Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

900 lines
25 KiB

  1. // sha.cpp - modified by Wei Dai from Steve Reid's public domain sha1.c
  2. // Steve Reid implemented SHA-1. Wei Dai implemented SHA-2.
  3. // Both are in the public domain.
  4. // use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM sha.cpp" to generate MASM code
  5. #include "pch.h"
  6. #ifndef CRYPTOPP_IMPORTS
  7. #ifndef CRYPTOPP_GENERATE_X64_MASM
  8. #include "sha.h"
  9. #include "misc.h"
  10. #include "cpu.h"
  11. NAMESPACE_BEGIN(CryptoPP)
  12. // start of Steve Reid's code
  13. #define blk0(i) (W[i] = data[i])
  14. #define blk1(i) (W[i&15] = rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))
  15. void SHA1::InitState(HashWordType *state)
  16. {
  17. state[0] = 0x67452301L;
  18. state[1] = 0xEFCDAB89L;
  19. state[2] = 0x98BADCFEL;
  20. state[3] = 0x10325476L;
  21. state[4] = 0xC3D2E1F0L;
  22. }
  23. #define f1(x,y,z) (z^(x&(y^z)))
  24. #define f2(x,y,z) (x^y^z)
  25. #define f3(x,y,z) ((x&y)|(z&(x|y)))
  26. #define f4(x,y,z) (x^y^z)
  27. /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
  28. #define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
  29. #define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30);
  30. #define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rotlFixed(v,5);w=rotlFixed(w,30);
  31. #define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlFixed(v,5);w=rotlFixed(w,30);
  32. #define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlFixed(v,5);w=rotlFixed(w,30);
  33. void SHA1::Transform(word32 *state, const word32 *data)
  34. {
  35. word32 W[16];
  36. /* Copy context->state[] to working vars */
  37. word32 a = state[0];
  38. word32 b = state[1];
  39. word32 c = state[2];
  40. word32 d = state[3];
  41. word32 e = state[4];
  42. /* 4 rounds of 20 operations each. Loop unrolled. */
  43. R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
  44. R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
  45. R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
  46. R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
  47. R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
  48. R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
  49. R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
  50. R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
  51. R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
  52. R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
  53. R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
  54. R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
  55. R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
  56. R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
  57. R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
  58. R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
  59. R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
  60. R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
  61. R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
  62. R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
  63. /* Add the working vars back into context.state[] */
  64. state[0] += a;
  65. state[1] += b;
  66. state[2] += c;
  67. state[3] += d;
  68. state[4] += e;
  69. }
  70. // end of Steve Reid's code
  71. // *************************************************************
  72. void SHA224::InitState(HashWordType *state)
  73. {
  74. static const word32 s[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
  75. memcpy(state, s, sizeof(s));
  76. }
  77. void SHA256::InitState(HashWordType *state)
  78. {
  79. static const word32 s[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
  80. memcpy(state, s, sizeof(s));
  81. }
  82. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  83. CRYPTOPP_ALIGN_DATA(16) extern const word32 SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = {
  84. #else
  85. extern const word32 SHA256_K[64] = {
  86. #endif
  87. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  88. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  89. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  90. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  91. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  92. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  93. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  94. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  95. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  96. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  97. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  98. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  99. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  100. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  101. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  102. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  103. };
  104. #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
  105. #if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)
  106. #pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code
  107. static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len
  108. #if defined(_MSC_VER) && (_MSC_VER == 1200)
  109. , ... // VC60 workaround: prevent VC 6 from inlining this function
  110. #endif
  111. )
  112. {
  113. #if defined(_MSC_VER) && (_MSC_VER == 1200)
  114. AS2(mov ecx, [state])
  115. AS2(mov edx, [data])
  116. #endif
  117. #define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ
  118. #define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4]
  119. #define G(i) H(i+1)
  120. #define F(i) H(i+2)
  121. #define E(i) H(i+3)
  122. #define D(i) H(i+4)
  123. #define C(i) H(i+5)
  124. #define B(i) H(i+6)
  125. #define A(i) H(i+7)
  126. #define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4
  127. #define Wt_2(i) Wt((i)-2)
  128. #define Wt_15(i) Wt((i)-15)
  129. #define Wt_7(i) Wt((i)-7)
  130. #define K_END [BASE+8*4+16*4+0*WORD_SZ]
  131. #define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ]
  132. #define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ]
  133. #define DATA_END [BASE+8*4+16*4+3*WORD_SZ]
  134. #define Kt(i) WORD_REG(si)+(i)*4
  135. #if CRYPTOPP_BOOL_X86
  136. #define BASE esp+4
  137. #elif defined(__GNUC__)
  138. #define BASE r8
  139. #else
  140. #define BASE rsp
  141. #endif
  142. #define RA0(i, edx, edi) \
  143. AS2( add edx, [Kt(i)] )\
  144. AS2( add edx, [Wt(i)] )\
  145. AS2( add edx, H(i) )\
  146. #define RA1(i, edx, edi)
  147. #define RB0(i, edx, edi)
  148. #define RB1(i, edx, edi) \
  149. AS2( mov AS_REG_7d, [Wt_2(i)] )\
  150. AS2( mov edi, [Wt_15(i)])\
  151. AS2( mov ebx, AS_REG_7d )\
  152. AS2( shr AS_REG_7d, 10 )\
  153. AS2( ror ebx, 17 )\
  154. AS2( xor AS_REG_7d, ebx )\
  155. AS2( ror ebx, 2 )\
  156. AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\
  157. AS2( add ebx, [Wt_7(i)])\
  158. AS2( mov AS_REG_7d, edi )\
  159. AS2( shr AS_REG_7d, 3 )\
  160. AS2( ror edi, 7 )\
  161. AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\
  162. AS2( xor AS_REG_7d, edi )\
  163. AS2( add edx, [Kt(i)])\
  164. AS2( ror edi, 11 )\
  165. AS2( add edx, H(i) )\
  166. AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\
  167. AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\
  168. AS2( mov [Wt(i)], AS_REG_7d)\
  169. AS2( add edx, AS_REG_7d )\
  170. #define ROUND(i, r, eax, ecx, edi, edx)\
  171. /* in: edi = E */\
  172. /* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\
  173. AS2( mov edx, F(i) )\
  174. AS2( xor edx, G(i) )\
  175. AS2( and edx, edi )\
  176. AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\
  177. AS2( mov AS_REG_7d, edi )\
  178. AS2( ror edi, 6 )\
  179. AS2( ror AS_REG_7d, 25 )\
  180. RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
  181. AS2( xor AS_REG_7d, edi )\
  182. AS2( ror edi, 5 )\
  183. AS2( xor AS_REG_7d, edi )/* S1(E) */\
  184. AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\
  185. RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
  186. /* in: ecx = A, eax = B^C, edx = T1 */\
  187. /* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\
  188. AS2( mov ebx, ecx )\
  189. AS2( xor ecx, B(i) )/* A^B */\
  190. AS2( and eax, ecx )\
  191. AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\
  192. AS2( mov AS_REG_7d, ebx )\
  193. AS2( ror ebx, 2 )\
  194. AS2( add eax, edx )/* T1 + Maj(A,B,C) */\
  195. AS2( add edx, D(i) )\
  196. AS2( mov D(i), edx )\
  197. AS2( ror AS_REG_7d, 22 )\
  198. AS2( xor AS_REG_7d, ebx )\
  199. AS2( ror ebx, 11 )\
  200. AS2( xor AS_REG_7d, ebx )\
  201. AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\
  202. AS2( mov H(i), eax )\
  203. #define SWAP_COPY(i) \
  204. AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
  205. AS1( bswap WORD_REG(bx))\
  206. AS2( mov [Wt(i*(1+CRYPTOPP_BOOL_X64)+CRYPTOPP_BOOL_X64)], WORD_REG(bx))
  207. #if defined(__GNUC__)
  208. #if CRYPTOPP_BOOL_X64
  209. FixedSizeAlignedSecBlock<byte, LOCALS_SIZE> workspace;
  210. #endif
  211. __asm__ __volatile__
  212. (
  213. #if CRYPTOPP_BOOL_X64
  214. "lea %4, %%r8;"
  215. #endif
  216. ".intel_syntax noprefix;"
  217. #elif defined(CRYPTOPP_GENERATE_X64_MASM)
  218. ALIGN 8
  219. X86_SHA256_HashBlocks PROC FRAME
  220. rex_push_reg rsi
  221. push_reg rdi
  222. push_reg rbx
  223. push_reg rbp
  224. alloc_stack(LOCALS_SIZE+8)
  225. .endprolog
  226. mov rdi, r8
  227. lea rsi, [?SHA256_K@CryptoPP@@3QBIB + 48*4]
  228. #endif
  229. #if CRYPTOPP_BOOL_X86
  230. #ifndef __GNUC__
  231. AS2( mov edi, [len])
  232. AS2( lea WORD_REG(si), [SHA256_K+48*4])
  233. #endif
  234. #if !defined(_MSC_VER) || (_MSC_VER < 1400)
  235. AS_PUSH_IF86(bx)
  236. #endif
  237. AS_PUSH_IF86(bp)
  238. AS2( mov ebx, esp)
  239. AS2( and esp, -16)
  240. AS2( sub WORD_REG(sp), LOCALS_SIZE)
  241. AS_PUSH_IF86(bx)
  242. #endif
  243. AS2( mov STATE_SAVE, WORD_REG(cx))
  244. AS2( mov DATA_SAVE, WORD_REG(dx))
  245. AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)])
  246. AS2( mov DATA_END, WORD_REG(ax))
  247. AS2( mov K_END, WORD_REG(si))
  248. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  249. #if CRYPTOPP_BOOL_X86
  250. AS2( test edi, 1)
  251. ASJ( jnz, 2, f)
  252. AS1( dec DWORD PTR K_END)
  253. #endif
  254. AS2( movdqa xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16])
  255. AS2( movdqa xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16])
  256. #endif
  257. #if CRYPTOPP_BOOL_X86
  258. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  259. ASJ( jmp, 0, f)
  260. #endif
  261. ASL(2) // non-SSE2
  262. AS2( mov esi, ecx)
  263. AS2( lea edi, A(0))
  264. AS2( mov ecx, 8)
  265. AS1( rep movsd)
  266. AS2( mov esi, K_END)
  267. ASJ( jmp, 3, f)
  268. #endif
  269. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  270. ASL(0)
  271. AS2( movdqa E(0), xmm1)
  272. AS2( movdqa A(0), xmm0)
  273. #endif
  274. #if CRYPTOPP_BOOL_X86
  275. ASL(3)
  276. #endif
  277. AS2( sub WORD_REG(si), 48*4)
  278. SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3)
  279. SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7)
  280. #if CRYPTOPP_BOOL_X86
  281. SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11)
  282. SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15)
  283. #endif
  284. AS2( mov edi, E(0)) // E
  285. AS2( mov eax, B(0)) // B
  286. AS2( xor eax, C(0)) // B^C
  287. AS2( mov ecx, A(0)) // A
  288. ROUND(0, 0, eax, ecx, edi, edx)
  289. ROUND(1, 0, ecx, eax, edx, edi)
  290. ROUND(2, 0, eax, ecx, edi, edx)
  291. ROUND(3, 0, ecx, eax, edx, edi)
  292. ROUND(4, 0, eax, ecx, edi, edx)
  293. ROUND(5, 0, ecx, eax, edx, edi)
  294. ROUND(6, 0, eax, ecx, edi, edx)
  295. ROUND(7, 0, ecx, eax, edx, edi)
  296. ROUND(8, 0, eax, ecx, edi, edx)
  297. ROUND(9, 0, ecx, eax, edx, edi)
  298. ROUND(10, 0, eax, ecx, edi, edx)
  299. ROUND(11, 0, ecx, eax, edx, edi)
  300. ROUND(12, 0, eax, ecx, edi, edx)
  301. ROUND(13, 0, ecx, eax, edx, edi)
  302. ROUND(14, 0, eax, ecx, edi, edx)
  303. ROUND(15, 0, ecx, eax, edx, edi)
  304. ASL(1)
  305. AS2(add WORD_REG(si), 4*16)
  306. ROUND(0, 1, eax, ecx, edi, edx)
  307. ROUND(1, 1, ecx, eax, edx, edi)
  308. ROUND(2, 1, eax, ecx, edi, edx)
  309. ROUND(3, 1, ecx, eax, edx, edi)
  310. ROUND(4, 1, eax, ecx, edi, edx)
  311. ROUND(5, 1, ecx, eax, edx, edi)
  312. ROUND(6, 1, eax, ecx, edi, edx)
  313. ROUND(7, 1, ecx, eax, edx, edi)
  314. ROUND(8, 1, eax, ecx, edi, edx)
  315. ROUND(9, 1, ecx, eax, edx, edi)
  316. ROUND(10, 1, eax, ecx, edi, edx)
  317. ROUND(11, 1, ecx, eax, edx, edi)
  318. ROUND(12, 1, eax, ecx, edi, edx)
  319. ROUND(13, 1, ecx, eax, edx, edi)
  320. ROUND(14, 1, eax, ecx, edi, edx)
  321. ROUND(15, 1, ecx, eax, edx, edi)
  322. AS2( cmp WORD_REG(si), K_END)
  323. ASJ( jb, 1, b)
  324. AS2( mov WORD_REG(dx), DATA_SAVE)
  325. AS2( add WORD_REG(dx), 64)
  326. AS2( mov AS_REG_7, STATE_SAVE)
  327. AS2( mov DATA_SAVE, WORD_REG(dx))
  328. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  329. #if CRYPTOPP_BOOL_X86
  330. AS2( test DWORD PTR K_END, 1)
  331. ASJ( jz, 4, f)
  332. #endif
  333. AS2( movdqa xmm1, XMMWORD_PTR [AS_REG_7+1*16])
  334. AS2( movdqa xmm0, XMMWORD_PTR [AS_REG_7+0*16])
  335. AS2( paddd xmm1, E(0))
  336. AS2( paddd xmm0, A(0))
  337. AS2( movdqa [AS_REG_7+1*16], xmm1)
  338. AS2( movdqa [AS_REG_7+0*16], xmm0)
  339. AS2( cmp WORD_REG(dx), DATA_END)
  340. ASJ( jb, 0, b)
  341. #endif
  342. #if CRYPTOPP_BOOL_X86
  343. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  344. ASJ( jmp, 5, f)
  345. ASL(4) // non-SSE2
  346. #endif
  347. AS2( add [AS_REG_7+0*4], ecx) // A
  348. AS2( add [AS_REG_7+4*4], edi) // E
  349. AS2( mov eax, B(0))
  350. AS2( mov ebx, C(0))
  351. AS2( mov ecx, D(0))
  352. AS2( add [AS_REG_7+1*4], eax)
  353. AS2( add [AS_REG_7+2*4], ebx)
  354. AS2( add [AS_REG_7+3*4], ecx)
  355. AS2( mov eax, F(0))
  356. AS2( mov ebx, G(0))
  357. AS2( mov ecx, H(0))
  358. AS2( add [AS_REG_7+5*4], eax)
  359. AS2( add [AS_REG_7+6*4], ebx)
  360. AS2( add [AS_REG_7+7*4], ecx)
  361. AS2( mov ecx, AS_REG_7d)
  362. AS2( cmp WORD_REG(dx), DATA_END)
  363. ASJ( jb, 2, b)
  364. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  365. ASL(5)
  366. #endif
  367. #endif
  368. AS_POP_IF86(sp)
  369. AS_POP_IF86(bp)
  370. #if !defined(_MSC_VER) || (_MSC_VER < 1400)
  371. AS_POP_IF86(bx)
  372. #endif
  373. #ifdef CRYPTOPP_GENERATE_X64_MASM
  374. add rsp, LOCALS_SIZE+8
  375. pop rbp
  376. pop rbx
  377. pop rdi
  378. pop rsi
  379. ret
  380. X86_SHA256_HashBlocks ENDP
  381. #endif
  382. #ifdef __GNUC__
  383. ".att_syntax prefix;"
  384. :
  385. : "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len)
  386. #if CRYPTOPP_BOOL_X64
  387. , "m" (workspace[0])
  388. #endif
  389. : "memory", "cc", "%eax"
  390. #if CRYPTOPP_BOOL_X64
  391. , "%rbx", "%r8", "%r10"
  392. #endif
  393. );
  394. #endif
  395. }
  396. #endif // #if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)
  397. #ifndef CRYPTOPP_GENERATE_X64_MASM
  398. #ifdef CRYPTOPP_X64_MASM_AVAILABLE
  399. extern "C" {
  400. void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len);
  401. }
  402. #endif
  403. #if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X64_MASM_AVAILABLE)
  404. size_t SHA256::HashMultipleBlocks(const word32 *input, size_t length)
  405. {
  406. X86_SHA256_HashBlocks(m_state, input, (length&(size_t(0)-BLOCKSIZE)) - !HasSSE2());
  407. return length % BLOCKSIZE;
  408. }
  409. size_t SHA224::HashMultipleBlocks(const word32 *input, size_t length)
  410. {
  411. X86_SHA256_HashBlocks(m_state, input, (length&(size_t(0)-BLOCKSIZE)) - !HasSSE2());
  412. return length % BLOCKSIZE;
  413. }
  414. #endif
  415. #define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))
  416. #define Ch(x,y,z) (z^(x&(y^z)))
  417. #define Maj(x,y,z) (y^((x^y)&(y^z)))
  418. #define a(i) T[(0-i)&7]
  419. #define b(i) T[(1-i)&7]
  420. #define c(i) T[(2-i)&7]
  421. #define d(i) T[(3-i)&7]
  422. #define e(i) T[(4-i)&7]
  423. #define f(i) T[(5-i)&7]
  424. #define g(i) T[(6-i)&7]
  425. #define h(i) T[(7-i)&7]
  426. #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\
  427. d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))
  428. // for SHA256
  429. #define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22))
  430. #define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25))
  431. #define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3))
  432. #define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10))
  433. void SHA256::Transform(word32 *state, const word32 *data)
  434. {
  435. word32 W[16];
  436. #if defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X64_MASM_AVAILABLE)
  437. // this byte reverse is a waste of time, but this function is only called by MDC
  438. ByteReverse(W, data, BLOCKSIZE);
  439. X86_SHA256_HashBlocks(state, W, BLOCKSIZE - !HasSSE2());
  440. #else
  441. word32 T[8];
  442. /* Copy context->state[] to working vars */
  443. memcpy(T, state, sizeof(T));
  444. /* 64 operations, partially loop unrolled */
  445. for (unsigned int j=0; j<64; j+=16)
  446. {
  447. R( 0); R( 1); R( 2); R( 3);
  448. R( 4); R( 5); R( 6); R( 7);
  449. R( 8); R( 9); R(10); R(11);
  450. R(12); R(13); R(14); R(15);
  451. }
  452. /* Add the working vars back into context.state[] */
  453. state[0] += a(0);
  454. state[1] += b(0);
  455. state[2] += c(0);
  456. state[3] += d(0);
  457. state[4] += e(0);
  458. state[5] += f(0);
  459. state[6] += g(0);
  460. state[7] += h(0);
  461. #endif
  462. }
  463. /*
  464. // smaller but slower
  465. void SHA256::Transform(word32 *state, const word32 *data)
  466. {
  467. word32 T[20];
  468. word32 W[32];
  469. unsigned int i = 0, j = 0;
  470. word32 *t = T+8;
  471. memcpy(t, state, 8*4);
  472. word32 e = t[4], a = t[0];
  473. do
  474. {
  475. word32 w = data[j];
  476. W[j] = w;
  477. w += SHA256_K[j];
  478. w += t[7];
  479. w += S1(e);
  480. w += Ch(e, t[5], t[6]);
  481. e = t[3] + w;
  482. t[3] = t[3+8] = e;
  483. w += S0(t[0]);
  484. a = w + Maj(a, t[1], t[2]);
  485. t[-1] = t[7] = a;
  486. --t;
  487. ++j;
  488. if (j%8 == 0)
  489. t += 8;
  490. } while (j<16);
  491. do
  492. {
  493. i = j&0xf;
  494. word32 w = s1(W[i+16-2]) + s0(W[i+16-15]) + W[i] + W[i+16-7];
  495. W[i+16] = W[i] = w;
  496. w += SHA256_K[j];
  497. w += t[7];
  498. w += S1(e);
  499. w += Ch(e, t[5], t[6]);
  500. e = t[3] + w;
  501. t[3] = t[3+8] = e;
  502. w += S0(t[0]);
  503. a = w + Maj(a, t[1], t[2]);
  504. t[-1] = t[7] = a;
  505. w = s1(W[(i+1)+16-2]) + s0(W[(i+1)+16-15]) + W[(i+1)] + W[(i+1)+16-7];
  506. W[(i+1)+16] = W[(i+1)] = w;
  507. w += SHA256_K[j+1];
  508. w += (t-1)[7];
  509. w += S1(e);
  510. w += Ch(e, (t-1)[5], (t-1)[6]);
  511. e = (t-1)[3] + w;
  512. (t-1)[3] = (t-1)[3+8] = e;
  513. w += S0((t-1)[0]);
  514. a = w + Maj(a, (t-1)[1], (t-1)[2]);
  515. (t-1)[-1] = (t-1)[7] = a;
  516. t-=2;
  517. j+=2;
  518. if (j%8 == 0)
  519. t += 8;
  520. } while (j<64);
  521. state[0] += a;
  522. state[1] += t[1];
  523. state[2] += t[2];
  524. state[3] += t[3];
  525. state[4] += e;
  526. state[5] += t[5];
  527. state[6] += t[6];
  528. state[7] += t[7];
  529. }
  530. */
  531. #undef S0
  532. #undef S1
  533. #undef s0
  534. #undef s1
  535. #undef R
  536. // *************************************************************
  537. void SHA384::InitState(HashWordType *state)
  538. {
  539. static const word64 s[8] = {
  540. W64LIT(0xcbbb9d5dc1059ed8), W64LIT(0x629a292a367cd507),
  541. W64LIT(0x9159015a3070dd17), W64LIT(0x152fecd8f70e5939),
  542. W64LIT(0x67332667ffc00b31), W64LIT(0x8eb44a8768581511),
  543. W64LIT(0xdb0c2e0d64f98fa7), W64LIT(0x47b5481dbefa4fa4)};
  544. memcpy(state, s, sizeof(s));
  545. }
  546. void SHA512::InitState(HashWordType *state)
  547. {
  548. static const word64 s[8] = {
  549. W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b),
  550. W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1),
  551. W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f),
  552. W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)};
  553. memcpy(state, s, sizeof(s));
  554. }
  555. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
  556. CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = {
  557. #else
  558. static const word64 SHA512_K[80] = {
  559. #endif
  560. W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd),
  561. W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc),
  562. W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019),
  563. W64LIT(0x923f82a4af194f9b), W64LIT(0xab1c5ed5da6d8118),
  564. W64LIT(0xd807aa98a3030242), W64LIT(0x12835b0145706fbe),
  565. W64LIT(0x243185be4ee4b28c), W64LIT(0x550c7dc3d5ffb4e2),
  566. W64LIT(0x72be5d74f27b896f), W64LIT(0x80deb1fe3b1696b1),
  567. W64LIT(0x9bdc06a725c71235), W64LIT(0xc19bf174cf692694),
  568. W64LIT(0xe49b69c19ef14ad2), W64LIT(0xefbe4786384f25e3),
  569. W64LIT(0x0fc19dc68b8cd5b5), W64LIT(0x240ca1cc77ac9c65),
  570. W64LIT(0x2de92c6f592b0275), W64LIT(0x4a7484aa6ea6e483),
  571. W64LIT(0x5cb0a9dcbd41fbd4), W64LIT(0x76f988da831153b5),
  572. W64LIT(0x983e5152ee66dfab), W64LIT(0xa831c66d2db43210),
  573. W64LIT(0xb00327c898fb213f), W64LIT(0xbf597fc7beef0ee4),
  574. W64LIT(0xc6e00bf33da88fc2), W64LIT(0xd5a79147930aa725),
  575. W64LIT(0x06ca6351e003826f), W64LIT(0x142929670a0e6e70),
  576. W64LIT(0x27b70a8546d22ffc), W64LIT(0x2e1b21385c26c926),
  577. W64LIT(0x4d2c6dfc5ac42aed), W64LIT(0x53380d139d95b3df),
  578. W64LIT(0x650a73548baf63de), W64LIT(0x766a0abb3c77b2a8),
  579. W64LIT(0x81c2c92e47edaee6), W64LIT(0x92722c851482353b),
  580. W64LIT(0xa2bfe8a14cf10364), W64LIT(0xa81a664bbc423001),
  581. W64LIT(0xc24b8b70d0f89791), W64LIT(0xc76c51a30654be30),
  582. W64LIT(0xd192e819d6ef5218), W64LIT(0xd69906245565a910),
  583. W64LIT(0xf40e35855771202a), W64LIT(0x106aa07032bbd1b8),
  584. W64LIT(0x19a4c116b8d2d0c8), W64LIT(0x1e376c085141ab53),
  585. W64LIT(0x2748774cdf8eeb99), W64LIT(0x34b0bcb5e19b48a8),
  586. W64LIT(0x391c0cb3c5c95a63), W64LIT(0x4ed8aa4ae3418acb),
  587. W64LIT(0x5b9cca4f7763e373), W64LIT(0x682e6ff3d6b2b8a3),
  588. W64LIT(0x748f82ee5defb2fc), W64LIT(0x78a5636f43172f60),
  589. W64LIT(0x84c87814a1f0ab72), W64LIT(0x8cc702081a6439ec),
  590. W64LIT(0x90befffa23631e28), W64LIT(0xa4506cebde82bde9),
  591. W64LIT(0xbef9a3f7b2c67915), W64LIT(0xc67178f2e372532b),
  592. W64LIT(0xca273eceea26619c), W64LIT(0xd186b8c721c0c207),
  593. W64LIT(0xeada7dd6cde0eb1e), W64LIT(0xf57d4f7fee6ed178),
  594. W64LIT(0x06f067aa72176fba), W64LIT(0x0a637dc5a2c898a6),
  595. W64LIT(0x113f9804bef90dae), W64LIT(0x1b710b35131c471b),
  596. W64LIT(0x28db77f523047d84), W64LIT(0x32caab7b40c72493),
  597. W64LIT(0x3c9ebe0a15c9bebc), W64LIT(0x431d67c49c100d4c),
  598. W64LIT(0x4cc5d4becb3e42b6), W64LIT(0x597f299cfc657e2a),
  599. W64LIT(0x5fcb6fab3ad6faec), W64LIT(0x6c44198c4a475817)
  600. };
  601. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
  602. // put assembly version in separate function, otherwise MSVC 2005 SP1 doesn't generate correct code for the non-assembly version
  603. CRYPTOPP_NAKED static void CRYPTOPP_FASTCALL SHA512_SSE2_Transform(word64 *state, const word64 *data)
  604. {
  605. #ifdef __GNUC__
  606. __asm__ __volatile__
  607. (
  608. ".intel_syntax noprefix;"
  609. AS1( push ebx)
  610. AS2( mov ebx, eax)
  611. #else
  612. AS1( push ebx)
  613. AS1( push esi)
  614. AS1( push edi)
  615. AS2( lea ebx, SHA512_K)
  616. #endif
  617. AS2( mov eax, esp)
  618. AS2( and esp, 0xfffffff0)
  619. AS2( sub esp, 27*16) // 17*16 for expanded data, 20*8 for state
  620. AS1( push eax)
  621. AS2( xor eax, eax)
  622. AS2( lea edi, [esp+4+8*8]) // start at middle of state buffer. will decrement pointer each round to avoid copying
  623. AS2( lea esi, [esp+4+20*8+8]) // 16-byte alignment, then add 8
  624. AS2( movdqa xmm0, [ecx+0*16])
  625. AS2( movdq2q mm4, xmm0)
  626. AS2( movdqa [edi+0*16], xmm0)
  627. AS2( movdqa xmm0, [ecx+1*16])
  628. AS2( movdqa [edi+1*16], xmm0)
  629. AS2( movdqa xmm0, [ecx+2*16])
  630. AS2( movdq2q mm5, xmm0)
  631. AS2( movdqa [edi+2*16], xmm0)
  632. AS2( movdqa xmm0, [ecx+3*16])
  633. AS2( movdqa [edi+3*16], xmm0)
  634. ASJ( jmp, 0, f)
  635. #define SSE2_S0_S1(r, a, b, c) \
  636. AS2( movq mm6, r)\
  637. AS2( psrlq r, a)\
  638. AS2( movq mm7, r)\
  639. AS2( psllq mm6, 64-c)\
  640. AS2( pxor mm7, mm6)\
  641. AS2( psrlq r, b-a)\
  642. AS2( pxor mm7, r)\
  643. AS2( psllq mm6, c-b)\
  644. AS2( pxor mm7, mm6)\
  645. AS2( psrlq r, c-b)\
  646. AS2( pxor r, mm7)\
  647. AS2( psllq mm6, b-a)\
  648. AS2( pxor r, mm6)
  649. #define SSE2_s0(r, a, b, c) \
  650. AS2( movdqa xmm6, r)\
  651. AS2( psrlq r, a)\
  652. AS2( movdqa xmm7, r)\
  653. AS2( psllq xmm6, 64-c)\
  654. AS2( pxor xmm7, xmm6)\
  655. AS2( psrlq r, b-a)\
  656. AS2( pxor xmm7, r)\
  657. AS2( psrlq r, c-b)\
  658. AS2( pxor r, xmm7)\
  659. AS2( psllq xmm6, c-a)\
  660. AS2( pxor r, xmm6)
  661. #define SSE2_s1(r, a, b, c) \
  662. AS2( movdqa xmm6, r)\
  663. AS2( psrlq r, a)\
  664. AS2( movdqa xmm7, r)\
  665. AS2( psllq xmm6, 64-c)\
  666. AS2( pxor xmm7, xmm6)\
  667. AS2( psrlq r, b-a)\
  668. AS2( pxor xmm7, r)\
  669. AS2( psllq xmm6, c-b)\
  670. AS2( pxor xmm7, xmm6)\
  671. AS2( psrlq r, c-b)\
  672. AS2( pxor r, xmm7)
  673. ASL(SHA512_Round)
  674. // k + w is in mm0, a is in mm4, e is in mm5
  675. AS2( paddq mm0, [edi+7*8]) // h
  676. AS2( movq mm2, [edi+5*8]) // f
  677. AS2( movq mm3, [edi+6*8]) // g
  678. AS2( pxor mm2, mm3)
  679. AS2( pand mm2, mm5)
  680. SSE2_S0_S1(mm5,14,18,41)
  681. AS2( pxor mm2, mm3)
  682. AS2( paddq mm0, mm2) // h += Ch(e,f,g)
  683. AS2( paddq mm5, mm0) // h += S1(e)
  684. AS2( movq mm2, [edi+1*8]) // b
  685. AS2( movq mm1, mm2)
  686. AS2( por mm2, mm4)
  687. AS2( pand mm2, [edi+2*8]) // c
  688. AS2( pand mm1, mm4)
  689. AS2( por mm1, mm2)
  690. AS2( paddq mm1, mm5) // temp = h + Maj(a,b,c)
  691. AS2( paddq mm5, [edi+3*8]) // e = d + h
  692. AS2( movq [edi+3*8], mm5)
  693. AS2( movq [edi+11*8], mm5)
  694. SSE2_S0_S1(mm4,28,34,39) // S0(a)
  695. AS2( paddq mm4, mm1) // a = temp + S0(a)
  696. AS2( movq [edi-8], mm4)
  697. AS2( movq [edi+7*8], mm4)
  698. AS1( ret)
  699. // first 16 rounds
  700. ASL(0)
  701. AS2( movq mm0, [edx+eax*8])
  702. AS2( movq [esi+eax*8], mm0)
  703. AS2( movq [esi+eax*8+16*8], mm0)
  704. AS2( paddq mm0, [ebx+eax*8])
  705. ASC( call, SHA512_Round)
  706. AS1( inc eax)
  707. AS2( sub edi, 8)
  708. AS2( test eax, 7)
  709. ASJ( jnz, 0, b)
  710. AS2( add edi, 8*8)
  711. AS2( cmp eax, 16)
  712. ASJ( jne, 0, b)
  713. // rest of the rounds
  714. AS2( movdqu xmm0, [esi+(16-2)*8])
  715. ASL(1)
  716. // data expansion, W[i-2] already in xmm0
  717. AS2( movdqu xmm3, [esi])
  718. AS2( paddq xmm3, [esi+(16-7)*8])
  719. AS2( movdqa xmm2, [esi+(16-15)*8])
  720. SSE2_s1(xmm0, 6, 19, 61)
  721. AS2( paddq xmm0, xmm3)
  722. SSE2_s0(xmm2, 1, 7, 8)
  723. AS2( paddq xmm0, xmm2)
  724. AS2( movdq2q mm0, xmm0)
  725. AS2( movhlps xmm1, xmm0)
  726. AS2( paddq mm0, [ebx+eax*8])
  727. AS2( movlps [esi], xmm0)
  728. AS2( movlps [esi+8], xmm1)
  729. AS2( movlps [esi+8*16], xmm0)
  730. AS2( movlps [esi+8*17], xmm1)
  731. // 2 rounds
  732. ASC( call, SHA512_Round)
  733. AS2( sub edi, 8)
  734. AS2( movdq2q mm0, xmm1)
  735. AS2( paddq mm0, [ebx+eax*8+8])
  736. ASC( call, SHA512_Round)
  737. // update indices and loop
  738. AS2( add esi, 16)
  739. AS2( add eax, 2)
  740. AS2( sub edi, 8)
  741. AS2( test eax, 7)
  742. ASJ( jnz, 1, b)
  743. // do housekeeping every 8 rounds
  744. AS2( mov esi, 0xf)
  745. AS2( and esi, eax)
  746. AS2( lea esi, [esp+4+20*8+8+esi*8])
  747. AS2( add edi, 8*8)
  748. AS2( cmp eax, 80)
  749. ASJ( jne, 1, b)
  750. #define SSE2_CombineState(i) \
  751. AS2( movdqa xmm0, [edi+i*16])\
  752. AS2( paddq xmm0, [ecx+i*16])\
  753. AS2( movdqa [ecx+i*16], xmm0)
  754. SSE2_CombineState(0)
  755. SSE2_CombineState(1)
  756. SSE2_CombineState(2)
  757. SSE2_CombineState(3)
  758. AS1( pop esp)
  759. AS1( emms)
  760. #if defined(__GNUC__)
  761. AS1( pop ebx)
  762. ".att_syntax prefix;"
  763. :
  764. : "a" (SHA512_K), "c" (state), "d" (data)
  765. : "%esi", "%edi", "memory", "cc"
  766. );
  767. #else
  768. AS1( pop edi)
  769. AS1( pop esi)
  770. AS1( pop ebx)
  771. AS1( ret)
  772. #endif
  773. }
  774. #endif // #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE
  775. void SHA512::Transform(word64 *state, const word64 *data)
  776. {
  777. #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && CRYPTOPP_BOOL_X86
  778. if (HasSSE2())
  779. {
  780. SHA512_SSE2_Transform(state, data);
  781. return;
  782. }
  783. #endif
  784. #define S0(x) (rotrFixed(x,28)^rotrFixed(x,34)^rotrFixed(x,39))
  785. #define S1(x) (rotrFixed(x,14)^rotrFixed(x,18)^rotrFixed(x,41))
  786. #define s0(x) (rotrFixed(x,1)^rotrFixed(x,8)^(x>>7))
  787. #define s1(x) (rotrFixed(x,19)^rotrFixed(x,61)^(x>>6))
  788. #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+(j?blk2(i):blk0(i));\
  789. d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))
  790. word64 W[16];
  791. word64 T[8];
  792. /* Copy context->state[] to working vars */
  793. memcpy(T, state, sizeof(T));
  794. /* 80 operations, partially loop unrolled */
  795. for (unsigned int j=0; j<80; j+=16)
  796. {
  797. R( 0); R( 1); R( 2); R( 3);
  798. R( 4); R( 5); R( 6); R( 7);
  799. R( 8); R( 9); R(10); R(11);
  800. R(12); R(13); R(14); R(15);
  801. }
  802. /* Add the working vars back into context.state[] */
  803. state[0] += a(0);
  804. state[1] += b(0);
  805. state[2] += c(0);
  806. state[3] += d(0);
  807. state[4] += e(0);
  808. state[5] += f(0);
  809. state[6] += g(0);
  810. state[7] += h(0);
  811. }
  812. NAMESPACE_END
  813. #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
  814. #endif // #ifndef CRYPTOPP_IMPORTS