pInputIB, BOOL InputIBIs32Bit, UINT NumFaces, LPD3DXBUFFER *ppIBData, UINT *pIBDataLength, BOOL OutputIBIs32Bit, LPD3DXBUFFER *ppFaceRemap, LPD3DXBUFFER *ppVertData, UINT *pVertDataLength, UINT *pSCClusterList, D3DXSHPRTSPLITMESHCLUSTERDATA *pSCData); #ifdef __cplusplus
} #endif //__cplusplus
//////////////////////////////////////////////////////////////////////////////
//
// Definitions of .X file templates used by mesh load/save functions
// that are not RM standard
//
//////////////////////////////////////////////////////////////////////////////
// {3CF169CE-FF7C-44ab-93C0-F78F62D172E2}
DEFINE_GUID(DXFILEOBJ_XSkinMeshHeader, 0x3cf169ce, 0xff7c, 0x44ab, 0x93, 0xc0, 0xf7, 0x8f, 0x62, 0xd1, 0x72, 0xe2);
// {B8D65549-D7C9-4995-89CF-53A9A8B031E3}
DEFINE_GUID(DXFILEOBJ_VertexDuplicationIndices, 0xb8d65549, 0xd7c9, 0x4995, 0x89, 0xcf, 0x53, 0xa9, 0xa8, 0xb0, 0x31, 0xe3);
// {A64C844A-E282-4756-8B80-250CDE04398C}
DEFINE_GUID(DXFILEOBJ_FaceAdjacency, 0xa64c844a, 0xe282, 0x4756, 0x8b, 0x80, 0x25, 0xc, 0xde, 0x4, 0x39, 0x8c);
// {6F0D123B-BAD2-4167-A0D0-80224F25FABB}
DEFINE_GUID(DXFILEOBJ_SkinWeights, 0x6f0d123b, 0xbad2, 0x4167, 0xa0, 0xd0, 0x80, 0x22, 0x4f, 0x25, 0xfa, 0xbb);
// {A3EB5D44-FC22-429d-9AFB-3221CB9719A6}
DEFINE_GUID(DXFILEOBJ_Patch, 0xa3eb5d44, 0xfc22, 0x429d, 0x9a, 0xfb, 0x32, 0x21, 0xcb, 0x97, 0x19, 0xa6);
// {D02C95CC-EDBA-4305-9B5D-1820D7704BBF}
DEFINE_GUID(DXFILEOBJ_PatchMesh, 0xd02c95cc, 0xedba, 0x4305, 0x9b, 0x5d, 0x18, 0x20, 0xd7, 0x70, 0x4b, 0xbf);
// {B9EC94E1-B9A6-4251-BA18-94893F02C0EA}
DEFINE_GUID(DXFILEOBJ_PatchMesh9, 0xb9ec94e1, 0xb9a6, 0x4251, 0xba, 0x18, 0x94, 0x89, 0x3f, 0x2, 0xc0, 0xea);
// {B6C3E656-EC8B-4b92-9B62-681659522947}
DEFINE_GUID(DXFILEOBJ_PMInfo, 0xb6c3e656, 0xec8b, 0x4b92, 0x9b, 0x62, 0x68, 0x16, 0x59, 0x52, 0x29, 0x47);
// {917E0427-C61E-4a14-9C64-AFE65F9E9844}
DEFINE_GUID(DXFILEOBJ_PMAttributeRange, 0x917e0427, 0xc61e, 0x4a14, 0x9c, 0x64, 0xaf, 0xe6, 0x5f, 0x9e, 0x98, 0x44);
// {574CCC14-F0B3-4333-822D-93E8A8A08E4C}
DEFINE_GUID(DXFILEOBJ_PMVSplitRecord, 0x574ccc14, 0xf0b3, 0x4333, 0x82, 0x2d, 0x93, 0xe8, 0xa8, 0xa0, 0x8e, 0x4c);
// {B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897}
DEFINE_GUID(DXFILEOBJ_FVFData, 0xb6e70a0e, 0x8ef9, 0x4e83, 0x94, 0xad, 0xec, 0xc8, 0xb0, 0xc0, 0x48, 0x97);
// {F752461C-1E23-48f6-B9F8-8350850F336F}
DEFINE_GUID(DXFILEOBJ_VertexElement, 0xf752461c, 0x1e23, 0x48f6, 0xb9, 0xf8, 0x83, 0x50, 0x85, 0xf, 0x33, 0x6f);
// {BF22E553-292C-4781-9FEA-62BD554BDD93}
DEFINE_GUID(DXFILEOBJ_DeclData, 0xbf22e553, 0x292c, 0x4781, 0x9f, 0xea, 0x62, 0xbd, 0x55, 0x4b, 0xdd, 0x93);
// {F1CFE2B3-0DE3-4e28-AFA1-155A750A282D}
DEFINE_GUID(DXFILEOBJ_EffectFloats, 0xf1cfe2b3, 0xde3, 0x4e28, 0xaf, 0xa1, 0x15, 0x5a, 0x75, 0xa, 0x28, 0x2d);
// {D55B097E-BDB6-4c52-B03D-6051C89D0E42}
DEFINE_GUID(DXFILEOBJ_EffectString, 0xd55b097e, 0xbdb6, 0x4c52, 0xb0, 0x3d, 0x60, 0x51, 0xc8, 0x9d, 0xe, 0x42);
// {622C0ED0-956E-4da9-908A-2AF94F3CE716}
DEFINE_GUID(DXFILEOBJ_EffectDWord, 0x622c0ed0, 0x956e, 0x4da9, 0x90, 0x8a, 0x2a, 0xf9, 0x4f, 0x3c, 0xe7, 0x16);
// {3014B9A0-62F5-478c-9B86-E4AC9F4E418B}
DEFINE_GUID(DXFILEOBJ_EffectParamFloats, 0x3014b9a0, 0x62f5, 0x478c, 0x9b, 0x86, 0xe4, 0xac, 0x9f, 0x4e, 0x41, 0x8b);
// {1DBC4C88-94C1-46ee-9076-2C28818C9481}
DEFINE_GUID(DXFILEOBJ_EffectParamString, 0x1dbc4c88, 0x94c1, 0x46ee, 0x90, 0x76, 0x2c, 0x28, 0x81, 0x8c, 0x94, 0x81);
// {E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5}
DEFINE_GUID(DXFILEOBJ_EffectParamDWord, 0xe13963bc, 0xae51, 0x4c5d, 0xb0, 0xf, 0xcf, 0xa3, 0xa9, 0xd9, 0x7c, 0xe5);
// {E331F7E4-0559-4cc2-8E99-1CEC1657928F}
DEFINE_GUID(DXFILEOBJ_EffectInstance, 0xe331f7e4, 0x559, 0x4cc2, 0x8e, 0x99, 0x1c, 0xec, 0x16, 0x57, 0x92, 0x8f);
// {9E415A43-7BA6-4a73-8743-B73D47E88476}
DEFINE_GUID(DXFILEOBJ_AnimTicksPerSecond, 0x9e415a43, 0x7ba6, 0x4a73, 0x87, 0x43, 0xb7, 0x3d, 0x47, 0xe8, 0x84, 0x76);
// {7F9B00B3-F125-4890-876E-1CFFBF697C4D}
DEFINE_GUID(DXFILEOBJ_CompressedAnimationSet, 0x7f9b00b3, 0xf125, 0x4890, 0x87, 0x6e, 0x1c, 0x42, 0xbf, 0x69, 0x7c, 0x4d);
#pragma pack(push, 1)
typedef struct _XFILECOMPRESSEDANIMATIONSET { DWORD CompressedBlockSize; FLOAT TicksPerSec; DWORD PlaybackType; DWORD BufferLength; } XFILECOMPRESSEDANIMATIONSET; #pragma pack(pop)
#define XSKINEXP_TEMPLATES \
"xof 0303txt 0032\
template XSkinMeshHeader \ { \ <3CF169CE-FF7C-44ab-93C0-F78F62D172E2> \ WORD nMaxSkinWeightsPerVertex; \ WORD nMaxSkinWeightsPerFace; \ WORD nBones; \ } \ template VertexDuplicationIndices \ { \ <B8D65549-D7C9-4995-89CF-53A9A8B031E3> \ DWORD nIndices; \ DWORD nOriginalVertices; \ array DWORD indices[nIndices]; \ } \ template FaceAdjacency \ { \ <A64C844A-E282-4756-8B80-250CDE04398C> \ DWORD nIndices; \ array DWORD indices[nIndices]; \ } \ template SkinWeights \ { \ <6F0D123B-BAD2-4167-A0D0-80224F25FABB> \ STRING transformNodeName; \ DWORD nWeights; \ array DWORD vertexIndices[nWeights]; \ array float weights[nWeights]; \ Matrix4x4 matrixOffset; \ } \ template Patch \ { \ <A3EB5D44-FC22-429D-9AFB-3221CB9719A6> \ DWORD nControlIndices; \ array DWORD controlIndices[nControlIndices]; \ } \ template PatchMesh \ { \ <D02C95CC-EDBA-4305-9B5D-1820D7704BBF> \ DWORD nVertices; \ array Vector vertices[nVertices]; \ DWORD nPatches; \ array Patch patches[nPatches]; \ [ ... ] \ } \ template PatchMesh9 \ { \ <B9EC94E1-B9A6-4251-BA18-94893F02C0EA> \ DWORD Type; \ DWORD Degree; \ DWORD Basis; \ DWORD nVertices; \ array Vector vertices[nVertices]; \ DWORD nPatches; \ array Patch patches[nPatches]; \ [ ... ] \ } " \
"template EffectFloats \
{ \ <F1CFE2B3-0DE3-4e28-AFA1-155A750A282D> \ DWORD nFloats; \ array float Floats[nFloats]; \ } \ template EffectString \ { \ <D55B097E-BDB6-4c52-B03D-6051C89D0E42> \ STRING Value; \ } \ template EffectDWord \ { \ <622C0ED0-956E-4da9-908A-2AF94F3CE716> \ DWORD Value; \ } " \
"template EffectParamFloats \
{ \ <3014B9A0-62F5-478c-9B86-E4AC9F4E418B> \ STRING ParamName; \ DWORD nFloats; \ array float Floats[nFloats]; \ } " \
"template EffectParamString \
{ \ <1DBC4C88-94C1-46ee-9076-2C28818C9481> \ STRING ParamName; \ STRING Value; \ } \ template EffectParamDWord \ { \ <E13963BC-AE51-4c5d-B00F-CFA3A9D97CE5> \ STRING ParamName; \ DWORD Value; \ } \ template EffectInstance \ { \ <E331F7E4-0559-4cc2-8E99-1CEC1657928F> \ STRING EffectFilename; \ [ ... ] \ } " \
"template AnimTicksPerSecond \
{ \ <9E415A43-7BA6-4a73-8743-B73D47E88476> \ DWORD AnimTicksPerSecond; \ } \ template CompressedAnimationSet \ { \ <7F9B00B3-F125-4890-876E-1C42BF697C4D> \ DWORD CompressedBlockSize; \ FLOAT TicksPerSec; \ DWORD PlaybackType; \ DWORD BufferLength; \ array DWORD CompressedData[BufferLength]; \ } "
#define XEXTENSIONS_TEMPLATES \
"xof 0303txt 0032\
template FVFData \ { \ <B6E70A0E-8EF9-4e83-94AD-ECC8B0C04897> \ DWORD dwFVF; \ DWORD nDWords; \ array DWORD data[nDWords]; \ } \ template VertexElement \ { \ <F752461C-1E23-48f6-B9F8-8350850F336F> \ DWORD Type; \ DWORD Method; \ DWORD Usage; \ DWORD UsageIndex; \ } \ template DeclData \ { \ <BF22E553-292C-4781-9FEA-62BD554BDD93> \ DWORD nElements; \ array VertexElement Elements[nElements]; \ DWORD nDWords; \ array DWORD data[nDWords]; \ } \ template PMAttributeRange \ { \ <917E0427-C61E-4a14-9C64-AFE65F9E9844> \ DWORD iFaceOffset; \ DWORD nFacesMin; \ DWORD nFacesMax; \ DWORD iVertexOffset; \ DWORD nVerticesMin; \ DWORD nVerticesMax; \ } \ template PMVSplitRecord \ { \ <574CCC14-F0B3-4333-822D-93E8A8A08E4C> \ DWORD iFaceCLW; \ DWORD iVlrOffset; \ DWORD iCode; \ } \ template PMInfo \ { \ <B6C3E656-EC8B-4b92-9B62-681659522947> \ DWORD nAttributes; \ array PMAttributeRange attributeRanges[nAttributes]; \ DWORD nMaxValence; \ DWORD nMinLogicalVertices; \ DWORD nMaxLogicalVertices; \ DWORD nVSplits; \ array PMVSplitRecord splitRecords[nVSplits]; \ DWORD nAttributeMispredicts; \ array DWORD attributeMispredicts[nAttributeMispredicts]; \ } " #endif //__D3DX9MESH_H__
|