|
|
// panama.cpp - written and placed in the public domain by Wei Dai
// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM panama.cpp" to generate MASM code
#include "pch.h"
#ifndef CRYPTOPP_GENERATE_X64_MASM
#include "panama.h"
#include "misc.h"
#include "cpu.h"
NAMESPACE_BEGIN(CryptoPP)
template <class B> void Panama<B>::Reset() { memset(m_state, 0, m_state.SizeInBytes()); #if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
m_state[17] = HasSSSE3(); #endif
}
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" { void Panama_SSE2_Pull(size_t count, word32 *state, word32 *z, const word32 *y); } #elif CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#ifdef CRYPTOPP_GENERATE_X64_MASM
Panama_SSE2_Pull PROC FRAME rex_push_reg rdi alloc_stack(2*16) save_xmm128 xmm6, 0h save_xmm128 xmm7, 10h .endprolog #else
#pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code
void CRYPTOPP_NOINLINE Panama_SSE2_Pull(size_t count, word32 *state, word32 *z, const word32 *y) { #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
asm __volatile__ ( ".intel_syntax noprefix;" AS_PUSH_IF86( bx) #else
AS2( mov AS_REG_1, count) AS2( mov AS_REG_2, state) AS2( mov AS_REG_3, z) AS2( mov AS_REG_4, y) #endif
#endif // #ifdef CRYPTOPP_GENERATE_X64_MASM
#if CRYPTOPP_BOOL_X86
#define REG_loopEnd [esp]
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
#define REG_loopEnd rdi
#else
#define REG_loopEnd r8
#endif
AS2( shl AS_REG_1, 5) ASJ( jz, 5, f) AS2( mov AS_REG_6d, [AS_REG_2+4*17]) AS2( add AS_REG_1, AS_REG_6)
#if CRYPTOPP_BOOL_X64
AS2( mov REG_loopEnd, AS_REG_1) #else
AS1( push ebp) AS1( push AS_REG_1) #endif
AS2( movdqa xmm0, XMMWORD_PTR [AS_REG_2+0*16]) AS2( movdqa xmm1, XMMWORD_PTR [AS_REG_2+1*16]) AS2( movdqa xmm2, XMMWORD_PTR [AS_REG_2+2*16]) AS2( movdqa xmm3, XMMWORD_PTR [AS_REG_2+3*16]) AS2( mov eax, dword ptr [AS_REG_2+4*16])
ASL(4) // gamma and pi
#if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
AS2( test AS_REG_6, 1) ASJ( jnz, 6, f) #endif
AS2( movdqa xmm6, xmm2) AS2( movss xmm6, xmm3) ASS( pshufd xmm5, xmm6, 0, 3, 2, 1) AS2( movd xmm6, eax) AS2( movdqa xmm7, xmm3) AS2( movss xmm7, xmm6) ASS( pshufd xmm6, xmm7, 0, 3, 2, 1) #if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
ASJ( jmp, 7, f) ASL(6) AS2( movdqa xmm5, xmm3) AS3( palignr xmm5, xmm2, 4) AS2( movd xmm6, eax) AS3( palignr xmm6, xmm3, 4) ASL(7) #endif
AS2( movd AS_REG_1d, xmm2) AS1( not AS_REG_1d) AS2( movd AS_REG_7d, xmm3) AS2( or AS_REG_1d, AS_REG_7d) AS2( xor eax, AS_REG_1d)
#define SSE2_Index(i) ASM_MOD(((i)*13+16), 17)
#define pi(i) \
AS2( movd AS_REG_1d, xmm7)\ AS2( rol AS_REG_1d, ASM_MOD((ASM_MOD(5*i,17)*(ASM_MOD(5*i,17)+1)/2), 32))\ AS2( mov [AS_REG_2+SSE2_Index(ASM_MOD(5*(i), 17))*4], AS_REG_1d)
#define pi4(x, y, z, a, b, c, d) \
AS2( pcmpeqb xmm7, xmm7)\ AS2( pxor xmm7, x)\ AS2( por xmm7, y)\ AS2( pxor xmm7, z)\ pi(a)\ ASS( pshuflw xmm7, xmm7, 1, 0, 3, 2)\ pi(b)\ AS2( punpckhqdq xmm7, xmm7)\ pi(c)\ ASS( pshuflw xmm7, xmm7, 1, 0, 3, 2)\ pi(d)
pi4(xmm1, xmm2, xmm3, 1, 5, 9, 13) pi4(xmm0, xmm1, xmm2, 2, 6, 10, 14) pi4(xmm6, xmm0, xmm1, 3, 7, 11, 15) pi4(xmm5, xmm6, xmm0, 4, 8, 12, 16)
// output keystream and update buffer here to hide partial memory stalls between pi and theta
AS2( movdqa xmm4, xmm3) AS2( punpcklqdq xmm3, xmm2) // 1 5 2 6
AS2( punpckhdq xmm4, xmm2) // 9 10 13 14
AS2( movdqa xmm2, xmm1) AS2( punpcklqdq xmm1, xmm0) // 3 7 4 8
AS2( punpckhdq xmm2, xmm0) // 11 12 15 16
// keystream
AS2( test AS_REG_3, AS_REG_3) ASJ( jz, 0, f) AS2( movdqa xmm6, xmm4) AS2( punpcklqdq xmm4, xmm2) AS2( punpckhqdq xmm6, xmm2) AS2( test AS_REG_4, 15) ASJ( jnz, 2, f) AS2( test AS_REG_4, AS_REG_4) ASJ( jz, 1, f) AS2( pxor xmm4, [AS_REG_4]) AS2( pxor xmm6, [AS_REG_4+16]) AS2( add AS_REG_4, 32) ASJ( jmp, 1, f) ASL(2) AS2( movdqu xmm0, [AS_REG_4]) AS2( movdqu xmm2, [AS_REG_4+16]) AS2( pxor xmm4, xmm0) AS2( pxor xmm6, xmm2) AS2( add AS_REG_4, 32) ASL(1) AS2( test AS_REG_3, 15) ASJ( jnz, 3, f) AS2( movdqa XMMWORD_PTR [AS_REG_3], xmm4) AS2( movdqa XMMWORD_PTR [AS_REG_3+16], xmm6) AS2( add AS_REG_3, 32) ASJ( jmp, 0, f) ASL(3) AS2( movdqu XMMWORD_PTR [AS_REG_3], xmm4) AS2( movdqu XMMWORD_PTR [AS_REG_3+16], xmm6) AS2( add AS_REG_3, 32) ASL(0)
// buffer update
AS2( lea AS_REG_1, [AS_REG_6 + 32]) AS2( and AS_REG_1, 31*32) AS2( lea AS_REG_7, [AS_REG_6 + (32-24)*32]) AS2( and AS_REG_7, 31*32)
AS2( movdqa xmm0, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_1+0*8]) AS2( pxor xmm3, xmm0) ASS( pshufd xmm0, xmm0, 2, 3, 0, 1) AS2( movdqa XMMWORD_PTR [AS_REG_2+20*4+AS_REG_1+0*8], xmm3) AS2( pxor xmm0, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_7+2*8]) AS2( movdqa XMMWORD_PTR [AS_REG_2+20*4+AS_REG_7+2*8], xmm0)
AS2( movdqa xmm4, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_1+2*8]) AS2( pxor xmm1, xmm4) AS2( movdqa XMMWORD_PTR [AS_REG_2+20*4+AS_REG_1+2*8], xmm1) AS2( pxor xmm4, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_7+0*8]) AS2( movdqa XMMWORD_PTR [AS_REG_2+20*4+AS_REG_7+0*8], xmm4)
// theta
AS2( movdqa xmm3, XMMWORD_PTR [AS_REG_2+3*16]) AS2( movdqa xmm2, XMMWORD_PTR [AS_REG_2+2*16]) AS2( movdqa xmm1, XMMWORD_PTR [AS_REG_2+1*16]) AS2( movdqa xmm0, XMMWORD_PTR [AS_REG_2+0*16])
#if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
AS2( test AS_REG_6, 1) ASJ( jnz, 8, f) #endif
AS2( movd xmm6, eax) AS2( movdqa xmm7, xmm3) AS2( movss xmm7, xmm6) AS2( movdqa xmm6, xmm2) AS2( movss xmm6, xmm3) AS2( movdqa xmm5, xmm1) AS2( movss xmm5, xmm2) AS2( movdqa xmm4, xmm0) AS2( movss xmm4, xmm1) ASS( pshufd xmm7, xmm7, 0, 3, 2, 1) ASS( pshufd xmm6, xmm6, 0, 3, 2, 1) ASS( pshufd xmm5, xmm5, 0, 3, 2, 1) ASS( pshufd xmm4, xmm4, 0, 3, 2, 1) #if CRYPTOPP_BOOL_SSSE3_ASM_AVAILABLE
ASJ( jmp, 9, f) ASL(8) AS2( movd xmm7, eax) AS3( palignr xmm7, xmm3, 4) AS2( movq xmm6, xmm3) AS3( palignr xmm6, xmm2, 4) AS2( movq xmm5, xmm2) AS3( palignr xmm5, xmm1, 4) AS2( movq xmm4, xmm1) AS3( palignr xmm4, xmm0, 4) ASL(9) #endif
AS2( xor eax, 1) AS2( movd AS_REG_1d, xmm0) AS2( xor eax, AS_REG_1d) AS2( movd AS_REG_1d, xmm3) AS2( xor eax, AS_REG_1d)
AS2( pxor xmm3, xmm2) AS2( pxor xmm2, xmm1) AS2( pxor xmm1, xmm0) AS2( pxor xmm0, xmm7) AS2( pxor xmm3, xmm7) AS2( pxor xmm2, xmm6) AS2( pxor xmm1, xmm5) AS2( pxor xmm0, xmm4)
// sigma
AS2( lea AS_REG_1, [AS_REG_6 + (32-4)*32]) AS2( and AS_REG_1, 31*32) AS2( lea AS_REG_7, [AS_REG_6 + 16*32]) AS2( and AS_REG_7, 31*32)
AS2( movdqa xmm4, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_1+0*16]) AS2( movdqa xmm5, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_7+0*16]) AS2( movdqa xmm6, xmm4) AS2( punpcklqdq xmm4, xmm5) AS2( punpckhqdq xmm6, xmm5) AS2( pxor xmm3, xmm4) AS2( pxor xmm2, xmm6)
AS2( movdqa xmm4, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_1+1*16]) AS2( movdqa xmm5, XMMWORD_PTR [AS_REG_2+20*4+AS_REG_7+1*16]) AS2( movdqa xmm6, xmm4) AS2( punpcklqdq xmm4, xmm5) AS2( punpckhqdq xmm6, xmm5) AS2( pxor xmm1, xmm4) AS2( pxor xmm0, xmm6)
// loop
AS2( add AS_REG_6, 32) AS2( cmp AS_REG_6, REG_loopEnd) ASJ( jne, 4, b)
// save state
AS2( mov [AS_REG_2+4*16], eax) AS2( movdqa XMMWORD_PTR [AS_REG_2+3*16], xmm3) AS2( movdqa XMMWORD_PTR [AS_REG_2+2*16], xmm2) AS2( movdqa XMMWORD_PTR [AS_REG_2+1*16], xmm1) AS2( movdqa XMMWORD_PTR [AS_REG_2+0*16], xmm0)
#if CRYPTOPP_BOOL_X86
AS2( add esp, 4) AS1( pop ebp) #endif
ASL(5)
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
AS_POP_IF86( bx) ".att_syntax prefix;" : #if CRYPTOPP_BOOL_X64
: "D" (count), "S" (state), "d" (z), "c" (y) : "%r8", "%r9", "r10", "%eax", "memory", "cc", "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7" #else
: "c" (count), "d" (state), "S" (z), "D" (y) : "%eax", "memory", "cc" #endif
); #endif
#ifdef CRYPTOPP_GENERATE_X64_MASM
movdqa xmm6, [rsp + 0h] movdqa xmm7, [rsp + 10h] add rsp, 2*16 pop rdi ret Panama_SSE2_Pull ENDP #else
} #endif
#endif // #ifdef CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
#ifndef CRYPTOPP_GENERATE_X64_MASM
template <class B> void Panama<B>::Iterate(size_t count, const word32 *p, word32 *z, const word32 *y) { word32 bstart = m_state[17]; word32 *const aPtr = m_state; word32 cPtr[17];
#define bPtr ((byte *)(aPtr+20))
// reorder the state for SSE2
// a and c: 4 8 12 16 | 3 7 11 15 | 2 6 10 14 | 1 5 9 13 | 0
// xmm0 xmm1 xmm2 xmm3 eax
#define a(i) aPtr[((i)*13+16) % 17] // 13 is inverse of 4 mod 17
#define c(i) cPtr[((i)*13+16) % 17]
// b: 0 4 | 1 5 | 2 6 | 3 7
#define b(i, j) b##i[(j)*2%8 + (j)/4]
// output
#define OA(i) z[i] = ConditionalByteReverse(B::ToEnum(), a(i+9))
#define OX(i) z[i] = y[i] ^ ConditionalByteReverse(B::ToEnum(), a(i+9))
// buffer update
#define US(i) {word32 t=b(0,i); b(0,i)=ConditionalByteReverse(B::ToEnum(), p[i])^t; b(25,(i+6)%8)^=t;}
#define UL(i) {word32 t=b(0,i); b(0,i)=a(i+1)^t; b(25,(i+6)%8)^=t;}
// gamma and pi
#define GP(i) c(5*i%17) = rotlFixed(a(i) ^ (a((i+1)%17) | ~a((i+2)%17)), ((5*i%17)*((5*i%17)+1)/2)%32)
// theta and sigma
#define T(i,x) a(i) = c(i) ^ c((i+1)%17) ^ c((i+4)%17) ^ x
#define TS1S(i) T(i+1, ConditionalByteReverse(B::ToEnum(), p[i]))
#define TS1L(i) T(i+1, b(4,i))
#define TS2(i) T(i+9, b(16,i))
while (count--) { if (z) { if (y) { OX(0); OX(1); OX(2); OX(3); OX(4); OX(5); OX(6); OX(7); y += 8; } else { OA(0); OA(1); OA(2); OA(3); OA(4); OA(5); OA(6); OA(7); } z += 8; }
word32 *const b16 = (word32 *)(bPtr+((bstart+16*32) & 31*32)); word32 *const b4 = (word32 *)(bPtr+((bstart+(32-4)*32) & 31*32)); bstart += 32; word32 *const b0 = (word32 *)(bPtr+((bstart) & 31*32)); word32 *const b25 = (word32 *)(bPtr+((bstart+(32-25)*32) & 31*32));
if (p) { US(0); US(1); US(2); US(3); US(4); US(5); US(6); US(7); } else { UL(0); UL(1); UL(2); UL(3); UL(4); UL(5); UL(6); UL(7); }
GP(0); GP(1); GP(2); GP(3); GP(4); GP(5); GP(6); GP(7); GP(8); GP(9); GP(10); GP(11); GP(12); GP(13); GP(14); GP(15); GP(16);
T(0,1);
if (p) { TS1S(0); TS1S(1); TS1S(2); TS1S(3); TS1S(4); TS1S(5); TS1S(6); TS1S(7); p += 8; } else { TS1L(0); TS1L(1); TS1L(2); TS1L(3); TS1L(4); TS1L(5); TS1L(6); TS1L(7); }
TS2(0); TS2(1); TS2(2); TS2(3); TS2(4); TS2(5); TS2(6); TS2(7); } m_state[17] = bstart; }
namespace Weak { template <class B> size_t PanamaHash<B>::HashMultipleBlocks(const word32 *input, size_t length) { this->Iterate(length / this->BLOCKSIZE, input); return length % this->BLOCKSIZE; }
template <class B> void PanamaHash<B>::TruncatedFinal(byte *hash, size_t size) { this->ThrowIfInvalidTruncatedSize(size);
PadLastBlock(this->BLOCKSIZE, 0x01); HashEndianCorrectedBlock(this->m_data);
this->Iterate(32); // pull
FixedSizeSecBlock<word32, 8> buf; this->Iterate(1, NULL, buf, NULL);
memcpy(hash, buf, size);
this->Restart(); // reinit for next use
} }
template <class B> void PanamaCipherPolicy<B>::CipherSetKey(const NameValuePairs ¶ms, const byte *key, size_t length) { assert(length==32); memcpy(m_key, key, 32); }
template <class B> void PanamaCipherPolicy<B>::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length) { assert(length==32); this->Reset(); this->Iterate(1, m_key); if (iv && IsAligned<word32>(iv)) this->Iterate(1, (const word32 *)iv); else { FixedSizeSecBlock<word32, 8> buf; if (iv) memcpy(buf, iv, 32); else memset(buf, 0, 32); this->Iterate(1, buf); }
#if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
if (B::ToEnum() == LITTLE_ENDIAN_ORDER && HasSSE2() && !IsP4()) // SSE2 code is slower on P4 Prescott
Panama_SSE2_Pull(32, this->m_state, NULL, NULL); else #endif
this->Iterate(32); }
#if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X64
template <class B> unsigned int PanamaCipherPolicy<B>::GetAlignment() const { #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
if (B::ToEnum() == LITTLE_ENDIAN_ORDER && HasSSE2()) return 16; else #endif
return 1; } #endif
template <class B> void PanamaCipherPolicy<B>::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount) { #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
if (B::ToEnum() == LITTLE_ENDIAN_ORDER && HasSSE2()) Panama_SSE2_Pull(iterationCount, this->m_state, (word32 *)output, (const word32 *)input); else #endif
this->Iterate(iterationCount, NULL, (word32 *)output, (const word32 *)input); }
template class Panama<BigEndian>; template class Panama<LittleEndian>;
template class Weak::PanamaHash<BigEndian>; template class Weak::PanamaHash<LittleEndian>;
template class PanamaCipherPolicy<BigEndian>; template class PanamaCipherPolicy<LittleEndian>;
NAMESPACE_END
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
|