|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Spawn, think, and use functions for common brush entities.
//
//=============================================================================//
#include "cbase.h"
#include "doors.h"
#include "mathlib/mathlib.h"
#include "physics.h"
#include "ndebugoverlay.h"
#include "engine/IEngineSound.h"
#include "globals.h"
#include "filters.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define SF_BRUSH_ACCDCC 16// brush should accelerate and decelerate when toggled
#define SF_BRUSH_HURT 32// rotating brush that inflicts pain based on rotation speed
#define SF_ROTATING_NOT_SOLID 64 // some special rotating objects are not solid.
// =================== FUNC_WALL ==============================================
class CFuncWall : public CBaseEntity { public: DECLARE_DATADESC(); DECLARE_CLASS( CFuncWall, CBaseEntity ); void Spawn( void ); bool CreateVPhysics( void ); void Use( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value );
int m_nState; };
LINK_ENTITY_TO_CLASS( func_wall, CFuncWall );
//---------------------------------------------------------
// Save/Restore
//---------------------------------------------------------
BEGIN_DATADESC( CFuncWall )
DEFINE_FIELD( m_nState, FIELD_INTEGER ),
END_DATADESC()
void CFuncWall::Spawn( void ) { SetLocalAngles( vec3_angle ); SetMoveType( MOVETYPE_PUSH ); // so it doesn't get pushed by anything
SetModel( STRING( GetModelName() ) ); // If it can't move/go away, it's really part of the world
AddFlag( FL_WORLDBRUSH );
// set manual mode
CreateVPhysics(); }
bool CFuncWall::CreateVPhysics( void ) { SetSolid( SOLID_BSP ); IPhysicsObject *pPhys = VPhysicsInitStatic(); if ( pPhys ) { int contents = modelinfo->GetModelContents( GetModelIndex() ); if ( ! (contents & (MASK_SOLID|MASK_PLAYERSOLID|MASK_NPCSOLID)) ) { // leave the physics shadow there in case it has crap constrained to it
// but disable collisions with it
pPhys->EnableCollisions( false ); } }
return true; }
void CFuncWall::Use( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value ) { if ( ShouldToggle( useType, m_nState ) ) { m_nState = 1 - m_nState; } }
#define SF_WALL_START_OFF 0x0001
class CFuncWallToggle : public CFuncWall { public: DECLARE_CLASS( CFuncWallToggle, CFuncWall );
DECLARE_DATADESC();
void Spawn( void ); void Use( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value );
void InputToggle( inputdata_t &inputdata );
void TurnOff( void ); void TurnOn( void ); bool IsOn( void ); };
BEGIN_DATADESC( CFuncWallToggle )
DEFINE_INPUTFUNC( FIELD_VOID, "Toggle", InputToggle ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( func_wall_toggle, CFuncWallToggle );
void CFuncWallToggle::Spawn( void ) { BaseClass::Spawn(); if ( HasSpawnFlags( SF_WALL_START_OFF ) ) TurnOff(); SetMoveType( MOVETYPE_PUSH ); }
void CFuncWallToggle::TurnOff( void ) { IPhysicsObject *pPhys = VPhysicsGetObject(); if ( pPhys ) { pPhys->EnableCollisions( false ); } AddSolidFlags( FSOLID_NOT_SOLID ); AddEffects( EF_NODRAW ); }
void CFuncWallToggle::TurnOn( void ) { IPhysicsObject *pPhys = VPhysicsGetObject(); if ( pPhys ) { pPhys->EnableCollisions( true ); } RemoveSolidFlags( FSOLID_NOT_SOLID ); RemoveEffects( EF_NODRAW ); }
bool CFuncWallToggle::IsOn( void ) { if ( IsSolidFlagSet( FSOLID_NOT_SOLID ) ) return false; return true; }
void CFuncWallToggle::InputToggle( inputdata_t &inputdata ) { int status = IsOn();
if ( ShouldToggle( USE_TOGGLE, status ) ) { if ( status ) TurnOff(); else TurnOn(); } }
//Adrian - Is this function needed at all?
void CFuncWallToggle::Use( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value ) { int status = IsOn();
if ( ShouldToggle( useType, status ) ) { if ( status ) TurnOff(); else TurnOn(); } }
//============================== FUNC_VEHICLECLIP =====================================
class CFuncVehicleClip : public CBaseEntity { public: DECLARE_CLASS( CFuncVehicleClip, CBaseEntity ); DECLARE_DATADESC();
void Spawn(); bool CreateVPhysics( void );
void InputEnable( inputdata_t &data ); void InputDisable( inputdata_t &data );
private: };
BEGIN_DATADESC( CFuncVehicleClip )
DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ), DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( func_vehicleclip, CFuncVehicleClip );
void CFuncVehicleClip::Spawn() {
SetLocalAngles( vec3_angle ); SetMoveType( MOVETYPE_PUSH ); // so it doesn't get pushed by anything
SetModel( STRING( GetModelName() ) ); // It's part of the world
AddFlag( FL_WORLDBRUSH );
CreateVPhysics();
AddEffects( EF_NODRAW ); // make entity invisible
SetCollisionGroup( COLLISION_GROUP_VEHICLE_CLIP ); }
bool CFuncVehicleClip::CreateVPhysics( void ) { SetSolid( SOLID_BSP ); VPhysicsInitStatic();
return true; }
void CFuncVehicleClip::InputEnable( inputdata_t &data ) { IPhysicsObject *pPhys = VPhysicsGetObject(); if ( pPhys ) { pPhys->EnableCollisions( true ); } RemoveSolidFlags( FSOLID_NOT_SOLID ); }
void CFuncVehicleClip::InputDisable( inputdata_t &data ) { IPhysicsObject *pPhys = VPhysicsGetObject(); if ( pPhys ) { pPhys->EnableCollisions( false ); } AddSolidFlags( FSOLID_NOT_SOLID ); }
//============================= FUNC_CONVEYOR =======================================
#define SF_CONVEYOR_VISUAL 0x0001
#define SF_CONVEYOR_NOTSOLID 0x0002
class CFuncConveyor : public CFuncWall { public: DECLARE_CLASS( CFuncConveyor, CFuncWall ); DECLARE_DATADESC(); DECLARE_SERVERCLASS();
CFuncConveyor();
void Spawn( void ); void Use( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value ); void UpdateSpeed( float flNewSpeed );
void GetGroundVelocityToApply( Vector &vecGroundVel );
// Input handlers.
void InputToggleDirection( inputdata_t &inputdata ); void InputSetSpeed( inputdata_t &inputdata );
private:
Vector m_vecMoveDir; CNetworkVar( float, m_flConveyorSpeed ); };
LINK_ENTITY_TO_CLASS( func_conveyor, CFuncConveyor );
BEGIN_DATADESC( CFuncConveyor )
DEFINE_INPUTFUNC( FIELD_VOID, "ToggleDirection", InputToggleDirection ), DEFINE_INPUTFUNC( FIELD_VOID, "SetSpeed", InputSetSpeed ),
DEFINE_KEYFIELD( m_vecMoveDir, FIELD_VECTOR, "movedir" ), DEFINE_FIELD( m_flConveyorSpeed, FIELD_FLOAT ),
END_DATADESC()
IMPLEMENT_SERVERCLASS_ST(CFuncConveyor, DT_FuncConveyor) SendPropFloat( SENDINFO(m_flConveyorSpeed), 0, SPROP_NOSCALE ), END_SEND_TABLE()
CFuncConveyor::CFuncConveyor() { m_flConveyorSpeed = 0.0; }
void CFuncConveyor::Spawn( void ) { // Convert movedir from angles to a vector
QAngle angMoveDir = QAngle( m_vecMoveDir.x, m_vecMoveDir.y, m_vecMoveDir.z ); AngleVectors( angMoveDir, &m_vecMoveDir );
BaseClass::Spawn();
if ( !HasSpawnFlags(SF_CONVEYOR_VISUAL) ) AddFlag( FL_CONVEYOR );
// HACKHACK - This is to allow for some special effects
if ( HasSpawnFlags( SF_CONVEYOR_NOTSOLID ) ) { AddSolidFlags( FSOLID_NOT_SOLID ); }
if ( m_flSpeed == 0 ) m_flSpeed = 100;
UpdateSpeed( m_flSpeed ); }
void CFuncConveyor::UpdateSpeed( float flNewSpeed ) { m_flConveyorSpeed = flNewSpeed; }
void CFuncConveyor::Use( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value ) { m_flSpeed = -m_flSpeed; UpdateSpeed( m_flSpeed ); }
void CFuncConveyor::InputToggleDirection( inputdata_t &inputdata ) { Use( inputdata.pActivator, inputdata.pCaller, USE_TOGGLE, 0 ); }
void CFuncConveyor::InputSetSpeed( inputdata_t &inputdata ) { m_flSpeed = inputdata.value.Float(); UpdateSpeed( m_flSpeed ); }
//-----------------------------------------------------------------------------
// Purpose: Returns the velocity imparted to players standing on us.
//-----------------------------------------------------------------------------
void CFuncConveyor::GetGroundVelocityToApply( Vector &vecGroundVel ) { vecGroundVel = m_vecMoveDir * m_flSpeed; }
// =================== FUNC_ILLUSIONARY ==============================================
// A simple entity that looks solid but lets you walk through it.
class CFuncIllusionary : public CBaseEntity { DECLARE_CLASS( CFuncIllusionary, CBaseEntity ); public: void Spawn( void ); };
LINK_ENTITY_TO_CLASS( func_illusionary, CFuncIllusionary );
void CFuncIllusionary::Spawn( void ) { SetLocalAngles( vec3_angle ); SetMoveType( MOVETYPE_NONE ); SetSolid( SOLID_NONE ); SetModel( STRING( GetModelName() ) ); }
//-----------------------------------------------------------------------------
// Purpose: A rotating brush entity.
//
// You need to have an origin brush as part of this entity. The
// center of that brush will be the point around which it is rotated.
//
// It will rotate around the Z axis by default. Spawnflags can be set
// to make it rotate around the X or Y axes.
//
// The direction of rotation is also controlled by a spawnflag.
//-----------------------------------------------------------------------------
class CFuncRotating : public CBaseEntity { DECLARE_CLASS( CFuncRotating, CBaseEntity ); public: // basic functions
void Spawn( void ); void Precache( void ); bool CreateVPhysics( void ); void SpinUpMove( void ); void SpinDownMove( void ); bool KeyValue( const char *szKeyName, const char *szValue ); void HurtTouch ( CBaseEntity *pOther ); void RotatingUse( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value ); void RotateMove( void ); void ReverseMove( void ); void RampPitchVol( void ); void Blocked( CBaseEntity *pOther ); void SetTargetSpeed( float flSpeed ); void UpdateSpeed( float flNewSpeed ); int DrawDebugTextOverlays(void);
DECLARE_DATADESC(); DECLARE_SERVERCLASS();
protected: bool SpinDown( float flTargetSpeed ); float GetMoveSpeed( float flSpeed );
float GetNextMoveInterval() const;
// If our euler angle is starting to get too big, normalize it
void NormalizeAngleIfNeeded();
// Input handlers
void InputSetSpeed( inputdata_t &inputdata ); void InputGetSpeed( inputdata_t &inputdata ); void InputStart( inputdata_t &inputdata ); void InputStop( inputdata_t &inputdata ); void InputStartForward( inputdata_t &inputdata ); void InputStartBackward( inputdata_t &inputdata ); void InputToggle( inputdata_t &inputdata ); void InputReverse( inputdata_t &inputdata ); void InputStopAtStartPos( inputdata_t &inputdata );
QAngle m_vecMoveAng;
float m_flFanFriction; float m_flAttenuation; float m_flVolume; float m_flTargetSpeed; // Target value for m_flSpeed, used for spinning up and down.
float m_flMaxSpeed; // Maximum value for m_flSpeed, used for ramping sound effects.
float m_flBlockDamage; // Damage inflicted when blocked.
string_t m_NoiseRunning; bool m_bReversed;
QAngle m_angStart; bool m_bStopAtStartPos;
bool m_bSolidBsp; // Brush is SOLID_BSP
//outputs
COutputFloat m_OnGetSpeed; // Used for polling the speed value.
public: Vector m_vecClientOrigin; QAngle m_vecClientAngles; };
LINK_ENTITY_TO_CLASS( func_rotating, CFuncRotating );
BEGIN_DATADESC( CFuncRotating )
DEFINE_FIELD( m_vecMoveAng, FIELD_VECTOR ), DEFINE_FIELD( m_flFanFriction, FIELD_FLOAT ), DEFINE_FIELD( m_flAttenuation, FIELD_FLOAT ), DEFINE_FIELD( m_flVolume, FIELD_FLOAT ), DEFINE_FIELD( m_flTargetSpeed, FIELD_FLOAT ), DEFINE_KEYFIELD( m_flMaxSpeed, FIELD_FLOAT, "maxspeed" ), DEFINE_KEYFIELD( m_flBlockDamage, FIELD_FLOAT, "dmg" ), DEFINE_KEYFIELD( m_NoiseRunning, FIELD_SOUNDNAME, "message" ), DEFINE_FIELD( m_bReversed, FIELD_BOOLEAN ), DEFINE_FIELD( m_angStart, FIELD_VECTOR ), DEFINE_FIELD( m_bStopAtStartPos, FIELD_BOOLEAN ), DEFINE_KEYFIELD( m_bSolidBsp, FIELD_BOOLEAN, "solidbsp" ),
// Function Pointers
DEFINE_FUNCTION( SpinUpMove ), DEFINE_FUNCTION( SpinDownMove ), DEFINE_FUNCTION( HurtTouch ), DEFINE_FUNCTION( RotatingUse ), DEFINE_FUNCTION( RotateMove ), DEFINE_FUNCTION( ReverseMove ),
// Inputs
DEFINE_INPUTFUNC( FIELD_FLOAT, "SetSpeed", InputSetSpeed ), DEFINE_INPUTFUNC( FIELD_VOID, "GetSpeed", InputGetSpeed ), DEFINE_INPUTFUNC( FIELD_VOID, "Start", InputStart ), DEFINE_INPUTFUNC( FIELD_VOID, "Stop", InputStop ), DEFINE_INPUTFUNC( FIELD_VOID, "Toggle", InputToggle ), DEFINE_INPUTFUNC( FIELD_VOID, "Reverse", InputReverse ), DEFINE_INPUTFUNC( FIELD_VOID, "StartForward", InputStartForward ), DEFINE_INPUTFUNC( FIELD_VOID, "StartBackward", InputStartBackward ), DEFINE_INPUTFUNC( FIELD_VOID, "StopAtStartPos", InputStopAtStartPos ),
// Outputs
DEFINE_OUTPUT(m_OnGetSpeed, "OnGetSpeed"),
END_DATADESC()
extern void SendProxy_Origin( const SendProp *pProp, const void *pStruct, const void *pData, DVariant *pOut, int iElement, int objectID ); void SendProxy_FuncRotatingOrigin( const SendProp *pProp, const void *pStruct, const void *pData, DVariant *pOut, int iElement, int objectID ) { CFuncRotating *entity = (CFuncRotating*)pStruct; Assert( entity ); if ( entity->HasSpawnFlags(SF_BRUSH_ROTATE_CLIENTSIDE) ) { const Vector *v = &entity->m_vecClientOrigin; pOut->m_Vector[ 0 ] = v->x; pOut->m_Vector[ 1 ] = v->y; pOut->m_Vector[ 2 ] = v->z; return; }
SendProxy_Origin( pProp, pStruct, pData, pOut, iElement, objectID ); }
void SendProxy_FuncRotatingAngle( const SendProp *pProp, const void *pStruct, const void *pData, DVariant *pOut, int iElement, int objectID) { vec_t const *qa = (vec_t *)pData;
#ifdef TF_DLL
CFuncRotating *entity = (CFuncRotating*)pStruct; Assert( entity );
vec_t const *ea = entity->GetLocalAngles().Base();
// Assert its actually an index into m_angRotation if not this won't work
Assert( (uintp)qa >= (uintp)ea && (uintp)qa < (uintp)ea + sizeof( QAngle ));
if ( entity->HasSpawnFlags(SF_BRUSH_ROTATE_CLIENTSIDE) ) { const QAngle *a = &entity->m_vecClientAngles;
pOut->m_Float = anglemod( (*a)[ qa - ea ] ); return; } #endif
pOut->m_Float = anglemod( *qa );
Assert( IsFinite( pOut->m_Float ) ); }
extern void SendProxy_SimulationTime( const SendProp *pProp, const void *pStruct, const void *pVarData, DVariant *pOut, int iElement, int objectID ); void SendProxy_FuncRotatingSimulationTime( const SendProp *pProp, const void *pStruct, const void *pVarData, DVariant *pOut, int iElement, int objectID ) { #ifdef TF_DLL
CFuncRotating *entity = (CFuncRotating*)pStruct; Assert( entity ); if ( entity->HasSpawnFlags(SF_BRUSH_ROTATE_CLIENTSIDE) ) { pOut->m_Int = 0; return; } #endif
SendProxy_SimulationTime( pProp, pStruct, pVarData, pOut, iElement, objectID ); }
IMPLEMENT_SERVERCLASS_ST(CFuncRotating, DT_FuncRotating) SendPropExclude( "DT_BaseEntity", "m_angRotation" ), SendPropExclude( "DT_BaseEntity", "m_vecOrigin" ), SendPropExclude( "DT_BaseEntity", "m_flSimulationTime" ),
SendPropVector(SENDINFO(m_vecOrigin), -1, SPROP_COORD|SPROP_CHANGES_OFTEN, 0.0f, HIGH_DEFAULT, SendProxy_FuncRotatingOrigin ), SendPropAngle( SENDINFO_VECTORELEM(m_angRotation, 0), 13, SPROP_CHANGES_OFTEN, SendProxy_FuncRotatingAngle ), SendPropAngle( SENDINFO_VECTORELEM(m_angRotation, 1), 13, SPROP_CHANGES_OFTEN, SendProxy_FuncRotatingAngle ), SendPropAngle( SENDINFO_VECTORELEM(m_angRotation, 2), 13, SPROP_CHANGES_OFTEN, SendProxy_FuncRotatingAngle ),
SendPropInt(SENDINFO(m_flSimulationTime), SIMULATION_TIME_WINDOW_BITS, SPROP_UNSIGNED|SPROP_CHANGES_OFTEN|SPROP_ENCODED_AGAINST_TICKCOUNT, SendProxy_FuncRotatingSimulationTime), END_SEND_TABLE()
//-----------------------------------------------------------------------------
// Purpose: Handles keyvalues from the BSP. Called before spawning.
//-----------------------------------------------------------------------------
bool CFuncRotating::KeyValue( const char *szKeyName, const char *szValue ) { if (FStrEq(szKeyName, "fanfriction")) { m_flFanFriction = atof(szValue)/100; } else if (FStrEq(szKeyName, "Volume")) { m_flVolume = atof(szValue) / 10.0; m_flVolume = clamp(m_flVolume, 0.0, 1.0f); } else { return BaseClass::KeyValue( szKeyName, szValue ); }
return true; }
//-----------------------------------------------------------------------------
// Purpose: Called when spawning, after keyvalues have been set.
//-----------------------------------------------------------------------------
void CFuncRotating::Spawn( ) { #if defined(TF_DLL)
AddSpawnFlags( SF_BRUSH_ROTATE_CLIENTSIDE ); #endif
//
// Maintain compatibility with previous maps.
//
if (m_flVolume == 0.0) { m_flVolume = 1.0; }
//
// If the designer didn't set a sound attenuation, default to one.
//
if ( HasSpawnFlags(SF_BRUSH_ROTATE_SMALLRADIUS) ) { m_flAttenuation = ATTN_IDLE; } else if ( HasSpawnFlags(SF_BRUSH_ROTATE_MEDIUMRADIUS) ) { m_flAttenuation = ATTN_STATIC; } else if ( HasSpawnFlags(SF_BRUSH_ROTATE_LARGERADIUS) ) { m_flAttenuation = ATTN_NORM; } else { m_flAttenuation = ATTN_NORM; }
//
// Prevent divide by zero if level designer forgets friction!
//
if ( m_flFanFriction == 0 ) { m_flFanFriction = 1; } //
// Build the axis of rotation based on spawnflags.
//
if ( HasSpawnFlags(SF_BRUSH_ROTATE_Z_AXIS) ) { m_vecMoveAng = QAngle(0,0,1); } else if ( HasSpawnFlags(SF_BRUSH_ROTATE_X_AXIS) ) { m_vecMoveAng = QAngle(1,0,0); } else { m_vecMoveAng = QAngle(0,1,0); // y-axis
}
//
// Check for reverse rotation.
//
if ( HasSpawnFlags(SF_BRUSH_ROTATE_BACKWARDS) ) { m_vecMoveAng = m_vecMoveAng * -1; }
SetSolid( SOLID_VPHYSICS );
//
// Some rotating objects like fake volumetric lights will not be solid.
//
if ( HasSpawnFlags(SF_ROTATING_NOT_SOLID) ) { AddSolidFlags( FSOLID_NOT_SOLID ); SetMoveType( MOVETYPE_PUSH ); } else { RemoveSolidFlags( FSOLID_NOT_SOLID ); SetMoveType( MOVETYPE_PUSH ); }
SetModel( STRING( GetModelName() ) );
SetUse( &CFuncRotating::RotatingUse );
//
// Did level designer forget to assign a maximum speed? Prevent a divide by
// zero in RampPitchVol as well as allowing the rotator to work.
//
m_flMaxSpeed = fabs( m_flMaxSpeed ); if (m_flMaxSpeed == 0) { m_flMaxSpeed = 100; }
//
// If the brush should be initially rotating, use it in a little while.
//
if ( HasSpawnFlags(SF_BRUSH_ROTATE_START_ON) ) { SetThink( &CFuncRotating::SUB_CallUseToggle ); SetNextThink( gpGlobals->curtime + .2 ); // leave a magic delay for client to start up
} else { SetThink( &CFuncRotating::NormalizeAngleIfNeeded ); SetNextThink( gpGlobals->curtime + .2 ); }
//
// Can this brush inflict pain?
//
if ( HasSpawnFlags(SF_BRUSH_HURT) ) { SetTouch( &CFuncRotating::HurtTouch ); }
//
// Set speed to 0 in case there's an old "speed" key lying around.
//
m_flSpeed = 0; Precache( ); CreateVPhysics();
m_angStart = GetLocalAngles(); // Slam the object back to solid - if we really want it to be solid.
if ( m_bSolidBsp ) { SetSolid( SOLID_BSP ); }
#ifdef TF_DLL
if ( HasSpawnFlags(SF_BRUSH_ROTATE_CLIENTSIDE) ) { m_vecClientOrigin = GetLocalOrigin(); m_vecClientAngles = GetLocalAngles(); } #endif
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
bool CFuncRotating::CreateVPhysics( void ) { if ( !IsSolidFlagSet( FSOLID_NOT_SOLID )) { VPhysicsInitShadow( false, false ); } return true; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CFuncRotating::Precache( void ) { //
// Set up rotation sound.
//
char *szSoundFile = ( char * )STRING( m_NoiseRunning ); if ( !m_NoiseRunning || strlen( szSoundFile ) == 0 ) { // No sound set up, use the null sound.
m_NoiseRunning = AllocPooledString("DoorSound.Null"); } PrecacheScriptSound( STRING( m_NoiseRunning ) ); if (GetLocalAngularVelocity() != vec3_angle ) { //
// If fan was spinning, and we went through transition or save/restore,
// make sure we restart the sound. 1.5 sec delay is a magic number.
//
SetMoveDone( &CFuncRotating::SpinUpMove ); SetMoveDoneTime( 1.5 ); } }
//-----------------------------------------------------------------------------
// Purpose: Will hurt others based on how fast the brush is spinning.
// Input : pOther -
//-----------------------------------------------------------------------------
void CFuncRotating::HurtTouch ( CBaseEntity *pOther ) { // we can't hurt this thing, so we're not concerned with it
if ( !pOther->m_takedamage ) return;
// calculate damage based on rotation speed
m_flBlockDamage = GetLocalAngularVelocity().Length() / 10;
pOther->TakeDamage( CTakeDamageInfo( this, this, m_flBlockDamage, DMG_CRUSH ) );
Vector vecNewVelocity = pOther->GetAbsOrigin() - WorldSpaceCenter(); VectorNormalize(vecNewVelocity); vecNewVelocity *= m_flBlockDamage; pOther->SetAbsVelocity( vecNewVelocity ); }
#define FANPITCHMIN 30
#define FANPITCHMAX 100
//-----------------------------------------------------------------------------
// Purpose: Ramp pitch and volume up to maximum values, based on the difference
// between how fast we're going vs how fast we can go.
//-----------------------------------------------------------------------------
void CFuncRotating::RampPitchVol( void ) { //
// Calc volume and pitch as % of maximum vol and pitch.
//
float fpct = fabs(m_flSpeed) / m_flMaxSpeed; float fvol = clamp(m_flVolume * fpct, 0, 1); // slowdown volume ramps down to 0
float fpitch = FANPITCHMIN + (FANPITCHMAX - FANPITCHMIN) * fpct; int pitch = clamp(fpitch, 0, 255); if (pitch == PITCH_NORM) { pitch = PITCH_NORM - 1; }
//
// Update the fan's volume and pitch.
//
CBroadcastRecipientFilter filter;
EmitSound_t ep; ep.m_nChannel = CHAN_STATIC; ep.m_pSoundName = STRING(m_NoiseRunning); ep.m_flVolume = fvol; ep.m_SoundLevel = ATTN_TO_SNDLVL( m_flAttenuation ); ep.m_nFlags = SND_CHANGE_PITCH | SND_CHANGE_VOL; ep.m_nPitch = pitch;
EmitSound( filter, entindex(), ep ); }
//-----------------------------------------------------------------------------
// Purpose:
// Output : float
//-----------------------------------------------------------------------------
float CFuncRotating::GetNextMoveInterval() const { if ( m_bStopAtStartPos ) { return TICK_INTERVAL; } return 0.1f; }
//-----------------------------------------------------------------------------
// Purpose: stop our rotation value from becoming too large
//-----------------------------------------------------------------------------
void CFuncRotating::NormalizeAngleIfNeeded() { // entity max angle is 1000 rotations, so we'll renormalize after ~200.
// note that we expect this to be a multiple of 360
static const float kMaxAngle = 200 * 360.0f; // check our rotation for normalization every 15-30 seconds.
static const float kTimeToRenormalize = 15.0f;
// check angle
QAngle angle = GetLocalAngles(); bool ok = true; if ( angle.x > kMaxAngle ) { ok = false; angle.x -= kMaxAngle; } if ( angle.x < -kMaxAngle ) { ok = false; angle.x += kMaxAngle; } if ( angle.y > kMaxAngle ) { ok = false; angle.y -= kMaxAngle; } if ( angle.y < -kMaxAngle ) { ok = false; angle.y += kMaxAngle; } if ( angle.z > kMaxAngle ) { ok = false; angle.z -= kMaxAngle; } if ( angle.z < -kMaxAngle ) { ok = false; angle.z += kMaxAngle; }
// if we changed it, update with new values
if ( !ok ) { // Disable interpolation on this entity for 1 frame (so it doesn't 'spin backwards 100 times')
AddEffects( EF_NOINTERP ); SetLocalAngles( angle ); }
// think at semi-random intervals so func rotatings don't all stack up on the same tick
SetThink( &CFuncRotating::NormalizeAngleIfNeeded ); SetNextThink( gpGlobals->curtime + RandomFloat( kTimeToRenormalize, kTimeToRenormalize * 2.0f ) ); }
//-----------------------------------------------------------------------------
// Purpose: Sets the current speed to the given value and manages the sound effects.
// Input : flNewSpeed - New speed in degrees per second.
//-----------------------------------------------------------------------------
void CFuncRotating::UpdateSpeed( float flNewSpeed ) { float flOldSpeed = m_flSpeed; m_flSpeed = clamp( flNewSpeed, -m_flMaxSpeed, m_flMaxSpeed );
if ( m_bStopAtStartPos ) { int checkAxis = 2; // See if we got close to the starting orientation
if ( m_vecMoveAng[0] != 0 ) { checkAxis = 0; } else if ( m_vecMoveAng[1] != 0 ) { checkAxis = 1; }
float angDelta = anglemod( GetLocalAngles()[ checkAxis ] - m_angStart[ checkAxis ] ); if ( angDelta > 180.0f ) { angDelta -= 360.0f; }
if ( flNewSpeed < 100 ) { if ( flNewSpeed <= 25 && fabs( angDelta ) < 1.0f ) { m_flTargetSpeed = 0; m_bStopAtStartPos = false; m_flSpeed = 0.0f;
SetLocalAngles( m_angStart ); } else if ( fabs( angDelta ) > 90.0f ) { // Keep rotating at same speed for now
m_flSpeed = flOldSpeed; } else { float minSpeed = fabs( angDelta ); if ( minSpeed < 20 ) minSpeed = 20; m_flSpeed = flOldSpeed > 0.0f ? minSpeed : -minSpeed; } } }
if ( ( flOldSpeed == 0 ) && ( m_flSpeed != 0 ) ) { // Starting to move - emit the sound.
CBroadcastRecipientFilter filter; EmitSound_t ep; ep.m_nChannel = CHAN_STATIC; ep.m_pSoundName = STRING(m_NoiseRunning); ep.m_flVolume = 0.01; ep.m_SoundLevel = ATTN_TO_SNDLVL( m_flAttenuation ); ep.m_nPitch = FANPITCHMIN;
EmitSound( filter, entindex(), ep ); RampPitchVol(); } else if ( ( flOldSpeed != 0 ) && ( m_flSpeed == 0 ) ) { // Stopping - stop the sound.
StopSound( entindex(), CHAN_STATIC, STRING(m_NoiseRunning) ); } else { // Changing speed - adjust the pitch and volume.
RampPitchVol(); }
SetLocalAngularVelocity( m_vecMoveAng * m_flSpeed ); }
//-----------------------------------------------------------------------------
// Purpose: Think function. Accelerates a func_rotating to a higher angular velocity.
//-----------------------------------------------------------------------------
void CFuncRotating::SpinUpMove( void ) { //
// Calculate our new speed.
//
bool bSpinUpDone = false; float flNewSpeed = fabs( m_flSpeed ) + 0.2 * m_flMaxSpeed * m_flFanFriction; if ( fabs( flNewSpeed ) >= fabs( m_flTargetSpeed ) ) { // Reached our target speed.
flNewSpeed = m_flTargetSpeed; bSpinUpDone = !m_bStopAtStartPos; } else if ( m_flTargetSpeed < 0 ) { // Spinning up in reverse - negate the speed.
flNewSpeed *= -1; }
//
// Apply the new speed, adjust sound pitch and volume.
//
UpdateSpeed( flNewSpeed );
//
// If we've met or exceeded target speed, stop spinning up.
//
if ( bSpinUpDone ) { SetMoveDone( &CFuncRotating::RotateMove ); RotateMove(); }
SetMoveDoneTime( GetNextMoveInterval() ); }
//-----------------------------------------------------------------------------
// Purpose: Decelerates the rotator from a higher speed to a lower one.
// Input : flTargetSpeed - Speed to spin down to.
// Output : Returns true if we reached the target speed, false otherwise.
//-----------------------------------------------------------------------------
bool CFuncRotating::SpinDown( float flTargetSpeed ) { //
// Bleed off a little speed due to friction.
//
bool bSpinDownDone = false; float flNewSpeed = fabs( m_flSpeed ) - 0.1 * m_flMaxSpeed * m_flFanFriction; if ( flNewSpeed < 0 ) { flNewSpeed = 0; }
if ( fabs( flNewSpeed ) <= fabs( flTargetSpeed ) ) { // Reached our target speed.
flNewSpeed = flTargetSpeed; bSpinDownDone = !m_bStopAtStartPos; } else if ( m_flSpeed < 0 ) { // Spinning down in reverse - negate the speed.
flNewSpeed *= -1; }
//
// Apply the new speed, adjust sound pitch and volume.
//
UpdateSpeed( flNewSpeed );
//
// If we've met or exceeded target speed, stop spinning down.
//
return bSpinDownDone; }
//-----------------------------------------------------------------------------
// Purpose: Think function. Decelerates a func_rotating to a lower angular velocity.
//-----------------------------------------------------------------------------
void CFuncRotating::SpinDownMove( void ) { //
// If we've met or exceeded target speed, stop spinning down.
//
if ( SpinDown( m_flTargetSpeed ) ) { SetMoveDone( &CFuncRotating::RotateMove ); RotateMove(); } else { SetMoveDoneTime( GetNextMoveInterval() ); } }
//-----------------------------------------------------------------------------
// Purpose: Think function for reversing directions. Spins down to zero, then
// starts spinning up to the target speed.
//-----------------------------------------------------------------------------
void CFuncRotating::ReverseMove( void ) { if ( SpinDown( 0 ) ) { // We've reached zero - spin back up to the target speed.
SetTargetSpeed( m_flTargetSpeed ); } else { SetMoveDoneTime( GetNextMoveInterval() ); } }
//-----------------------------------------------------------------------------
// Purpose: Think function. Called while rotating at a constant angular velocity.
//-----------------------------------------------------------------------------
void CFuncRotating::RotateMove( void ) { SetMoveDoneTime( 10 );
if ( m_bStopAtStartPos ) { SetMoveDoneTime( GetNextMoveInterval() ); int checkAxis = 2;
// See if we got close to the starting orientation
if ( m_vecMoveAng[0] != 0 ) { checkAxis = 0; } else if ( m_vecMoveAng[1] != 0 ) { checkAxis = 1; }
float angDelta = anglemod( GetLocalAngles()[ checkAxis ] - m_angStart[ checkAxis ] ); if ( angDelta > 180.0f ) angDelta -= 360.0f;
QAngle avel = GetLocalAngularVelocity(); // Delta per tick
QAngle avelpertick = avel * TICK_INTERVAL;
if ( fabs( angDelta ) < fabs( avelpertick[ checkAxis ] ) ) { SetTargetSpeed( 0 ); SetLocalAngles( m_angStart ); m_bStopAtStartPos = false; } } }
//-----------------------------------------------------------------------------
// Purpose: Used for debug output. Returns the given speed considering our current
// direction of rotation, so that positive values are forward and negative
// values are backward.
// Input : flSpeed - Angular speed in degrees per second.
//-----------------------------------------------------------------------------
float CFuncRotating::GetMoveSpeed( float flSpeed ) { if ( m_vecMoveAng[0] != 0 ) { return flSpeed * m_vecMoveAng[0]; }
if ( m_vecMoveAng[1] != 0 ) { return flSpeed * m_vecMoveAng[1]; }
return flSpeed * m_vecMoveAng[2]; }
//-----------------------------------------------------------------------------
// Purpose: Sets a new angular velocity to achieve.
// Input : flSpeed - Target angular velocity in degrees per second.
//-----------------------------------------------------------------------------
void CFuncRotating::SetTargetSpeed( float flSpeed ) { //
// Make sure the sign is correct - positive for forward rotation,
// negative for reverse rotation.
//
flSpeed = fabs( flSpeed ); if ( m_bReversed ) { flSpeed *= -1; }
m_flTargetSpeed = flSpeed;
//
// If we don't accelerate, change to the new speed instantly.
//
if ( !HasSpawnFlags(SF_BRUSH_ACCDCC ) ) { UpdateSpeed( m_flTargetSpeed ); SetMoveDone( &CFuncRotating::RotateMove ); } //
// Otherwise deal with acceleration/deceleration:
//
else { //
// Check for reversing directions.
//
if ((( m_flSpeed > 0 ) && ( m_flTargetSpeed < 0 )) || (( m_flSpeed < 0 ) && ( m_flTargetSpeed > 0 ))) { SetMoveDone( &CFuncRotating::ReverseMove ); } //
// If we are below the new target speed, spin up to the target speed.
//
else if ( fabs( m_flSpeed ) < fabs( m_flTargetSpeed ) ) { SetMoveDone( &CFuncRotating::SpinUpMove ); } //
// If we are above the new target speed, spin down to the target speed.
//
else if ( fabs( m_flSpeed ) > fabs( m_flTargetSpeed ) ) { SetMoveDone( &CFuncRotating::SpinDownMove ); } //
// We are already at the new target speed. Just keep rotating.
//
else { SetMoveDone( &CFuncRotating::RotateMove ); } }
SetMoveDoneTime( GetNextMoveInterval() ); }
//-----------------------------------------------------------------------------
// Purpose: Called when a rotating brush is used by the player.
// Input : pActivator -
// pCaller -
// useType -
// value -
//-----------------------------------------------------------------------------
void CFuncRotating::RotatingUse( CBaseEntity *pActivator, CBaseEntity *pCaller, USE_TYPE useType, float value ) { //
// If the rotator is spinning, stop it.
//
if ( m_flSpeed != 0 ) { SetTargetSpeed( 0 ); } //
// Rotator is not moving, so start it.
//
else { SetTargetSpeed( m_flMaxSpeed ); }
// start renormalization thinker
SetThink( &CFuncRotating::NormalizeAngleIfNeeded ); SetNextThink( gpGlobals->curtime + 0.2f ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler that reverses the direction of rotation.
//-----------------------------------------------------------------------------
void CFuncRotating::InputReverse( inputdata_t &inputdata ) { m_bStopAtStartPos = false; m_bReversed = !m_bReversed; SetTargetSpeed( m_flSpeed ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler for setting the speed of the rotator.
// Input : Float target angular velocity as a ratio of maximum speed [0, 1].
//-----------------------------------------------------------------------------
void CFuncRotating::InputSetSpeed( inputdata_t &inputdata ) { m_bStopAtStartPos = false; float flSpeed = inputdata.value.Float(); m_bReversed = flSpeed < 0 ? true : false; flSpeed = fabs(flSpeed); SetTargetSpeed( clamp( flSpeed, 0, 1 ) * m_flMaxSpeed ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CFuncRotating::InputGetSpeed( inputdata_t &inputdata ) { float flOutValue = m_flSpeed; if ( flOutValue < 0 ) flOutValue *= -1;
m_OnGetSpeed.Set( flOutValue, inputdata.pActivator, inputdata.pCaller ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler to start the rotator spinning.
//-----------------------------------------------------------------------------
void CFuncRotating::InputStart( inputdata_t &inputdata ) { m_bStopAtStartPos = false; SetTargetSpeed( m_flMaxSpeed ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler to start the rotator spinning.
//-----------------------------------------------------------------------------
void CFuncRotating::InputStartForward( inputdata_t &inputdata ) { m_bReversed = false; SetTargetSpeed( m_flMaxSpeed ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler to start the rotator spinning.
//-----------------------------------------------------------------------------
void CFuncRotating::InputStartBackward( inputdata_t &inputdata ) { m_bStopAtStartPos = false; m_bReversed = true; SetTargetSpeed( m_flMaxSpeed ); }
//-----------------------------------------------------------------------------
// Purpose: Input handler to stop the rotator from spinning.
//-----------------------------------------------------------------------------
void CFuncRotating::InputStop( inputdata_t &inputdata ) { m_bStopAtStartPos = false; SetTargetSpeed( 0 ); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : &inputdata -
//-----------------------------------------------------------------------------
void CFuncRotating::InputStopAtStartPos( inputdata_t &inputdata ) { m_bStopAtStartPos = true; SetTargetSpeed( 0 ); SetMoveDoneTime( GetNextMoveInterval() ); }
//-----------------------------------------------------------------------------
// Purpose: Starts the rotator if it is still, stops it if it is spinning.
//-----------------------------------------------------------------------------
void CFuncRotating::InputToggle( inputdata_t &inputdata ) { if (m_flSpeed > 0) { SetTargetSpeed( 0 ); } else { SetTargetSpeed( m_flMaxSpeed ); } }
//-----------------------------------------------------------------------------
// Purpose: An entity has blocked the brush.
// Input : pOther -
//-----------------------------------------------------------------------------
void CFuncRotating::Blocked( CBaseEntity *pOther ) { pOther->TakeDamage( CTakeDamageInfo( this, this, m_flBlockDamage, DMG_CRUSH ) ); }
//-----------------------------------------------------------------------------
// Purpose: Draw any debug text overlays
// Input :
// Output : Current text offset from the top
//-----------------------------------------------------------------------------
int CFuncRotating::DrawDebugTextOverlays(void) { int text_offset = BaseClass::DrawDebugTextOverlays();
if (m_debugOverlays & OVERLAY_TEXT_BIT) { char tempstr[512]; Q_snprintf( tempstr, sizeof( tempstr ),"Speed cur (target): %3.2f (%3.2f)", GetMoveSpeed( m_flSpeed ), GetMoveSpeed( m_flTargetSpeed ) ); EntityText(text_offset,tempstr,0); text_offset++; } return text_offset;
}
class CFuncVPhysicsClip : public CBaseEntity { DECLARE_DATADESC(); DECLARE_CLASS( CFuncVPhysicsClip, CBaseEntity );
public: void Spawn(); void Activate(); bool CreateVPhysics( void );
bool EntityPassesFilter( CBaseEntity *pOther ); bool ForceVPhysicsCollide( CBaseEntity *pEntity );
void InputEnable( inputdata_t &inputdata ); void InputDisable( inputdata_t &inputdata );
private:
string_t m_iFilterName; CHandle<CBaseFilter> m_hFilter; bool m_bDisabled; };
// Global Savedata for base trigger
BEGIN_DATADESC( CFuncVPhysicsClip )
// Keyfields
DEFINE_KEYFIELD( m_iFilterName, FIELD_STRING, "filtername" ), DEFINE_FIELD( m_hFilter, FIELD_EHANDLE ), DEFINE_FIELD( m_bDisabled, FIELD_BOOLEAN ),
DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ), DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ),
END_DATADESC()
LINK_ENTITY_TO_CLASS( func_clip_vphysics, CFuncVPhysicsClip );
void CFuncVPhysicsClip::Spawn( void ) { SetMoveType( MOVETYPE_PUSH ); // so it doesn't get pushed by anything
SetSolid( SOLID_VPHYSICS ); AddSolidFlags( FSOLID_NOT_SOLID ); SetModel( STRING( GetModelName() ) ); AddEffects( EF_NODRAW ); CreateVPhysics(); VPhysicsGetObject()->EnableCollisions( !m_bDisabled ); }
bool CFuncVPhysicsClip::CreateVPhysics( void ) { VPhysicsInitStatic(); return true; }
void CFuncVPhysicsClip::Activate( void ) { // Get a handle to my filter entity if there is one
if (m_iFilterName != NULL_STRING) { m_hFilter = dynamic_cast<CBaseFilter *>(gEntList.FindEntityByName( NULL, m_iFilterName )); } BaseClass::Activate(); }
bool CFuncVPhysicsClip::EntityPassesFilter( CBaseEntity *pOther ) { CBaseFilter* pFilter = (CBaseFilter*)(m_hFilter.Get());
if ( pFilter ) return pFilter->PassesFilter( this, pOther );
if ( !pOther->VPhysicsGetObject() ) return false;
if ( pOther->GetMoveType() == MOVETYPE_VPHYSICS && pOther->VPhysicsGetObject()->IsMoveable() ) return true; return false; }
bool CFuncVPhysicsClip::ForceVPhysicsCollide( CBaseEntity *pEntity ) { return EntityPassesFilter(pEntity); }
void CFuncVPhysicsClip::InputEnable( inputdata_t &inputdata ) { VPhysicsGetObject()->EnableCollisions(true); m_bDisabled = false; }
void CFuncVPhysicsClip::InputDisable( inputdata_t &inputdata ) { VPhysicsGetObject()->EnableCollisions(false); m_bDisabled = true; }
|