|
|
// zdeflate.cpp - written and placed in the public domain by Wei Dai
// Many of the algorithms and tables used here came from the deflate implementation
// by Jean-loup Gailly, which was included in Crypto++ 4.0 and earlier. I completely
// rewrote it in order to fix a bug that I could not figure out. This code
// is less clever, but hopefully more understandable and maintainable.
#include "pch.h"
#include "zdeflate.h"
#include <functional>
#if _MSC_VER >= 1600
// for make_unchecked_array_iterator
#include <iterator>
#endif
NAMESPACE_BEGIN(CryptoPP)
using namespace std;
LowFirstBitWriter::LowFirstBitWriter(BufferedTransformation *attachment) : Filter(attachment), m_counting(false), m_buffer(0), m_bitsBuffered(0), m_bytesBuffered(0) { }
void LowFirstBitWriter::StartCounting() { assert(!m_counting); m_counting = true; m_bitCount = 0; }
unsigned long LowFirstBitWriter::FinishCounting() { assert(m_counting); m_counting = false; return m_bitCount; }
void LowFirstBitWriter::PutBits(unsigned long value, unsigned int length) { if (m_counting) m_bitCount += length; else { m_buffer |= value << m_bitsBuffered; m_bitsBuffered += length; assert(m_bitsBuffered <= sizeof(unsigned long)*8); while (m_bitsBuffered >= 8) { m_outputBuffer[m_bytesBuffered++] = (byte)m_buffer; if (m_bytesBuffered == m_outputBuffer.size()) { AttachedTransformation()->PutModifiable(m_outputBuffer, m_bytesBuffered); m_bytesBuffered = 0; } m_buffer >>= 8; m_bitsBuffered -= 8; } } }
void LowFirstBitWriter::FlushBitBuffer() { if (m_counting) m_bitCount += 8*(m_bitsBuffered > 0); else { if (m_bytesBuffered > 0) { AttachedTransformation()->PutModifiable(m_outputBuffer, m_bytesBuffered); m_bytesBuffered = 0; } if (m_bitsBuffered > 0) { AttachedTransformation()->Put((byte)m_buffer); m_buffer = 0; m_bitsBuffered = 0; } } }
void LowFirstBitWriter::ClearBitBuffer() { m_buffer = 0; m_bytesBuffered = 0; m_bitsBuffered = 0; }
HuffmanEncoder::HuffmanEncoder(const unsigned int *codeBits, unsigned int nCodes) { Initialize(codeBits, nCodes); }
struct HuffmanNode { size_t symbol; union {size_t parent; unsigned depth, freq;}; };
struct FreqLessThan { inline bool operator()(unsigned int lhs, const HuffmanNode &rhs) {return lhs < rhs.freq;} inline bool operator()(const HuffmanNode &lhs, const HuffmanNode &rhs) const {return lhs.freq < rhs.freq;} // needed for MSVC .NET 2005
inline bool operator()(const HuffmanNode &lhs, unsigned int rhs) {return lhs.freq < rhs;} };
void HuffmanEncoder::GenerateCodeLengths(unsigned int *codeBits, unsigned int maxCodeBits, const unsigned int *codeCounts, size_t nCodes) { assert(nCodes > 0); assert(nCodes <= ((size_t)1 << maxCodeBits));
size_t i; SecBlockWithHint<HuffmanNode, 2*286> tree(nCodes); for (i=0; i<nCodes; i++) { tree[i].symbol = i; tree[i].freq = codeCounts[i]; } sort(tree.begin(), tree.end(), FreqLessThan()); size_t treeBegin = upper_bound(tree.begin(), tree.end(), 0, FreqLessThan()) - tree.begin(); if (treeBegin == nCodes) { // special case for no codes
fill(codeBits, codeBits+nCodes, 0); return; } tree.resize(nCodes + nCodes - treeBegin - 1);
size_t leastLeaf = treeBegin, leastInterior = nCodes; for (i=nCodes; i<tree.size(); i++) { size_t least; least = (leastLeaf == nCodes || (leastInterior < i && tree[leastInterior].freq < tree[leastLeaf].freq)) ? leastInterior++ : leastLeaf++; tree[i].freq = tree[least].freq; tree[least].parent = i; least = (leastLeaf == nCodes || (leastInterior < i && tree[leastInterior].freq < tree[leastLeaf].freq)) ? leastInterior++ : leastLeaf++; tree[i].freq += tree[least].freq; tree[least].parent = i; }
tree[tree.size()-1].depth = 0; if (tree.size() >= 2) for (i=tree.size()-2; i>=nCodes; i--) tree[i].depth = tree[tree[i].parent].depth + 1; unsigned int sum = 0; SecBlockWithHint<unsigned int, 15+1> blCount(maxCodeBits+1); fill(blCount.begin(), blCount.end(), 0); for (i=treeBegin; i<nCodes; i++) { size_t depth = STDMIN(maxCodeBits, tree[tree[i].parent].depth + 1); blCount[depth]++; sum += 1 << (maxCodeBits - depth); }
unsigned int overflow = sum > (unsigned int)(1 << maxCodeBits) ? sum - (1 << maxCodeBits) : 0;
while (overflow--) { unsigned int bits = maxCodeBits-1; while (blCount[bits] == 0) bits--; blCount[bits]--; blCount[bits+1] += 2; assert(blCount[maxCodeBits] > 0); blCount[maxCodeBits]--; }
for (i=0; i<treeBegin; i++) codeBits[tree[i].symbol] = 0; unsigned int bits = maxCodeBits; for (i=treeBegin; i<nCodes; i++) { while (blCount[bits] == 0) bits--; codeBits[tree[i].symbol] = bits; blCount[bits]--; } assert(blCount[bits] == 0); }
void HuffmanEncoder::Initialize(const unsigned int *codeBits, unsigned int nCodes) { assert(nCodes > 0); unsigned int maxCodeBits = *max_element(codeBits, codeBits+nCodes); if (maxCodeBits == 0) return; // assume this object won't be used
SecBlockWithHint<unsigned int, 15+1> blCount(maxCodeBits+1); fill(blCount.begin(), blCount.end(), 0); unsigned int i; for (i=0; i<nCodes; i++) blCount[codeBits[i]]++;
code_t code = 0; SecBlockWithHint<code_t, 15+1> nextCode(maxCodeBits+1); nextCode[1] = 0; for (i=2; i<=maxCodeBits; i++) { code = (code + blCount[i-1]) << 1; nextCode[i] = code; } assert(maxCodeBits == 1 || code == (1 << maxCodeBits) - blCount[maxCodeBits]);
m_valueToCode.resize(nCodes); for (i=0; i<nCodes; i++) { unsigned int len = m_valueToCode[i].len = codeBits[i]; if (len != 0) m_valueToCode[i].code = BitReverse(nextCode[len]++) >> (8*sizeof(code_t)-len); } }
inline void HuffmanEncoder::Encode(LowFirstBitWriter &writer, value_t value) const { assert(m_valueToCode[value].len > 0); writer.PutBits(m_valueToCode[value].code, m_valueToCode[value].len); }
Deflator::Deflator(BufferedTransformation *attachment, int deflateLevel, int log2WindowSize, bool detectUncompressible) : LowFirstBitWriter(attachment) , m_deflateLevel(-1) { InitializeStaticEncoders(); IsolatedInitialize(MakeParameters("DeflateLevel", deflateLevel)("Log2WindowSize", log2WindowSize)("DetectUncompressible", detectUncompressible)); }
Deflator::Deflator(const NameValuePairs ¶meters, BufferedTransformation *attachment) : LowFirstBitWriter(attachment) , m_deflateLevel(-1) { InitializeStaticEncoders(); IsolatedInitialize(parameters); }
void Deflator::InitializeStaticEncoders() { unsigned int codeLengths[288]; fill(codeLengths + 0, codeLengths + 144, 8); fill(codeLengths + 144, codeLengths + 256, 9); fill(codeLengths + 256, codeLengths + 280, 7); fill(codeLengths + 280, codeLengths + 288, 8); m_staticLiteralEncoder.Initialize(codeLengths, 288); fill(codeLengths + 0, codeLengths + 32, 5); m_staticDistanceEncoder.Initialize(codeLengths, 32); }
void Deflator::IsolatedInitialize(const NameValuePairs ¶meters) { int log2WindowSize = parameters.GetIntValueWithDefault("Log2WindowSize", DEFAULT_LOG2_WINDOW_SIZE); if (!(MIN_LOG2_WINDOW_SIZE <= log2WindowSize && log2WindowSize <= MAX_LOG2_WINDOW_SIZE)) throw InvalidArgument("Deflator: " + IntToString(log2WindowSize) + " is an invalid window size");
m_log2WindowSize = log2WindowSize; DSIZE = 1 << m_log2WindowSize; DMASK = DSIZE - 1; HSIZE = 1 << m_log2WindowSize; HMASK = HSIZE - 1; m_byteBuffer.New(2*DSIZE); m_head.New(HSIZE); m_prev.New(DSIZE); m_matchBuffer.New(DSIZE/2); Reset(true);
SetDeflateLevel(parameters.GetIntValueWithDefault("DeflateLevel", DEFAULT_DEFLATE_LEVEL)); bool detectUncompressible = parameters.GetValueWithDefault("DetectUncompressible", true); m_compressibleDeflateLevel = detectUncompressible ? m_deflateLevel : 0; }
void Deflator::Reset(bool forceReset) { if (forceReset) ClearBitBuffer(); else assert(m_bitsBuffered == 0);
m_headerWritten = false; m_matchAvailable = false; m_dictionaryEnd = 0; m_stringStart = 0; m_lookahead = 0; m_minLookahead = MAX_MATCH; m_matchBufferEnd = 0; m_blockStart = 0; m_blockLength = 0;
m_detectCount = 1; m_detectSkip = 0;
// m_prev will be initialized automaticly in InsertString
fill(m_head.begin(), m_head.end(), 0);
fill(m_literalCounts.begin(), m_literalCounts.end(), 0); fill(m_distanceCounts.begin(), m_distanceCounts.end(), 0); }
void Deflator::SetDeflateLevel(int deflateLevel) { if (!(MIN_DEFLATE_LEVEL <= deflateLevel && deflateLevel <= MAX_DEFLATE_LEVEL)) throw InvalidArgument("Deflator: " + IntToString(deflateLevel) + " is an invalid deflate level");
if (deflateLevel == m_deflateLevel) return;
EndBlock(false);
static const unsigned int configurationTable[10][4] = { /* good lazy nice chain */ /* 0 */ {0, 0, 0, 0}, /* store only */ /* 1 */ {4, 3, 8, 4}, /* maximum speed, no lazy matches */ /* 2 */ {4, 3, 16, 8}, /* 3 */ {4, 3, 32, 32}, /* 4 */ {4, 4, 16, 16}, /* lazy matches */ /* 5 */ {8, 16, 32, 32}, /* 6 */ {8, 16, 128, 128}, /* 7 */ {8, 32, 128, 256}, /* 8 */ {32, 128, 258, 1024}, /* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
GOOD_MATCH = configurationTable[deflateLevel][0]; MAX_LAZYLENGTH = configurationTable[deflateLevel][1]; MAX_CHAIN_LENGTH = configurationTable[deflateLevel][3];
m_deflateLevel = deflateLevel; }
unsigned int Deflator::FillWindow(const byte *str, size_t length) { unsigned int maxBlockSize = (unsigned int)STDMIN(2UL*DSIZE, 0xffffUL);
if (m_stringStart >= maxBlockSize - MAX_MATCH) { if (m_blockStart < DSIZE) EndBlock(false);
memcpy(m_byteBuffer, m_byteBuffer + DSIZE, DSIZE);
m_dictionaryEnd = m_dictionaryEnd < DSIZE ? 0 : m_dictionaryEnd-DSIZE; assert(m_stringStart >= DSIZE); m_stringStart -= DSIZE; assert(!m_matchAvailable || m_previousMatch >= DSIZE); m_previousMatch -= DSIZE; assert(m_blockStart >= DSIZE); m_blockStart -= DSIZE;
unsigned int i;
for (i=0; i<HSIZE; i++) m_head[i] = SaturatingSubtract(m_head[i], DSIZE);
for (i=0; i<DSIZE; i++) m_prev[i] = SaturatingSubtract(m_prev[i], DSIZE); }
assert(maxBlockSize > m_stringStart+m_lookahead); unsigned int accepted = UnsignedMin(maxBlockSize-(m_stringStart+m_lookahead), length); assert(accepted > 0); memcpy(m_byteBuffer + m_stringStart + m_lookahead, str, accepted); m_lookahead += accepted; return accepted; }
inline unsigned int Deflator::ComputeHash(const byte *str) const { assert(str+3 <= m_byteBuffer + m_stringStart + m_lookahead); return ((str[0] << 10) ^ (str[1] << 5) ^ str[2]) & HMASK; }
unsigned int Deflator::LongestMatch(unsigned int &bestMatch) const { assert(m_previousLength < MAX_MATCH);
bestMatch = 0; unsigned int bestLength = STDMAX(m_previousLength, (unsigned int)MIN_MATCH-1); if (m_lookahead <= bestLength) return 0;
const byte *scan = m_byteBuffer + m_stringStart, *scanEnd = scan + STDMIN((unsigned int)MAX_MATCH, m_lookahead); unsigned int limit = m_stringStart > (DSIZE-MAX_MATCH) ? m_stringStart - (DSIZE-MAX_MATCH) : 0; unsigned int current = m_head[ComputeHash(scan)];
unsigned int chainLength = MAX_CHAIN_LENGTH; if (m_previousLength >= GOOD_MATCH) chainLength >>= 2;
while (current > limit && --chainLength > 0) { const byte *match = m_byteBuffer + current; assert(scan + bestLength < m_byteBuffer + m_stringStart + m_lookahead); if (scan[bestLength-1] == match[bestLength-1] && scan[bestLength] == match[bestLength] && scan[0] == match[0] && scan[1] == match[1]) { assert(scan[2] == match[2]); unsigned int len = (unsigned int)( #if defined(_STDEXT_BEGIN) && !(defined(_MSC_VER) && (_MSC_VER < 1400 || _MSC_VER >= 1600)) && !defined(_STLPORT_VERSION)
stdext::unchecked_mismatch #else
std::mismatch #endif
#if _MSC_VER >= 1600
(stdext::make_unchecked_array_iterator(scan)+3, stdext::make_unchecked_array_iterator(scanEnd), stdext::make_unchecked_array_iterator(match)+3).first - stdext::make_unchecked_array_iterator(scan)); #else
(scan+3, scanEnd, match+3).first - scan); #endif
assert(len != bestLength); if (len > bestLength) { bestLength = len; bestMatch = current; if (len == (scanEnd - scan)) break; } } current = m_prev[current & DMASK]; } return (bestMatch > 0) ? bestLength : 0; }
inline void Deflator::InsertString(unsigned int start) { unsigned int hash = ComputeHash(m_byteBuffer + start); m_prev[start & DMASK] = m_head[hash]; m_head[hash] = start; }
void Deflator::ProcessBuffer() { if (!m_headerWritten) { WritePrestreamHeader(); m_headerWritten = true; }
if (m_deflateLevel == 0) { m_stringStart += m_lookahead; m_lookahead = 0; m_blockLength = m_stringStart - m_blockStart; m_matchAvailable = false; return; }
while (m_lookahead > m_minLookahead) { while (m_dictionaryEnd < m_stringStart && m_dictionaryEnd+3 <= m_stringStart+m_lookahead) InsertString(m_dictionaryEnd++);
if (m_matchAvailable) { unsigned int matchPosition, matchLength; bool usePreviousMatch; if (m_previousLength >= MAX_LAZYLENGTH) usePreviousMatch = true; else { matchLength = LongestMatch(matchPosition); usePreviousMatch = (matchLength == 0); } if (usePreviousMatch) { MatchFound(m_stringStart-1-m_previousMatch, m_previousLength); m_stringStart += m_previousLength-1; m_lookahead -= m_previousLength-1; m_matchAvailable = false; } else { m_previousLength = matchLength; m_previousMatch = matchPosition; LiteralByte(m_byteBuffer[m_stringStart-1]); m_stringStart++; m_lookahead--; } } else { m_previousLength = 0; m_previousLength = LongestMatch(m_previousMatch); if (m_previousLength) m_matchAvailable = true; else LiteralByte(m_byteBuffer[m_stringStart]); m_stringStart++; m_lookahead--; }
assert(m_stringStart - (m_blockStart+m_blockLength) == (unsigned int)m_matchAvailable); }
if (m_minLookahead == 0 && m_matchAvailable) { LiteralByte(m_byteBuffer[m_stringStart-1]); m_matchAvailable = false; } }
size_t Deflator::Put2(const byte *str, size_t length, int messageEnd, bool blocking) { if (!blocking) throw BlockingInputOnly("Deflator");
size_t accepted = 0; while (accepted < length) { unsigned int newAccepted = FillWindow(str+accepted, length-accepted); ProcessBuffer(); // call ProcessUncompressedData() after WritePrestreamHeader()
ProcessUncompressedData(str+accepted, newAccepted); accepted += newAccepted; } assert(accepted == length);
if (messageEnd) { m_minLookahead = 0; ProcessBuffer(); EndBlock(true); FlushBitBuffer(); WritePoststreamTail(); Reset(); }
Output(0, NULL, 0, messageEnd, blocking); return 0; }
bool Deflator::IsolatedFlush(bool hardFlush, bool blocking) { if (!blocking) throw BlockingInputOnly("Deflator");
m_minLookahead = 0; ProcessBuffer(); m_minLookahead = MAX_MATCH; EndBlock(false); if (hardFlush) EncodeBlock(false, STORED); return false; }
void Deflator::LiteralByte(byte b) { if (m_matchBufferEnd == m_matchBuffer.size()) EndBlock(false);
m_matchBuffer[m_matchBufferEnd++].literalCode = b; m_literalCounts[b]++; m_blockLength++; }
void Deflator::MatchFound(unsigned int distance, unsigned int length) { if (m_matchBufferEnd == m_matchBuffer.size()) EndBlock(false);
static const unsigned int lengthCodes[] = { 257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268, 268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272, 272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274, 274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276, 276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 285}; static const unsigned int lengthBases[] = {3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258}; static const unsigned int distanceBases[30] = {1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577};
EncodedMatch &m = m_matchBuffer[m_matchBufferEnd++]; assert(length >= 3); unsigned int lengthCode = lengthCodes[length-3]; m.literalCode = lengthCode; m.literalExtra = length - lengthBases[lengthCode-257]; unsigned int distanceCode = (unsigned int)(upper_bound(distanceBases, distanceBases+30, distance) - distanceBases - 1); m.distanceCode = distanceCode; m.distanceExtra = distance - distanceBases[distanceCode];
m_literalCounts[lengthCode]++; m_distanceCounts[distanceCode]++; m_blockLength += length; }
inline unsigned int CodeLengthEncode(const unsigned int *begin, const unsigned int *end, const unsigned int *& p, unsigned int &extraBits, unsigned int &extraBitsLength) { unsigned int v = *p; if ((end-p) >= 3) { const unsigned int *oldp = p; if (v==0 && p[1]==0 && p[2]==0) { for (p=p+3; p!=end && *p==0 && p!=oldp+138; p++) {} unsigned int repeat = (unsigned int)(p - oldp); if (repeat <= 10) { extraBits = repeat-3; extraBitsLength = 3; return 17; } else { extraBits = repeat-11; extraBitsLength = 7; return 18; } } else if (p!=begin && v==p[-1] && v==p[1] && v==p[2]) { for (p=p+3; p!=end && *p==v && p!=oldp+6; p++) {} unsigned int repeat = (unsigned int)(p - oldp); extraBits = repeat-3; extraBitsLength = 2; return 16; } } p++; extraBits = 0; extraBitsLength = 0; return v; }
void Deflator::EncodeBlock(bool eof, unsigned int blockType) { PutBits(eof, 1); PutBits(blockType, 2);
if (blockType == STORED) { assert(m_blockStart + m_blockLength <= m_byteBuffer.size()); assert(m_blockLength <= 0xffff); FlushBitBuffer(); AttachedTransformation()->PutWord16(m_blockLength, LITTLE_ENDIAN_ORDER); AttachedTransformation()->PutWord16(~m_blockLength, LITTLE_ENDIAN_ORDER); AttachedTransformation()->Put(m_byteBuffer + m_blockStart, m_blockLength); } else { if (blockType == DYNAMIC) { #if defined(_MSC_VER) && !defined(__MWERKS__) && (_MSC_VER <= 1300)
// VC60 and VC7 workaround: built-in reverse_iterator has two template parameters, Dinkumware only has one
typedef reverse_bidirectional_iterator<unsigned int *, unsigned int> RevIt; #elif defined(_RWSTD_NO_CLASS_PARTIAL_SPEC)
typedef reverse_iterator<unsigned int *, random_access_iterator_tag, unsigned int> RevIt; #else
typedef reverse_iterator<unsigned int *> RevIt; #endif
FixedSizeSecBlock<unsigned int, 286> literalCodeLengths; FixedSizeSecBlock<unsigned int, 30> distanceCodeLengths;
m_literalCounts[256] = 1; HuffmanEncoder::GenerateCodeLengths(literalCodeLengths, 15, m_literalCounts, 286); m_dynamicLiteralEncoder.Initialize(literalCodeLengths, 286); unsigned int hlit = (unsigned int)(find_if(RevIt(literalCodeLengths.end()), RevIt(literalCodeLengths.begin()+257), bind2nd(not_equal_to<unsigned int>(), 0)).base() - (literalCodeLengths.begin()+257));
HuffmanEncoder::GenerateCodeLengths(distanceCodeLengths, 15, m_distanceCounts, 30); m_dynamicDistanceEncoder.Initialize(distanceCodeLengths, 30); unsigned int hdist = (unsigned int)(find_if(RevIt(distanceCodeLengths.end()), RevIt(distanceCodeLengths.begin()+1), bind2nd(not_equal_to<unsigned int>(), 0)).base() - (distanceCodeLengths.begin()+1));
SecBlockWithHint<unsigned int, 286+30> combinedLengths(hlit+257+hdist+1); memcpy(combinedLengths, literalCodeLengths, (hlit+257)*sizeof(unsigned int)); memcpy(combinedLengths+hlit+257, distanceCodeLengths, (hdist+1)*sizeof(unsigned int));
FixedSizeSecBlock<unsigned int, 19> codeLengthCodeCounts, codeLengthCodeLengths; fill(codeLengthCodeCounts.begin(), codeLengthCodeCounts.end(), 0); const unsigned int *p = combinedLengths.begin(), *begin = combinedLengths.begin(), *end = combinedLengths.end(); while (p != end) { unsigned int code, extraBits, extraBitsLength; code = CodeLengthEncode(begin, end, p, extraBits, extraBitsLength); codeLengthCodeCounts[code]++; } HuffmanEncoder::GenerateCodeLengths(codeLengthCodeLengths, 7, codeLengthCodeCounts, 19); HuffmanEncoder codeLengthEncoder(codeLengthCodeLengths, 19); static const unsigned int border[] = { // Order of the bit length code lengths
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; unsigned int hclen = 19; while (hclen > 4 && codeLengthCodeLengths[border[hclen-1]] == 0) hclen--; hclen -= 4;
PutBits(hlit, 5); PutBits(hdist, 5); PutBits(hclen, 4);
for (unsigned int i=0; i<hclen+4; i++) PutBits(codeLengthCodeLengths[border[i]], 3);
p = combinedLengths.begin(); while (p != end) { unsigned int code, extraBits, extraBitsLength; code = CodeLengthEncode(begin, end, p, extraBits, extraBitsLength); codeLengthEncoder.Encode(*this, code); PutBits(extraBits, extraBitsLength); } }
static const unsigned int lengthExtraBits[] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0}; static const unsigned int distanceExtraBits[] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
const HuffmanEncoder &literalEncoder = (blockType == STATIC) ? m_staticLiteralEncoder : m_dynamicLiteralEncoder; const HuffmanEncoder &distanceEncoder = (blockType == STATIC) ? m_staticDistanceEncoder : m_dynamicDistanceEncoder;
for (unsigned int i=0; i<m_matchBufferEnd; i++) { unsigned int literalCode = m_matchBuffer[i].literalCode; literalEncoder.Encode(*this, literalCode); if (literalCode >= 257) { assert(literalCode <= 285); PutBits(m_matchBuffer[i].literalExtra, lengthExtraBits[literalCode-257]); unsigned int distanceCode = m_matchBuffer[i].distanceCode; distanceEncoder.Encode(*this, distanceCode); PutBits(m_matchBuffer[i].distanceExtra, distanceExtraBits[distanceCode]); } } literalEncoder.Encode(*this, 256); // end of block
} }
void Deflator::EndBlock(bool eof) { if (m_blockLength == 0 && !eof) return;
if (m_deflateLevel == 0) { EncodeBlock(eof, STORED);
if (m_compressibleDeflateLevel > 0 && ++m_detectCount == m_detectSkip) { m_deflateLevel = m_compressibleDeflateLevel; m_detectCount = 1; } } else { unsigned long storedLen = 8*((unsigned long)m_blockLength+4) + RoundUpToMultipleOf(m_bitsBuffered+3, 8U)-m_bitsBuffered;
StartCounting(); EncodeBlock(eof, STATIC); unsigned long staticLen = FinishCounting();
unsigned long dynamicLen; if (m_blockLength < 128 && m_deflateLevel < 8) dynamicLen = ULONG_MAX; else { StartCounting(); EncodeBlock(eof, DYNAMIC); dynamicLen = FinishCounting(); }
if (storedLen <= staticLen && storedLen <= dynamicLen) { EncodeBlock(eof, STORED);
if (m_compressibleDeflateLevel > 0) { if (m_detectSkip) m_deflateLevel = 0; m_detectSkip = m_detectSkip ? STDMIN(2*m_detectSkip, 128U) : 1; } } else { if (staticLen <= dynamicLen) EncodeBlock(eof, STATIC); else EncodeBlock(eof, DYNAMIC);
if (m_compressibleDeflateLevel > 0) m_detectSkip = 0; } }
m_matchBufferEnd = 0; m_blockStart += m_blockLength; m_blockLength = 0; fill(m_literalCounts.begin(), m_literalCounts.end(), 0); fill(m_distanceCounts.begin(), m_distanceCounts.end(), 0); }
NAMESPACE_END
|