|
|
#ifndef CRYPTOPP_GFPCRYPT_H
#define CRYPTOPP_GFPCRYPT_H
/** \file
Implementation of schemes based on DL over GF(p) */
#include "pubkey.h"
#include "modexppc.h"
#include "sha.h"
#include "algparam.h"
#include "asn.h"
#include "smartptr.h"
#include "hmac.h"
#include <limits.h>
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters<Integer>;
//! _
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial<DL_GroupParameters<Integer> > { typedef DL_GroupParameters_IntegerBased ThisClass; public: void Initialize(const DL_GroupParameters_IntegerBased ¶ms) {Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());} void Initialize(RandomNumberGenerator &rng, unsigned int pbits) {GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));} void Initialize(const Integer &p, const Integer &g) {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);} void Initialize(const Integer &p, const Integer &q, const Integer &g) {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
// ASN1Object interface
void BERDecode(BufferedTransformation &bt); void DEREncode(BufferedTransformation &bt) const;
// GeneratibleCryptoMaterial interface
/*! parameters: (ModulusSize, SubgroupOrderSize (optional)) */ void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg); bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; void AssignFrom(const NameValuePairs &source); // DL_GroupParameters
const Integer & GetSubgroupOrder() const {return m_q;} Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();} bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const; bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;} void EncodeElement(bool reversible, const Element &element, byte *encoded) const {element.Encode(encoded, GetModulus().ByteCount());} unsigned int GetEncodedElementSize(bool reversible) const {return GetModulus().ByteCount();} Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const; Integer ConvertElementToInteger(const Element &element) const {return element;} Integer GetMaxExponent() const; static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";}
OID GetAlgorithmID() const;
virtual const Integer & GetModulus() const =0; virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;
void SetSubgroupOrder(const Integer &q) {m_q = q; ParametersChanged();}
protected: Integer ComputeGroupOrder(const Integer &modulus) const {return modulus-(GetFieldType() == 1 ? 1 : -1);}
// GF(p) = 1, GF(p^2) = 2
virtual int GetFieldType() const =0; virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;
private: Integer m_q; };
//! _
template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<CPP_TYPENAME GROUP_PRECOMP::Element> > class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased> { typedef DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> ThisClass;
public: typedef typename GROUP_PRECOMP::Element Element;
// GeneratibleCryptoMaterial interface
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const {return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}
void AssignFrom(const NameValuePairs &source) {AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;} DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
// IntegerGroupParameters
const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();} const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());}
void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) // these have to be set together
{this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();}
// non-inherited
bool operator==(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const {return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();} bool operator!=(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const {return !operator==(rhs);} };
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>;
//! GF(p) group parameters
class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation> { public: // DL_GroupParameters
bool IsIdentity(const Integer &element) const {return element == Integer::One();} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
// NameValuePairs interface
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable(); }
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const; Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
protected: int GetFieldType() const {return 1;} };
//! GF(p) group parameters that default to same primes
class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP { public: typedef NoCofactorMultiplication DefaultCofactorOption;
protected: unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;} };
//! GDSA algorithm
template <class T> class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm<T> { public: static const char * CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";}
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const { const Integer &q = params.GetSubgroupOrder(); r %= q; Integer kInv = k.InverseMod(q); s = (kInv * (x*r + e)) % q; assert(!!r && !!s); }
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const { const Integer &q = params.GetSubgroupOrder(); if (r>=q || r<1 || s>=q || s<1) return false;
Integer w = s.InverseMod(q); Integer u1 = (e * w) % q; Integer u2 = (r * w) % q; // verify r == (g^u1 * y^u2 mod p) mod q
return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q; } };
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<Integer>;
//! NR algorithm
template <class T> class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm<T> { public: static const char * CRYPTOPP_API StaticAlgorithmName() {return "NR";}
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const { const Integer &q = params.GetSubgroupOrder(); r = (r + e) % q; s = (k - x*r) % q; assert(!!r); }
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const { const Integer &q = params.GetSubgroupOrder(); if (r>=q || r<1 || s>=q) return false;
// check r == (m_g^s * m_y^r + m) mod m_q
return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q; } };
/*! DSA public key format is defined in 7.3.3 of RFC 2459. The
private key format is defined in 12.9 of PKCS #11 v2.10. */ template <class GP> class DL_PublicKey_GFP : public DL_PublicKeyImpl<GP> { public: void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &y) {this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);} void Initialize(const Integer &p, const Integer &g, const Integer &y) {this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);} void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y) {this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t) {this->SetPublicElement(Integer(bt));} void DEREncodePublicKey(BufferedTransformation &bt) const {this->GetPublicElement().DEREncode(bt);} };
//! DL private key (in GF(p) groups)
template <class GP> class DL_PrivateKey_GFP : public DL_PrivateKeyImpl<GP> { public: void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits) {this->GenerateRandomWithKeySize(rng, modulusBits);} void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g) {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));} void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g) {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));} void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &x) {this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);} void Initialize(const Integer &p, const Integer &g, const Integer &x) {this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);} void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x) {this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);} };
//! DL signing/verification keys (in GF(p) groups)
struct DL_SignatureKeys_GFP { typedef DL_GroupParameters_GFP GroupParameters; typedef DL_PublicKey_GFP<GroupParameters> PublicKey; typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey; };
//! DL encryption/decryption keys (in GF(p) groups)
struct DL_CryptoKeys_GFP { typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters; typedef DL_PublicKey_GFP<GroupParameters> PublicKey; typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey; };
//! provided for backwards compatibility, this class uses the old non-standard Crypto++ key format
template <class BASE> class DL_PublicKey_GFP_OldFormat : public BASE { public: void BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); Integer v1(seq); Integer v2(seq); Integer v3(seq);
if (seq.EndReached()) { this->AccessGroupParameters().Initialize(v1, v1/2, v2); this->SetPublicElement(v3); } else { Integer v4(seq); this->AccessGroupParameters().Initialize(v1, v2, v3); this->SetPublicElement(v4); }
seq.MessageEnd(); }
void DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); this->GetGroupParameters().GetModulus().DEREncode(seq); if (this->GetGroupParameters().GetCofactor() != 2) this->GetGroupParameters().GetSubgroupOrder().DEREncode(seq); this->GetGroupParameters().GetGenerator().DEREncode(seq); this->GetPublicElement().DEREncode(seq); seq.MessageEnd(); } };
//! provided for backwards compatibility, this class uses the old non-standard Crypto++ key format
template <class BASE> class DL_PrivateKey_GFP_OldFormat : public BASE { public: void BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); Integer v1(seq); Integer v2(seq); Integer v3(seq); Integer v4(seq);
if (seq.EndReached()) { this->AccessGroupParameters().Initialize(v1, v1/2, v2); this->SetPrivateExponent(v4 % (v1/2)); // some old keys may have x >= q
} else { Integer v5(seq); this->AccessGroupParameters().Initialize(v1, v2, v3); this->SetPrivateExponent(v5); }
seq.MessageEnd(); }
void DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); this->GetGroupParameters().GetModulus().DEREncode(seq); if (this->GetGroupParameters().GetCofactor() != 2) this->GetGroupParameters().GetSubgroupOrder().DEREncode(seq); this->GetGroupParameters().GetGenerator().DEREncode(seq); this->GetGroupParameters().ExponentiateBase(this->GetPrivateExponent()).DEREncode(seq); this->GetPrivateExponent().DEREncode(seq); seq.MessageEnd(); } };
//! <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
template <class H> struct GDSA : public DL_SS< DL_SignatureKeys_GFP, DL_Algorithm_GDSA<Integer>, DL_SignatureMessageEncodingMethod_DSA, H> { };
//! <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
template <class H> struct NR : public DL_SS< DL_SignatureKeys_GFP, DL_Algorithm_NR<Integer>, DL_SignatureMessageEncodingMethod_NR, H> { };
//! DSA group parameters, these are GF(p) group parameters that are allowed by the DSA standard
class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP { public: /*! also checks that the lengths of p and q are allowed by the DSA standard */ bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; /*! parameters: (ModulusSize), or (Modulus, SubgroupOrder, SubgroupGenerator) */ /*! ModulusSize must be between DSA::MIN_PRIME_LENGTH and DSA::MAX_PRIME_LENGTH, and divisible by DSA::PRIME_LENGTH_MULTIPLE */ void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg); };
struct DSA;
//! DSA keys
struct DL_Keys_DSA { typedef DL_PublicKey_GFP<DL_GroupParameters_DSA> PublicKey; typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA> PrivateKey; };
//! <a href="http://www.weidai.com/scan-mirror/sig.html#DSA">DSA</a>
struct CRYPTOPP_DLL DSA : public DL_SS< DL_Keys_DSA, DL_Algorithm_GDSA<Integer>, DL_SignatureMessageEncodingMethod_DSA, SHA, DSA> { static const char * CRYPTOPP_API StaticAlgorithmName() {return "DSA";}
//! Generate DSA primes according to NIST standard
/*! Both seedLength and primeLength are in bits, but seedLength should
be a multiple of 8. If useInputCounterValue == true, the counter parameter is taken as input, otherwise it's used for output */ static bool CRYPTOPP_API GeneratePrimes(const byte *seed, unsigned int seedLength, int &counter, Integer &p, unsigned int primeLength, Integer &q, bool useInputCounterValue = false);
static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits) {return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
//! FIPS 186-2 Change Notice 1 changed the minimum modulus length to 1024
enum { #if (DSA_1024_BIT_MODULUS_ONLY)
MIN_PRIME_LENGTH = 1024, #else
MIN_PRIME_LENGTH = 512, #endif
MAX_PRIME_LENGTH = 1024, PRIME_LENGTH_MULTIPLE = 64}; };
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP<DL_GroupParameters_DSA>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP<DL_GroupParameters_DSA>; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA>;
//! the XOR encryption method, for use with DL-based cryptosystems
template <class MAC, bool DHAES_MODE> class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm { public: bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;} size_t GetSymmetricKeyLength(size_t plaintextLength) const {return plaintextLength + MAC::DEFAULT_KEYLENGTH;} size_t GetSymmetricCiphertextLength(size_t plaintextLength) const {return plaintextLength + MAC::DIGESTSIZE;} size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const {return (unsigned int)SaturatingSubtract(ciphertextLength, (unsigned int)MAC::DIGESTSIZE);} void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters) const { const byte *cipherKey, *macKey; if (DHAES_MODE) { macKey = key; cipherKey = key + MAC::DEFAULT_KEYLENGTH; } else { cipherKey = key; macKey = key + plaintextLength; }
ConstByteArrayParameter encodingParameters; parameters.GetValue(Name::EncodingParameters(), encodingParameters);
xorbuf(ciphertext, plaintext, cipherKey, plaintextLength); MAC mac(macKey); mac.Update(ciphertext, plaintextLength); mac.Update(encodingParameters.begin(), encodingParameters.size()); if (DHAES_MODE) { byte L[8] = {0,0,0,0}; PutWord(false, BIG_ENDIAN_ORDER, L+4, word32(encodingParameters.size())); mac.Update(L, 8); } mac.Final(ciphertext + plaintextLength); } DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters) const { size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength); const byte *cipherKey, *macKey; if (DHAES_MODE) { macKey = key; cipherKey = key + MAC::DEFAULT_KEYLENGTH; } else { cipherKey = key; macKey = key + plaintextLength; }
ConstByteArrayParameter encodingParameters; parameters.GetValue(Name::EncodingParameters(), encodingParameters);
MAC mac(macKey); mac.Update(ciphertext, plaintextLength); mac.Update(encodingParameters.begin(), encodingParameters.size()); if (DHAES_MODE) { byte L[8] = {0,0,0,0}; PutWord(false, BIG_ENDIAN_ORDER, L+4, word32(encodingParameters.size())); mac.Update(L, 8); } if (!mac.Verify(ciphertext + plaintextLength)) return DecodingResult();
xorbuf(plaintext, ciphertext, cipherKey, plaintextLength); return DecodingResult(plaintextLength); } };
//! _
template <class T, bool DHAES_MODE, class KDF> class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm<T> { public: bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;} void Derive(const DL_GroupParameters<T> ¶ms, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs ¶meters) const { SecByteBlock agreedSecret; if (DHAES_MODE) { agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false)); params.EncodeElement(true, ephemeralPublicKey, agreedSecret); params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true)); } else { agreedSecret.New(params.GetEncodedElementSize(false)); params.EncodeElement(false, agreedElement, agreedSecret); }
ConstByteArrayParameter derivationParameters; parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters); KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size()); } };
//! Discrete Log Integrated Encryption Scheme, AKA <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">DLIES</a>
template <class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true> struct DLIES : public DL_ES< DL_CryptoKeys_GFP, DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>, DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<SHA1> >, DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>, DLIES<> > { static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";} // TODO: fix this after name is standardized
};
NAMESPACE_END
#endif
|