|
|
// rsa.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "rsa.h"
#include "asn.h"
#include "oids.h"
#include "modarith.h"
#include "nbtheory.h"
#include "sha.h"
#include "algparam.h"
#include "fips140.h"
#if !defined(NDEBUG) && !defined(CRYPTOPP_IS_DLL)
#include "pssr.h"
NAMESPACE_BEGIN(CryptoPP) void RSA_TestInstantiations() { RSASS<PKCS1v15, SHA>::Verifier x1(1, 1); RSASS<PKCS1v15, SHA>::Signer x2(NullRNG(), 1); RSASS<PKCS1v15, SHA>::Verifier x3(x2); RSASS<PKCS1v15, SHA>::Verifier x4(x2.GetKey()); RSASS<PSS, SHA>::Verifier x5(x3); #ifndef __MWERKS__
RSASS<PSSR, SHA>::Signer x6 = x2; x3 = x2; x6 = x2; #endif
RSAES<PKCS1v15>::Encryptor x7(x2); #ifndef __GNUC__
RSAES<PKCS1v15>::Encryptor x8(x3); #endif
RSAES<OAEP<SHA> >::Encryptor x9(x2);
x4 = x2.GetKey(); } NAMESPACE_END #endif
#ifndef CRYPTOPP_IMPORTS
NAMESPACE_BEGIN(CryptoPP)
OID RSAFunction::GetAlgorithmID() const { return ASN1::rsaEncryption(); }
void RSAFunction::BERDecodePublicKey(BufferedTransformation &bt, bool, size_t) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_e.BERDecode(seq); seq.MessageEnd(); }
void RSAFunction::DEREncodePublicKey(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_e.DEREncode(seq); seq.MessageEnd(); }
Integer RSAFunction::ApplyFunction(const Integer &x) const { DoQuickSanityCheck(); return a_exp_b_mod_c(x, m_e, m_n); }
bool RSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = true; pass = pass && m_n > Integer::One() && m_n.IsOdd(); pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n; return pass; }
bool RSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent) ; }
void RSAFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent) ; }
// *****************************************************************************
class RSAPrimeSelector : public PrimeSelector { public: RSAPrimeSelector(const Integer &e) : m_e(e) {} bool IsAcceptable(const Integer &candidate) const {return RelativelyPrime(m_e, candidate-Integer::One());} Integer m_e; };
void InvertibleRSAFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) { int modulusSize = 2048; alg.GetIntValue(Name::ModulusSize(), modulusSize) || alg.GetIntValue(Name::KeySize(), modulusSize);
if (modulusSize < 16) throw InvalidArgument("InvertibleRSAFunction: specified modulus size is too small");
m_e = alg.GetValueWithDefault(Name::PublicExponent(), Integer(17));
if (m_e < 3 || m_e.IsEven()) throw InvalidArgument("InvertibleRSAFunction: invalid public exponent");
RSAPrimeSelector selector(m_e); AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize) (Name::PointerToPrimeSelector(), selector.GetSelectorPointer()); m_p.GenerateRandom(rng, primeParam); m_q.GenerateRandom(rng, primeParam);
m_d = m_e.InverseMod(LCM(m_p-1, m_q-1)); assert(m_d.IsPositive());
m_dp = m_d % (m_p-1); m_dq = m_d % (m_q-1); m_n = m_p * m_q; m_u = m_q.InverseMod(m_p);
if (FIPS_140_2_ComplianceEnabled()) { RSASS<PKCS1v15, SHA>::Signer signer(*this); RSASS<PKCS1v15, SHA>::Verifier verifier(signer); SignaturePairwiseConsistencyTest_FIPS_140_Only(signer, verifier);
RSAES<OAEP<SHA> >::Decryptor decryptor(*this); RSAES<OAEP<SHA> >::Encryptor encryptor(decryptor); EncryptionPairwiseConsistencyTest_FIPS_140_Only(encryptor, decryptor); } }
void InvertibleRSAFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e) { GenerateRandom(rng, MakeParameters(Name::ModulusSize(), (int)keybits)(Name::PublicExponent(), e+e.IsEven())); }
void InvertibleRSAFunction::Initialize(const Integer &n, const Integer &e, const Integer &d) { if (n.IsEven() || e.IsEven() | d.IsEven()) throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key");
m_n = n; m_e = e; m_d = d;
Integer r = --(d*e); unsigned int s = 0; while (r.IsEven()) { r >>= 1; s++; }
ModularArithmetic modn(n); for (Integer i = 2; ; ++i) { Integer a = modn.Exponentiate(i, r); if (a == 1) continue; Integer b; unsigned int j = 0; while (a != n-1) { b = modn.Square(a); if (b == 1) { m_p = GCD(a-1, n); m_q = n/m_p; m_dp = m_d % (m_p-1); m_dq = m_d % (m_q-1); m_u = m_q.InverseMod(m_p); return; } if (++j == s) throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key"); a = b; } } }
void InvertibleRSAFunction::BERDecodePrivateKey(BufferedTransformation &bt, bool, size_t) { BERSequenceDecoder privateKey(bt); word32 version; BERDecodeUnsigned<word32>(privateKey, version, INTEGER, 0, 0); // check version
m_n.BERDecode(privateKey); m_e.BERDecode(privateKey); m_d.BERDecode(privateKey); m_p.BERDecode(privateKey); m_q.BERDecode(privateKey); m_dp.BERDecode(privateKey); m_dq.BERDecode(privateKey); m_u.BERDecode(privateKey); privateKey.MessageEnd(); }
void InvertibleRSAFunction::DEREncodePrivateKey(BufferedTransformation &bt) const { DERSequenceEncoder privateKey(bt); DEREncodeUnsigned<word32>(privateKey, 0); // version
m_n.DEREncode(privateKey); m_e.DEREncode(privateKey); m_d.DEREncode(privateKey); m_p.DEREncode(privateKey); m_q.DEREncode(privateKey); m_dp.DEREncode(privateKey); m_dq.DEREncode(privateKey); m_u.DEREncode(privateKey); privateKey.MessageEnd(); }
Integer InvertibleRSAFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const { DoQuickSanityCheck(); ModularArithmetic modn(m_n); Integer r, rInv; do { // do this in a loop for people using small numbers for testing
r.Randomize(rng, Integer::One(), m_n - Integer::One()); rInv = modn.MultiplicativeInverse(r); } while (rInv.IsZero()); Integer re = modn.Exponentiate(r, m_e); re = modn.Multiply(re, x); // blind
// here we follow the notation of PKCS #1 and let u=q inverse mod p
// but in ModRoot, u=p inverse mod q, so we reverse the order of p and q
Integer y = ModularRoot(re, m_dq, m_dp, m_q, m_p, m_u); y = modn.Multiply(y, rInv); // unblind
if (modn.Exponentiate(y, m_e) != x) // check
throw Exception(Exception::OTHER_ERROR, "InvertibleRSAFunction: computational error during private key operation"); return y; }
bool InvertibleRSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = RSAFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n; pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n; pass = pass && m_d > Integer::One() && m_d.IsOdd() && m_d < m_n; pass = pass && m_dp > Integer::One() && m_dp.IsOdd() && m_dp < m_p; pass = pass && m_dq > Integer::One() && m_dq.IsOdd() && m_dq < m_q; pass = pass && m_u.IsPositive() && m_u < m_p; if (level >= 1) { pass = pass && m_p * m_q == m_n; pass = pass && m_e*m_d % LCM(m_p-1, m_q-1) == 1; pass = pass && m_dp == m_d%(m_p-1) && m_dq == m_d%(m_q-1); pass = pass && m_u * m_q % m_p == 1; } if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; }
bool InvertibleRSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper<RSAFunction>(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) CRYPTOPP_GET_FUNCTION_ENTRY(PrivateExponent) CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime1PrivateExponent) CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime2PrivateExponent) CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; }
void InvertibleRSAFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper<RSAFunction>(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) CRYPTOPP_SET_FUNCTION_ENTRY(PrivateExponent) CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime1PrivateExponent) CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime2PrivateExponent) CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; }
// *****************************************************************************
Integer RSAFunction_ISO::ApplyFunction(const Integer &x) const { Integer t = RSAFunction::ApplyFunction(x); return t % 16 == 12 ? t : m_n - t; }
Integer InvertibleRSAFunction_ISO::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const { Integer t = InvertibleRSAFunction::CalculateInverse(rng, x); return STDMIN(t, m_n-t); }
NAMESPACE_END
#endif
|