|
|
// polynomi.cpp - written and placed in the public domain by Wei Dai
// Part of the code for polynomial evaluation and interpolation
// originally came from Hal Finney's public domain secsplit.c.
#include "pch.h"
#include "polynomi.h"
#include "secblock.h"
#include <sstream>
#include <iostream>
NAMESPACE_BEGIN(CryptoPP)
template <class T> void PolynomialOver<T>::Randomize(RandomNumberGenerator &rng, const RandomizationParameter ¶meter, const Ring &ring) { m_coefficients.resize(parameter.m_coefficientCount); for (unsigned int i=0; i<m_coefficients.size(); ++i) m_coefficients[i] = ring.RandomElement(rng, parameter.m_coefficientParameter); }
template <class T> void PolynomialOver<T>::FromStr(const char *str, const Ring &ring) { std::istringstream in((char *)str); bool positive = true; CoefficientType coef; unsigned int power;
while (in) { std::ws(in); if (in.peek() == 'x') coef = ring.MultiplicativeIdentity(); else in >> coef;
std::ws(in); if (in.peek() == 'x') { in.get(); std::ws(in); if (in.peek() == '^') { in.get(); in >> power; } else power = 1; } else power = 0;
if (!positive) coef = ring.Inverse(coef);
SetCoefficient(power, coef, ring);
std::ws(in); switch (in.get()) { case '+': positive = true; break; case '-': positive = false; break; default: return; // something's wrong with the input string
} } }
template <class T> unsigned int PolynomialOver<T>::CoefficientCount(const Ring &ring) const { unsigned count = m_coefficients.size(); while (count && ring.Equal(m_coefficients[count-1], ring.Identity())) count--; const_cast<std::vector<CoefficientType> &>(m_coefficients).resize(count); return count; }
template <class T> typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::GetCoefficient(unsigned int i, const Ring &ring) const { return (i < m_coefficients.size()) ? m_coefficients[i] : ring.Identity(); }
template <class T> PolynomialOver<T>& PolynomialOver<T>::operator=(const PolynomialOver<T>& t) { if (this != &t) { m_coefficients.resize(t.m_coefficients.size()); for (unsigned int i=0; i<m_coefficients.size(); i++) m_coefficients[i] = t.m_coefficients[i]; } return *this; }
template <class T> PolynomialOver<T>& PolynomialOver<T>::Accumulate(const PolynomialOver<T>& t, const Ring &ring) { unsigned int count = t.CoefficientCount(ring);
if (count > CoefficientCount(ring)) m_coefficients.resize(count, ring.Identity());
for (unsigned int i=0; i<count; i++) ring.Accumulate(m_coefficients[i], t.GetCoefficient(i, ring));
return *this; }
template <class T> PolynomialOver<T>& PolynomialOver<T>::Reduce(const PolynomialOver<T>& t, const Ring &ring) { unsigned int count = t.CoefficientCount(ring);
if (count > CoefficientCount(ring)) m_coefficients.resize(count, ring.Identity());
for (unsigned int i=0; i<count; i++) ring.Reduce(m_coefficients[i], t.GetCoefficient(i, ring));
return *this; }
template <class T> typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::EvaluateAt(const CoefficientType &x, const Ring &ring) const { int degree = Degree(ring);
if (degree < 0) return ring.Identity();
CoefficientType result = m_coefficients[degree]; for (int j=degree-1; j>=0; j--) { result = ring.Multiply(result, x); ring.Accumulate(result, m_coefficients[j]); } return result; }
template <class T> PolynomialOver<T>& PolynomialOver<T>::ShiftLeft(unsigned int n, const Ring &ring) { unsigned int i = CoefficientCount(ring) + n; m_coefficients.resize(i, ring.Identity()); while (i > n) { i--; m_coefficients[i] = m_coefficients[i-n]; } while (i) { i--; m_coefficients[i] = ring.Identity(); } return *this; }
template <class T> PolynomialOver<T>& PolynomialOver<T>::ShiftRight(unsigned int n, const Ring &ring) { unsigned int count = CoefficientCount(ring); if (count > n) { for (unsigned int i=0; i<count-n; i++) m_coefficients[i] = m_coefficients[i+n]; m_coefficients.resize(count-n, ring.Identity()); } else m_coefficients.resize(0, ring.Identity()); return *this; }
template <class T> void PolynomialOver<T>::SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring) { if (i >= m_coefficients.size()) m_coefficients.resize(i+1, ring.Identity()); m_coefficients[i] = value; }
template <class T> void PolynomialOver<T>::Negate(const Ring &ring) { unsigned int count = CoefficientCount(ring); for (unsigned int i=0; i<count; i++) m_coefficients[i] = ring.Inverse(m_coefficients[i]); }
template <class T> void PolynomialOver<T>::swap(PolynomialOver<T> &t) { m_coefficients.swap(t.m_coefficients); }
template <class T> bool PolynomialOver<T>::Equals(const PolynomialOver<T>& t, const Ring &ring) const { unsigned int count = CoefficientCount(ring);
if (count != t.CoefficientCount(ring)) return false;
for (unsigned int i=0; i<count; i++) if (!ring.Equal(m_coefficients[i], t.m_coefficients[i])) return false;
return true; }
template <class T> PolynomialOver<T> PolynomialOver<T>::Plus(const PolynomialOver<T>& t, const Ring &ring) const { unsigned int i; unsigned int count = CoefficientCount(ring); unsigned int tCount = t.CoefficientCount(ring);
if (count > tCount) { PolynomialOver<T> result(ring, count);
for (i=0; i<tCount; i++) result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]); for (; i<count; i++) result.m_coefficients[i] = m_coefficients[i];
return result; } else { PolynomialOver<T> result(ring, tCount);
for (i=0; i<count; i++) result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]); for (; i<tCount; i++) result.m_coefficients[i] = t.m_coefficients[i];
return result; } }
template <class T> PolynomialOver<T> PolynomialOver<T>::Minus(const PolynomialOver<T>& t, const Ring &ring) const { unsigned int i; unsigned int count = CoefficientCount(ring); unsigned int tCount = t.CoefficientCount(ring);
if (count > tCount) { PolynomialOver<T> result(ring, count);
for (i=0; i<tCount; i++) result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]); for (; i<count; i++) result.m_coefficients[i] = m_coefficients[i];
return result; } else { PolynomialOver<T> result(ring, tCount);
for (i=0; i<count; i++) result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]); for (; i<tCount; i++) result.m_coefficients[i] = ring.Inverse(t.m_coefficients[i]);
return result; } }
template <class T> PolynomialOver<T> PolynomialOver<T>::Inverse(const Ring &ring) const { unsigned int count = CoefficientCount(ring); PolynomialOver<T> result(ring, count);
for (unsigned int i=0; i<count; i++) result.m_coefficients[i] = ring.Inverse(m_coefficients[i]);
return result; }
template <class T> PolynomialOver<T> PolynomialOver<T>::Times(const PolynomialOver<T>& t, const Ring &ring) const { if (IsZero(ring) || t.IsZero(ring)) return PolynomialOver<T>();
unsigned int count1 = CoefficientCount(ring), count2 = t.CoefficientCount(ring); PolynomialOver<T> result(ring, count1 + count2 - 1);
for (unsigned int i=0; i<count1; i++) for (unsigned int j=0; j<count2; j++) ring.Accumulate(result.m_coefficients[i+j], ring.Multiply(m_coefficients[i], t.m_coefficients[j]));
return result; }
template <class T> PolynomialOver<T> PolynomialOver<T>::DividedBy(const PolynomialOver<T>& t, const Ring &ring) const { PolynomialOver<T> remainder, quotient; Divide(remainder, quotient, *this, t, ring); return quotient; }
template <class T> PolynomialOver<T> PolynomialOver<T>::Modulo(const PolynomialOver<T>& t, const Ring &ring) const { PolynomialOver<T> remainder, quotient; Divide(remainder, quotient, *this, t, ring); return remainder; }
template <class T> PolynomialOver<T> PolynomialOver<T>::MultiplicativeInverse(const Ring &ring) const { return Degree(ring)==0 ? ring.MultiplicativeInverse(m_coefficients[0]) : ring.Identity(); }
template <class T> bool PolynomialOver<T>::IsUnit(const Ring &ring) const { return Degree(ring)==0 && ring.IsUnit(m_coefficients[0]); }
template <class T> std::istream& PolynomialOver<T>::Input(std::istream &in, const Ring &ring) { char c; unsigned int length = 0; SecBlock<char> str(length + 16); bool paren = false;
std::ws(in);
if (in.peek() == '(') { paren = true; in.get(); }
do { in.read(&c, 1); str[length++] = c; if (length >= str.size()) str.Grow(length + 16); } // if we started with a left paren, then read until we find a right paren,
// otherwise read until the end of the line
while (in && ((paren && c != ')') || (!paren && c != '\n')));
str[length-1] = '\0'; *this = PolynomialOver<T>(str, ring);
return in; }
template <class T> std::ostream& PolynomialOver<T>::Output(std::ostream &out, const Ring &ring) const { unsigned int i = CoefficientCount(ring); if (i) { bool firstTerm = true;
while (i--) { if (m_coefficients[i] != ring.Identity()) { if (firstTerm) { firstTerm = false; if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity())) out << m_coefficients[i]; } else { CoefficientType inverse = ring.Inverse(m_coefficients[i]); std::ostringstream pstr, nstr;
pstr << m_coefficients[i]; nstr << inverse;
if (pstr.str().size() <= nstr.str().size()) { out << " + "; if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity())) out << m_coefficients[i]; } else { out << " - "; if (!i || !ring.Equal(inverse, ring.MultiplicativeIdentity())) out << inverse; } }
switch (i) { case 0: break; case 1: out << "x"; break; default: out << "x^" << i; } } } } else { out << ring.Identity(); } return out; }
template <class T> void PolynomialOver<T>::Divide(PolynomialOver<T> &r, PolynomialOver<T> &q, const PolynomialOver<T> &a, const PolynomialOver<T> &d, const Ring &ring) { unsigned int i = a.CoefficientCount(ring); const int dDegree = d.Degree(ring);
if (dDegree < 0) throw DivideByZero();
r = a; q.m_coefficients.resize(STDMAX(0, int(i - dDegree)));
while (i > (unsigned int)dDegree) { --i; q.m_coefficients[i-dDegree] = ring.Divide(r.m_coefficients[i], d.m_coefficients[dDegree]); for (int j=0; j<=dDegree; j++) ring.Reduce(r.m_coefficients[i-dDegree+j], ring.Multiply(q.m_coefficients[i-dDegree], d.m_coefficients[j])); }
r.CoefficientCount(ring); // resize r.m_coefficients
}
// ********************************************************
// helper function for Interpolate() and InterpolateAt()
template <class T> void RingOfPolynomialsOver<T>::CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const { for (unsigned int j=0; j<n; ++j) alpha[j] = y[j];
for (unsigned int k=1; k<n; ++k) { for (unsigned int j=n-1; j>=k; --j) { m_ring.Reduce(alpha[j], alpha[j-1]);
CoefficientType d = m_ring.Subtract(x[j], x[j-k]); if (!m_ring.IsUnit(d)) throw InterpolationFailed(); alpha[j] = m_ring.Divide(alpha[j], d); } } }
template <class T> typename RingOfPolynomialsOver<T>::Element RingOfPolynomialsOver<T>::Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const { assert(n > 0);
std::vector<CoefficientType> alpha(n); CalculateAlpha(alpha, x, y, n);
std::vector<CoefficientType> coefficients((size_t)n, m_ring.Identity()); coefficients[0] = alpha[n-1];
for (int j=n-2; j>=0; --j) { for (unsigned int i=n-j-1; i>0; i--) coefficients[i] = m_ring.Subtract(coefficients[i-1], m_ring.Multiply(coefficients[i], x[j]));
coefficients[0] = m_ring.Subtract(alpha[j], m_ring.Multiply(coefficients[0], x[j])); }
return PolynomialOver<T>(coefficients.begin(), coefficients.end()); }
template <class T> typename RingOfPolynomialsOver<T>::CoefficientType RingOfPolynomialsOver<T>::InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const { assert(n > 0);
std::vector<CoefficientType> alpha(n); CalculateAlpha(alpha, x, y, n);
CoefficientType result = alpha[n-1]; for (int j=n-2; j>=0; --j) { result = m_ring.Multiply(result, m_ring.Subtract(position, x[j])); m_ring.Accumulate(result, alpha[j]); } return result; }
template <class Ring, class Element> void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n) { for (unsigned int i=0; i<n; i++) { Element t = ring.MultiplicativeIdentity(); for (unsigned int j=0; j<n; j++) if (i != j) t = ring.Multiply(t, ring.Subtract(x[i], x[j])); w[i] = ring.MultiplicativeInverse(t); } }
template <class Ring, class Element> void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n) { assert(n > 0);
std::vector<Element> a(2*n-1); unsigned int i;
for (i=0; i<n; i++) a[n-1+i] = ring.Subtract(position, x[i]);
for (i=n-1; i>1; i--) a[i-1] = ring.Multiply(a[2*i], a[2*i-1]);
a[0] = ring.MultiplicativeIdentity();
for (i=0; i<n-1; i++) { std::swap(a[2*i+1], a[2*i+2]); a[2*i+1] = ring.Multiply(a[i], a[2*i+1]); a[2*i+2] = ring.Multiply(a[i], a[2*i+2]); }
for (i=0; i<n; i++) v[i] = ring.Multiply(a[n-1+i], w[i]); }
template <class Ring, class Element> Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n) { Element result = ring.Identity(); for (unsigned int i=0; i<n; i++) ring.Accumulate(result, ring.Multiply(y[i], v[i])); return result; }
// ********************************************************
template <class T, int instance> const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::Zero() { return Singleton<ThisType>().Ref(); }
template <class T, int instance> const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::One() { return Singleton<ThisType, NewOnePolynomial>().Ref(); }
NAMESPACE_END
|