|
|
//========= Copyright � 1996-2012, Valve Corporation, All rights reserved. ============//
//
//
//=====================================================================================//
#include <math.h>
#include <float.h> // needed for flt_epsilon
#include "basetypes.h"
#include "tier0/dbg.h"
#include "mathlib/vector4d.h"
#include "mathlib/vector.h"
#include "mathlib/volumeculler.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// Returns true if the AABB is completely within the frustum.
// Basic scalar approach derived from "Real Time Rendering" 2nd edition section 13.13.3.
// TODO: Replace this a function similar to CFrustum::CheckBoxInline().
static inline bool AABBInsideFrustum( const fltx4 *pPlanes, FLTX4 vCenter4, FLTX4 vDiagonal4 ) { fltx4 mp0 = Dot4SIMD( vCenter4, pPlanes[0] ); fltx4 mp1 = Dot4SIMD( vCenter4, pPlanes[1] ); fltx4 mp2 = Dot4SIMD( vCenter4, pPlanes[2] ); fltx4 mp3 = Dot4SIMD( vCenter4, pPlanes[3] ); fltx4 mp4 = Dot4SIMD( vCenter4, pPlanes[4] ); fltx4 mp5 = Dot4SIMD( vCenter4, pPlanes[5] );
fltx4 np0 = Dot3SIMD( vDiagonal4, AbsSIMD( pPlanes[0] ) ); fltx4 np1 = Dot3SIMD( vDiagonal4, AbsSIMD( pPlanes[1] ) ); fltx4 np2 = Dot3SIMD( vDiagonal4, AbsSIMD( pPlanes[2] ) ); fltx4 np3 = Dot3SIMD( vDiagonal4, AbsSIMD( pPlanes[3] ) ); fltx4 np4 = Dot3SIMD( vDiagonal4, AbsSIMD( pPlanes[4] ) ); fltx4 np5 = Dot3SIMD( vDiagonal4, AbsSIMD( pPlanes[5] ) );
fltx4 s0 = SubSIMD( mp0, np0 ); fltx4 s1 = SubSIMD( mp1, np1 ); fltx4 s2 = SubSIMD( mp2, np2 ); fltx4 s3 = SubSIMD( mp3, np3 ); fltx4 s4 = SubSIMD( mp4, np4 ); fltx4 s5 = SubSIMD( mp5, np5 );
fltx4 minS = MinSIMD( MinSIMD( MinSIMD( MinSIMD( MinSIMD( s0, s1 ), s2 ), s3 ), s4 ), s5 );
if ( IsAnyNegative( minS ) ) { return false; }
// completely inside
return true; }
// Returns true if the AABB either touches or is completely within a convex volume defined by X planes.
// Same basic approach as above.
// TODO: Replace this a function similar to CFrustum::CheckBoxInline().
static inline bool AABBTouchesOrInsideVolume( const fltx4 *pPlanes, uint nNumPlanes, FLTX4 vCenter4, FLTX4 vDiagonal4 ) { fltx4 minA = Four_Ones; for ( uint i = 0; i < nNumPlanes; ++i ) { fltx4 np = Dot3SIMD( vDiagonal4, AbsSIMD( pPlanes[i] ) ); fltx4 mp = Dot4SIMD( vCenter4, pPlanes[i] ); fltx4 a = AddSIMD( np, mp ); minA = MinSIMD( minA, a ); } if ( IsAnyNegative( minA ) ) { return false; } return true; }
bool AABBTouches( const fourplanes_t *planes, const fltx4 &fl4Center, const fltx4 &fl4Extents ) { fltx4 centerx = SplatXSIMD(fl4Center); fltx4 centery = SplatYSIMD(fl4Center); fltx4 centerz = SplatZSIMD(fl4Center); fltx4 extx = SplatXSIMD(fl4Extents); fltx4 exty = SplatYSIMD(fl4Extents); fltx4 extz = SplatZSIMD(fl4Extents);
// compute the dot product of the normal and the farthest corner
for ( int i = 0; i < 2; i++ ) { fltx4 xTotalBack = AddSIMD( MulSIMD( planes[i].nX, centerx ), MulSIMD(planes[i].nXAbs, extx ) ); fltx4 yTotalBack = AddSIMD( MulSIMD( planes[i].nY, centery ), MulSIMD(planes[i].nYAbs, exty ) ); fltx4 zTotalBack = AddSIMD( MulSIMD( planes[i].nZ, centerz ), MulSIMD(planes[i].nZAbs, extz ) ); fltx4 dotBack = AddSIMD( xTotalBack, AddSIMD(yTotalBack, zTotalBack) ); // if plane of the farthest corner is behind the plane, then the box is completely outside this plane
if ( IsVector4LessThan( dotBack, planes[i].dist ) ) return false; } return true; }
bool CVolumeCuller::CheckBox( const VectorAligned &mins, const VectorAligned &maxs ) const { m_Stats.m_nTotalAABB++; if ( m_bCullSmallObjects ) { VectorAligned diag( maxs - mins ); // Not really box volume - hacked so one function is useful on zero thickness boxes too.
float flVol = ( diag.x * diag.x ) + ( diag.y * diag.y ) + ( diag.z * diag.z ); if ( flVol < m_flSmallObjectCullVolumeThreshold ) return false; }
fltx4 vMins4 = LoadAlignedSIMD( &mins.x ); fltx4 vMaxs4 = LoadAlignedSIMD( &maxs.x );
// Converts from 3D interval to center/diagonal form.
fltx4 vCenter4 = MulSIMD( AddSIMD( vMaxs4, vMins4 ), Four_PointFives ); fltx4 vDiagonal4 = SubSIMD( vMaxs4, vCenter4 );
// Ensure vCenter.w is 1.0f.
vCenter4 = SetWSIMD( vCenter4, Four_Ones );
if ( m_bHasBaseFrustum ) { if ( !AABBTouches( m_baseplanes, vCenter4, vDiagonal4 ) ) return false; }
if ( m_bHasExclusionFrustum ) { if ( AABBInsideFrustum( m_ExclusionFrustumPlanes, vCenter4, vDiagonal4 ) ) return false; }
if ( m_nNumInclusionVolumePlanes ) { if ( !AABBTouchesOrInsideVolume( m_InclusionVolumePlanes, m_nNumInclusionVolumePlanes, vCenter4, vDiagonal4 ) ) return false; } m_Stats.m_nTotalAABBPassed++;
return true; }
bool CVolumeCuller::CheckBox( const Vector &mins, const Vector &maxs ) const { m_Stats.m_nTotalAABB++;
if ( m_bCullSmallObjects ) { Vector diag( maxs - mins ); // Not really box volume - hacked so one function is useful on zero thickness boxes too.
float flVol = ( diag.x * diag.x ) + ( diag.y * diag.y ) + ( diag.z * diag.z ); if ( flVol < m_flSmallObjectCullVolumeThreshold ) return false; }
fltx4 vMins4 = LoadUnalignedSIMD( &mins.x ); fltx4 vMaxs4 = LoadUnalignedSIMD( &maxs.x );
// Converts from 3D interval to center/diagonal form.
fltx4 vCenter4 = MulSIMD( AddSIMD( vMaxs4, vMins4 ), Four_PointFives ); fltx4 vDiagonal4 = SubSIMD( vMaxs4, vCenter4 );
// Ensure vCenter.w is 1.0f.
vCenter4 = SetWSIMD( vCenter4, Four_Ones );
if ( m_bHasBaseFrustum ) { if ( !AABBTouches( m_baseplanes, vCenter4, vDiagonal4 ) ) return false; }
if ( m_bHasExclusionFrustum ) { if ( AABBInsideFrustum( m_ExclusionFrustumPlanes, vCenter4, vDiagonal4 ) ) return false; }
if ( m_nNumInclusionVolumePlanes ) { if ( !AABBTouchesOrInsideVolume( m_InclusionVolumePlanes, m_nNumInclusionVolumePlanes, vCenter4, vDiagonal4 ) ) return false; }
m_Stats.m_nTotalAABBPassed++;
return true; }
bool CVolumeCuller::CheckBoxCenterHalfDiagonal( const VectorAligned ¢er, const VectorAligned &halfDiagonal ) const { m_Stats.m_nTotalCenterHalfDiagonal++;
fltx4 vCenter4 = LoadAlignedSIMD( ¢er.x ); fltx4 vDiagonal4 = LoadAlignedSIMD( &halfDiagonal.x ); // Ensure vCenter.w is 1.0f.
vCenter4 = SetWSIMD( vCenter4, Four_Ones );
if ( m_bHasBaseFrustum ) { if ( !AABBTouches( m_baseplanes, vCenter4, vDiagonal4 ) ) return false; }
if ( m_bHasExclusionFrustum ) { if ( AABBInsideFrustum( m_ExclusionFrustumPlanes, vCenter4, vDiagonal4 ) ) return false; }
if ( m_nNumInclusionVolumePlanes ) { if ( !AABBTouchesOrInsideVolume( m_InclusionVolumePlanes, m_nNumInclusionVolumePlanes, vCenter4, vDiagonal4 ) ) return false; }
m_Stats.m_nTotalCenterHalfDiagonalPassed++;
return true; }
void CVolumeCuller::SetExclusionFrustumPlanes( const VPlane *pPlanes ) { COMPILE_TIME_ASSERT( sizeof( VPlane ) == sizeof( fltx4 ) );
if ( !pPlanes ) { m_bHasExclusionFrustum = false; } else { for ( int i = 0; i < cNumExclusionFrustumPlanes; ++i ) { // Convert VPlane to plane equation form.
reinterpret_cast< Vector4D & >( m_ExclusionFrustumPlanes[i] ).Init( pPlanes[i].m_Normal.x, pPlanes[i].m_Normal.y, pPlanes[i].m_Normal.z, -pPlanes[i].m_Dist ); } m_bHasExclusionFrustum = true; } }
void CVolumeCuller::SetBaseFrustumPlanes( const VPlane *pPlanes ) { COMPILE_TIME_ASSERT( sizeof( VPlane ) == sizeof( fltx4 ) );
if ( !pPlanes ) { m_bHasBaseFrustum = false; } else { m_baseplanes[0].Set4Planes( pPlanes ); m_baseplanes[1].Set2Planes( pPlanes + 4 ); m_bHasBaseFrustum = true; } }
void CVolumeCuller::GetBaseFrustumPlanes( VPlane *pBasePlanes ) const { m_baseplanes[0].Get4Planes( pBasePlanes ); m_baseplanes[1].Get2Planes( pBasePlanes + 4 ); }
void CVolumeCuller::SetInclusionVolumePlanes( const VPlane *pPlanes, uint nNumPlanes ) { Assert( nNumPlanes <= cMaxInclusionVolumePlanes ); nNumPlanes = MIN( nNumPlanes, cMaxInclusionVolumePlanes ); m_nNumInclusionVolumePlanes = nNumPlanes;
for ( uint i = 0; i < nNumPlanes; ++i ) { // Convert VPlane to plane equation form.
reinterpret_cast< Vector4D & >( m_InclusionVolumePlanes[i] ).Init( pPlanes[i].m_Normal.x, pPlanes[i].m_Normal.y, pPlanes[i].m_Normal.z, -pPlanes[i].m_Dist ); } }
|