|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Common collision utility methods
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
#if !defined(_STATIC_LINKED) || defined(_SHARED_LIB)
#include "collisionutils.h"
#include "cmodel.h"
#include "mathlib/mathlib.h"
#include "mathlib/vector.h"
#include "tier0/dbg.h"
#include <float.h>
#include "mathlib/vector4d.h"
#include "trace.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define UNINIT -99999.0
//-----------------------------------------------------------------------------
// Clears the trace
//-----------------------------------------------------------------------------
static void Collision_ClearTrace( const Vector &vecRayStart, const Vector &vecRayDelta, CBaseTrace *pTrace ) { pTrace->startpos = vecRayStart; pTrace->endpos = vecRayStart; pTrace->endpos += vecRayDelta; pTrace->startsolid = false; pTrace->allsolid = false; pTrace->fraction = 1.0f; pTrace->contents = 0; }
//-----------------------------------------------------------------------------
// Compute the offset in t along the ray that we'll use for the collision
//-----------------------------------------------------------------------------
static float ComputeBoxOffset( const Ray_t& ray ) { if (ray.m_IsRay) return 1e-3f;
// Find the projection of the box diagonal along the ray...
float offset = FloatMakePositive(ray.m_Extents[0] * ray.m_Delta[0]) + FloatMakePositive(ray.m_Extents[1] * ray.m_Delta[1]) + FloatMakePositive(ray.m_Extents[2] * ray.m_Delta[2]);
// We need to divide twice: Once to normalize the computation above
// so we get something in units of extents, and the second to normalize
// that with respect to the entire raycast.
offset *= InvRSquared( ray.m_Delta );
// 1e-3 is an epsilon
return offset + 1e-3; }
//-----------------------------------------------------------------------------
// Intersects a swept box against a triangle
//-----------------------------------------------------------------------------
float IntersectRayWithTriangle( const Ray_t& ray, const Vector& v1, const Vector& v2, const Vector& v3, bool oneSided ) { // This is cute: Use barycentric coordinates to represent the triangle
// Vo(1-u-v) + V1u + V2v and intersect that with a line Po + Dt
// This gives us 3 equations + 3 unknowns, which we can solve with
// Cramer's rule...
// E1x u + E2x v - Dx t = Pox - Vox
// There's a couple of other optimizations, Cramer's rule involves
// computing the determinant of a matrix which has been constructed
// by three vectors. It turns out that
// det | A B C | = -( A x C ) dot B or -(C x B) dot A
// which we'll use below..
Vector edge1, edge2, org; VectorSubtract( v2, v1, edge1 ); VectorSubtract( v3, v1, edge2 );
// Cull out one-sided stuff
if (oneSided) { Vector normal; CrossProduct( edge1, edge2, normal ); if (DotProduct( normal, ray.m_Delta ) >= 0.0f) return -1.0f; }
// FIXME: This is inaccurate, but fast for boxes
// We want to do a fast separating axis implementation here
// with a swept triangle along the reverse direction of the ray.
// Compute some intermediary terms
Vector dirCrossEdge2, orgCrossEdge1; CrossProduct( ray.m_Delta, edge2, dirCrossEdge2 );
// Compute the denominator of Cramer's rule:
// | -Dx E1x E2x |
// det | -Dy E1y E2y | = (D x E2) dot E1
// | -Dz E1z E2z |
float denom = DotProduct( dirCrossEdge2, edge1 ); if( FloatMakePositive( denom ) < 1e-6 ) return -1.0f; denom = 1.0f / denom;
// Compute u. It's gotta lie in the range of 0 to 1.
// | -Dx orgx E2x |
// u = denom * det | -Dy orgy E2y | = (D x E2) dot org
// | -Dz orgz E2z |
VectorSubtract( ray.m_Start, v1, org ); float u = DotProduct( dirCrossEdge2, org ) * denom; if ((u < 0.0f) || (u > 1.0f)) return -1.0f;
// Compute t and v the same way...
// In barycentric coords, u + v < 1
CrossProduct( org, edge1, orgCrossEdge1 ); float v = DotProduct( orgCrossEdge1, ray.m_Delta ) * denom; if ((v < 0.0f) || (v + u > 1.0f)) return -1.0f;
// Compute the distance along the ray direction that we need to fudge
// when using swept boxes
float boxt = ComputeBoxOffset( ray ); float t = DotProduct( orgCrossEdge1, edge2 ) * denom; if ((t < -boxt) || (t > 1.0f + boxt)) return -1.0f;
return clamp( t, 0, 1 ); }
//-----------------------------------------------------------------------------
// computes the barycentric coordinates of an intersection
//-----------------------------------------------------------------------------
bool ComputeIntersectionBarycentricCoordinates( const Ray_t& ray, const Vector& v1, const Vector& v2, const Vector& v3, float& u, float& v, float *t ) { Vector edge1, edge2, org; VectorSubtract( v2, v1, edge1 ); VectorSubtract( v3, v1, edge2 );
// Compute some intermediary terms
Vector dirCrossEdge2, orgCrossEdge1; CrossProduct( ray.m_Delta, edge2, dirCrossEdge2 );
// Compute the denominator of Cramer's rule:
// | -Dx E1x E2x |
// det | -Dy E1y E2y | = (D x E2) dot E1
// | -Dz E1z E2z |
float denom = DotProduct( dirCrossEdge2, edge1 ); if( FloatMakePositive( denom ) < 1e-6 ) return false; denom = 1.0f / denom;
// Compute u. It's gotta lie in the range of 0 to 1.
// | -Dx orgx E2x |
// u = denom * det | -Dy orgy E2y | = (D x E2) dot org
// | -Dz orgz E2z |
VectorSubtract( ray.m_Start, v1, org ); u = DotProduct( dirCrossEdge2, org ) * denom;
// Compute t and v the same way...
// In barycentric coords, u + v < 1
CrossProduct( org, edge1, orgCrossEdge1 ); v = DotProduct( orgCrossEdge1, ray.m_Delta ) * denom;
// Compute the distance along the ray direction that we need to fudge
// when using swept boxes
if( t ) { float boxt = ComputeBoxOffset( ray ); *t = DotProduct( orgCrossEdge1, edge2 ) * denom; if( ( *t < -boxt ) || ( *t > 1.0f + boxt ) ) return false; }
return true; }
//-----------------------------------------------------------------------------
// Intersects a plane with a triangle (requires barycentric definition)
//-----------------------------------------------------------------------------
int IntersectTriangleWithPlaneBarycentric( const Vector& org, const Vector& edgeU, const Vector& edgeV, const Vector4D& plane, Vector2D* pIntersection ) { // This uses a barycentric method, since we need that to determine
// interpolated points, alphas, and normals
// Given the plane equation P dot N + d = 0
// and the barycentric coodinate equation P = Org + EdgeU * u + EdgeV * v
// Plug em in. Intersection occurs at u = 0 or v = 0 or u + v = 1
float orgDotNormal = DotProduct( org, plane.AsVector3D() ); float edgeUDotNormal = DotProduct( edgeU, plane.AsVector3D() ); float edgeVDotNormal = DotProduct( edgeV, plane.AsVector3D() );
int ptIdx = 0;
// u = 0
if ( edgeVDotNormal != 0.0f ) { pIntersection[ptIdx].x = 0.0f; pIntersection[ptIdx].y = - ( orgDotNormal - plane.w ) / edgeVDotNormal; if ((pIntersection[ptIdx].y >= 0.0f) && (pIntersection[ptIdx].y <= 1.0f)) ++ptIdx; }
// v = 0
if ( edgeUDotNormal != 0.0f ) { pIntersection[ptIdx].x = - ( orgDotNormal - plane.w ) / edgeUDotNormal; pIntersection[ptIdx].y = 0.0f; if ((pIntersection[ptIdx].x >= 0.0f) && (pIntersection[ptIdx].x <= 1.0f)) ++ptIdx; }
// u + v = 1
if (ptIdx == 2) return ptIdx;
if ( edgeVDotNormal != edgeUDotNormal ) { pIntersection[ptIdx].x = - ( orgDotNormal - plane.w + edgeVDotNormal) / ( edgeUDotNormal - edgeVDotNormal); pIntersection[ptIdx].y = 1.0f - pIntersection[ptIdx].x;; if ((pIntersection[ptIdx].x >= 0.0f) && (pIntersection[ptIdx].x <= 1.0f) && (pIntersection[ptIdx].y >= 0.0f) && (pIntersection[ptIdx].y <= 1.0f)) ++ptIdx; }
Assert( ptIdx < 3 ); return ptIdx; }
//-----------------------------------------------------------------------------
// Returns true if a box intersects with a sphere
//-----------------------------------------------------------------------------
bool IsSphereIntersectingSphere( const Vector& center1, float radius1, const Vector& center2, float radius2 ) { Vector delta; VectorSubtract( center2, center1, delta ); float distSq = delta.LengthSqr(); float radiusSum = radius1 + radius2; return (distSq <= (radiusSum * radiusSum)); }
//-----------------------------------------------------------------------------
// Returns true if a box intersects with a sphere
//-----------------------------------------------------------------------------
bool IsBoxIntersectingSphere( const Vector& boxMin, const Vector& boxMax, const Vector& center, float radius ) { // See Graphics Gems, box-sphere intersection
float dmin = 0.0f; float flDelta;
// Unrolled the loop.. this is a big cycle stealer...
if (center[0] < boxMin[0]) { flDelta = center[0] - boxMin[0]; dmin += flDelta * flDelta; } else if (center[0] > boxMax[0]) { flDelta = boxMax[0] - center[0]; dmin += flDelta * flDelta; }
if (center[1] < boxMin[1]) { flDelta = center[1] - boxMin[1]; dmin += flDelta * flDelta; } else if (center[1] > boxMax[1]) { flDelta = boxMax[1] - center[1]; dmin += flDelta * flDelta; }
if (center[2] < boxMin[2]) { flDelta = center[2] - boxMin[2]; dmin += flDelta * flDelta; } else if (center[2] > boxMax[2]) { flDelta = boxMax[2] - center[2]; dmin += flDelta * flDelta; }
return dmin < radius * radius; }
bool IsBoxIntersectingSphereExtents( const Vector& boxCenter, const Vector& boxHalfDiag, const Vector& center, float radius ) { // See Graphics Gems, box-sphere intersection
float dmin = 0.0f; float flDelta, flDiff;
// Unrolled the loop.. this is a big cycle stealer...
flDiff = FloatMakePositive( center.x - boxCenter.x ); if (flDiff > boxHalfDiag.x) { flDelta = flDiff - boxHalfDiag.x; dmin += flDelta * flDelta; }
flDiff = FloatMakePositive( center.y - boxCenter.y ); if (flDiff > boxHalfDiag.y) { flDelta = flDiff - boxHalfDiag.y; dmin += flDelta * flDelta; }
flDiff = FloatMakePositive( center.z - boxCenter.z ); if (flDiff > boxHalfDiag.z) { flDelta = flDiff - boxHalfDiag.z; dmin += flDelta * flDelta; }
return dmin < radius * radius; }
//-----------------------------------------------------------------------------
// Returns true if a rectangle intersects with a circle
//-----------------------------------------------------------------------------
bool IsCircleIntersectingRectangle( const Vector2D& boxMin, const Vector2D& boxMax, const Vector2D& center, float radius ) { // See Graphics Gems, box-sphere intersection
float dmin = 0.0f; float flDelta;
if (center[0] < boxMin[0]) { flDelta = center[0] - boxMin[0]; dmin += flDelta * flDelta; } else if (center[0] > boxMax[0]) { flDelta = boxMax[0] - center[0]; dmin += flDelta * flDelta; }
if (center[1] < boxMin[1]) { flDelta = center[1] - boxMin[1]; dmin += flDelta * flDelta; } else if (center[1] > boxMax[1]) { flDelta = boxMax[1] - center[1]; dmin += flDelta * flDelta; }
return dmin < radius * radius; }
//-----------------------------------------------------------------------------
// returns true if there's an intersection between ray and sphere
//-----------------------------------------------------------------------------
bool IsRayIntersectingSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector& vecCenter, float flRadius, float flTolerance ) { // For this algorithm, find a point on the ray which is closest to the sphere origin
// Do this by making a plane passing through the sphere origin
// whose normal is parallel to the ray. Intersect that plane with the ray.
// Plane: N dot P = I, N = D (ray direction), I = C dot N = C dot D
// Ray: P = O + D * t
// D dot ( O + D * t ) = C dot D
// D dot O + D dot D * t = C dot D
// t = (C - O) dot D / D dot D
// Clamp t to (0,1)
// Find distance of the point on the ray to the sphere center.
Assert( flTolerance >= 0.0f ); flRadius += flTolerance;
Vector vecRayToSphere; VectorSubtract( vecCenter, vecRayOrigin, vecRayToSphere ); float flNumerator = DotProduct( vecRayToSphere, vecRayDelta ); float t; if (flNumerator <= 0.0f) { t = 0.0f; } else { float flDenominator = DotProduct( vecRayDelta, vecRayDelta ); if ( flNumerator > flDenominator ) t = 1.0f; else t = flNumerator / flDenominator; } Vector vecClosestPoint; VectorMA( vecRayOrigin, t, vecRayDelta, vecClosestPoint ); return ( vecClosestPoint.DistToSqr( vecCenter ) <= flRadius * flRadius );
// NOTE: This in an alternate algorithm which I didn't use because I'd have to use a sqrt
// So it's probably faster to do this other algorithm. I'll leave the comments here
// for how to go back if we want to
// Solve using the ray equation + the sphere equation
// P = o + dt
// (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
// (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2
// (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 +
// (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 +
// (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2
// (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t +
// (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0
// or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a
// a = DotProduct( vecRayDelta, vecRayDelta );
// b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta )
// c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius;
// Valid solutions are possible only if b^2 - 4ac >= 0
// Therefore, compute that value + see if we got it
}
//-----------------------------------------------------------------------------
//
// IntersectInfiniteRayWithSphere
//
// Returns whether or not there was an intersection.
// Returns the two intersection points
//
//-----------------------------------------------------------------------------
bool IntersectInfiniteRayWithSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector &vecSphereCenter, float flRadius, float *pT1, float *pT2 ) { // Solve using the ray equation + the sphere equation
// P = o + dt
// (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
// (ox + dx * t - xc)^2 + (oy + dy * t - yc)^2 + (oz + dz * t - zc)^2 = r^2
// (ox - xc)^2 + 2 * (ox-xc) * dx * t + dx^2 * t^2 +
// (oy - yc)^2 + 2 * (oy-yc) * dy * t + dy^2 * t^2 +
// (oz - zc)^2 + 2 * (oz-zc) * dz * t + dz^2 * t^2 = r^2
// (dx^2 + dy^2 + dz^2) * t^2 + 2 * ((ox-xc)dx + (oy-yc)dy + (oz-zc)dz) t +
// (ox-xc)^2 + (oy-yc)^2 + (oz-zc)^2 - r^2 = 0
// or, t = (-b +/- sqrt( b^2 - 4ac)) / 2a
// a = DotProduct( vecRayDelta, vecRayDelta );
// b = 2 * DotProduct( vecRayOrigin - vecCenter, vecRayDelta )
// c = DotProduct(vecRayOrigin - vecCenter, vecRayOrigin - vecCenter) - flRadius * flRadius;
Vector vecSphereToRay; VectorSubtract( vecRayOrigin, vecSphereCenter, vecSphereToRay );
float a = DotProduct( vecRayDelta, vecRayDelta );
// This would occur in the case of a zero-length ray
if ( a == 0.0f ) { *pT1 = *pT2 = 0.0f; return vecSphereToRay.LengthSqr() <= flRadius * flRadius; }
float b = 2 * DotProduct( vecSphereToRay, vecRayDelta ); float c = DotProduct( vecSphereToRay, vecSphereToRay ) - flRadius * flRadius; float flDiscrim = b * b - 4 * a * c; if ( flDiscrim < 0.0f ) return false;
flDiscrim = sqrt( flDiscrim ); float oo2a = 0.5f / a; *pT1 = ( - b - flDiscrim ) * oo2a; *pT2 = ( - b + flDiscrim ) * oo2a; return true; }
//-----------------------------------------------------------------------------
//
// IntersectRayWithSphere
//
// Returns whether or not there was an intersection.
// Returns the two intersection points, clamped to (0,1)
//
//-----------------------------------------------------------------------------
bool IntersectRayWithSphere( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector &vecSphereCenter, float flRadius, float *pT1, float *pT2 ) { if ( !IntersectInfiniteRayWithSphere( vecRayOrigin, vecRayDelta, vecSphereCenter, flRadius, pT1, pT2 ) ) return false;
if (( *pT1 > 1.0f ) || ( *pT2 < 0.0f )) return false;
// Clamp it!
if ( *pT1 < 0.0f ) *pT1 = 0.0f; if ( *pT2 > 1.0f ) *pT2 = 1.0f;
return true; }
// returns true if the sphere and cone intersect
// NOTE: cone sine/cosine are the half angle of the cone
bool IsSphereIntersectingCone( const Vector &sphereCenter, float sphereRadius, const Vector &coneOrigin, const Vector &coneNormal, float coneSine, float coneCosine ) { Vector backCenter = coneOrigin - (sphereRadius / coneSine) * coneNormal; Vector delta = sphereCenter - backCenter; float deltaLen = delta.Length(); if ( DotProduct(coneNormal, delta) >= deltaLen*coneCosine ) { delta = sphereCenter - coneOrigin; deltaLen = delta.Length(); if ( -DotProduct(coneNormal, delta) >= deltaLen * coneSine ) { return ( deltaLen <= sphereRadius ) ? true : false; } return true; } return false; }
//-----------------------------------------------------------------------------
// returns true if the point is in the box
//-----------------------------------------------------------------------------
bool IsPointInBox( const Vector& pt, const Vector& boxMin, const Vector& boxMax ) { Assert( boxMin[0] <= boxMax[0] ); Assert( boxMin[1] <= boxMax[1] ); Assert( boxMin[2] <= boxMax[2] );
// on x360/PS3, force use of SIMD version.
if (IsX360() || IsPS3()) { return IsPointInBox( LoadUnaligned3SIMD(pt.Base()), LoadUnaligned3SIMD(boxMin.Base()), LoadUnaligned3SIMD(boxMax.Base()) ) ; }
if ( (pt[0] > boxMax[0]) || (pt[0] < boxMin[0]) ) return false; if ( (pt[1] > boxMax[1]) || (pt[1] < boxMin[1]) ) return false; if ( (pt[2] > boxMax[2]) || (pt[2] < boxMin[2]) ) return false; return true; }
bool IsPointInCone( const Vector &pt, const Vector &origin, const Vector &axis, float cosAngle, float length ) { Vector delta = pt - origin; float dist = VectorNormalize( delta ); float dot = DotProduct( delta, axis ); if ( dot < cosAngle ) return false; if ( dist * dot > length ) return false;
return true; }
//-----------------------------------------------------------------------------
// returns true if there's an intersection between two boxes
//-----------------------------------------------------------------------------
bool IsBoxIntersectingBox( const Vector& boxMin1, const Vector& boxMax1, const Vector& boxMin2, const Vector& boxMax2 ) { Assert( boxMin1[0] <= boxMax1[0] ); Assert( boxMin1[1] <= boxMax1[1] ); Assert( boxMin1[2] <= boxMax1[2] ); Assert( boxMin2[0] <= boxMax2[0] ); Assert( boxMin2[1] <= boxMax2[1] ); Assert( boxMin2[2] <= boxMax2[2] );
if ( (boxMin1[0] > boxMax2[0]) || (boxMax1[0] < boxMin2[0]) ) return false; if ( (boxMin1[1] > boxMax2[1]) || (boxMax1[1] < boxMin2[1]) ) return false; if ( (boxMin1[2] > boxMax2[2]) || (boxMax1[2] < boxMin2[2]) ) return false; return true; }
bool IsBoxIntersectingBoxExtents( const Vector& boxCenter1, const Vector& boxHalfDiagonal1, const Vector& boxCenter2, const Vector& boxHalfDiagonal2 ) { Vector vecDelta, vecSize; VectorSubtract( boxCenter1, boxCenter2, vecDelta ); VectorAdd( boxHalfDiagonal1, boxHalfDiagonal2, vecSize ); return ( FloatMakePositive( vecDelta.x ) <= vecSize.x ) && ( FloatMakePositive( vecDelta.y ) <= vecSize.y ) && ( FloatMakePositive( vecDelta.z ) <= vecSize.z ); }
//-----------------------------------------------------------------------------
//
// IsOBBIntersectingOBB
//
// returns true if there's an intersection between two OBBs
//
//-----------------------------------------------------------------------------
bool IsOBBIntersectingOBB( const Vector &vecOrigin1, const QAngle &vecAngles1, const Vector& boxMin1, const Vector& boxMax1, const Vector &vecOrigin2, const QAngle &vecAngles2, const Vector& boxMin2, const Vector& boxMax2, float flTolerance ) { // FIXME: Simple case AABB check doesn't work because the min and max extents are not oriented based on the angle
// this fast check would only be good for cubes.
/*if ( vecAngles1 == vecAngles2 )
{ const Vector &vecDelta = vecOrigin2 - vecOrigin1; Vector vecOtherMins, vecOtherMaxs; VectorAdd( boxMin2, vecDelta, vecOtherMins ); VectorAdd( boxMax2, vecDelta, vecOtherMaxs ); return IsBoxIntersectingBox( boxMin1, boxMax1, vecOtherMins, vecOtherMaxs ); }*/
// OBB test...
cplane_t plane; bool bFoundPlane = ComputeSeparatingPlane( vecOrigin1, vecAngles1, boxMin1, boxMax1, vecOrigin2, vecAngles2, boxMin2, boxMax2, flTolerance, &plane ); return (bFoundPlane == false); }
// NOTE: This is only very slightly faster on high end PCs and x360
#define USE_SIMD_RAY_CHECKS 1
//-----------------------------------------------------------------------------
// returns true if there's an intersection between box and ray
//-----------------------------------------------------------------------------
bool FASTCALL IsBoxIntersectingRay( const Vector& boxMin, const Vector& boxMax, const Vector& origin, const Vector& vecDelta, float flTolerance ) { #if USE_SIMD_RAY_CHECKS
// Load the unaligned ray/box parameters into SIMD registers
fltx4 start = LoadUnaligned3SIMD(origin.Base()); fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base()); fltx4 boxMins = LoadUnaligned3SIMD( boxMin.Base() ); fltx4 boxMaxs = LoadUnaligned3SIMD( boxMax.Base() ); fltx4 epsilon = ReplicateX4(flTolerance); // compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
fltx4 offsetMins = SubSIMD(boxMins, start); fltx4 offsetMaxs = SubSIMD(boxMaxs, start); fltx4 offsetMinsExpanded = SubSIMD(offsetMins, epsilon); fltx4 offsetMaxsExpanded = AddSIMD(offsetMaxs, epsilon);
// Check to see if both the origin (start point) and the end point (delta) are on the front side
// of any of the box sides - if so there can be no intersection
bi32x4 startOutMins = CmpLtSIMD(Four_Zeros, offsetMinsExpanded); bi32x4 endOutMins = CmpLtSIMD(delta,offsetMinsExpanded); bi32x4 minsMask = AndSIMD( startOutMins, endOutMins ); bi32x4 startOutMaxs = CmpGtSIMD(Four_Zeros, offsetMaxsExpanded); bi32x4 endOutMaxs = CmpGtSIMD(delta,offsetMaxsExpanded); bi32x4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs ); if ( IsAnyTrue(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask)))) return false;
// now build the per-axis interval of t for intersections
fltx4 invDelta = ReciprocalSaturateSIMD(delta); fltx4 tmins = MulSIMD( offsetMinsExpanded, invDelta ); fltx4 tmaxs = MulSIMD( offsetMaxsExpanded, invDelta ); bi32x4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs));
// only consider axes where we crossed a plane
tmins = MaskedAssign( crossPlane, tmins, Four_Negative_FLT_MAX ); tmaxs = MaskedAssign( crossPlane, tmaxs, Four_FLT_MAX );
// now sort the interval per axis
fltx4 mint = MinSIMD( tmins, tmaxs ); fltx4 maxt = MaxSIMD( tmins, tmaxs );
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3(maxt); fltx4 lastIn = FindHighestSIMD3(mint); // NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD(firstOut, Four_Ones); lastIn = MaxSIMD(lastIn, Four_Zeros);
// If the final interval is valid lastIn<firstOut, check for separation
bi32x4 separation = CmpGtSIMD(lastIn, firstOut);
return IsAllZeros(separation); #else
// On the x360/ps3, we force use of the SIMD functions.
#if defined( _X360 ) || defined( _PS3 )
if ( IsX360() || IsPS3() ) { fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base()); return IsBoxIntersectingRay( LoadUnaligned3SIMD(boxMin.Base()), LoadUnaligned3SIMD(boxMax.Base()), LoadUnaligned3SIMD(origin.Base()), delta, ReciprocalSIMD(delta), // ray parameters
ReplicateX4(flTolerance) ///< eg from ReplicateX4(flTolerance)
); } #endif
Assert( boxMin[0] <= boxMax[0] ); Assert( boxMin[1] <= boxMax[1] ); Assert( boxMin[2] <= boxMax[2] );
// FIXME: Surely there's a faster way
float tmin = -FLT_MAX; float tmax = FLT_MAX;
for (int i = 0; i < 3; ++i) { // Parallel case...
if (FloatMakePositive(vecDelta[i]) < 1e-8) { // Check that origin is in the box
// if not, then it doesn't intersect..
if ( (origin[i] < boxMin[i] - flTolerance) || (origin[i] > boxMax[i] + flTolerance) ) return false;
continue; }
// non-parallel case
// Find the t's corresponding to the entry and exit of
// the ray along x, y, and z. The find the furthest entry
// point, and the closest exit point. Once that is done,
// we know we don't collide if the closest exit point
// is behind the starting location. We also don't collide if
// the closest exit point is in front of the furthest entry point
float invDelta = 1.0f / vecDelta[i]; float t1 = (boxMin[i] - flTolerance - origin[i]) * invDelta; float t2 = (boxMax[i] + flTolerance - origin[i]) * invDelta; if (t1 > t2) { float temp = t1; t1 = t2; t2 = temp; } if (t1 > tmin) tmin = t1; if (t2 < tmax) tmax = t2; if (tmin > tmax) return false; if (tmax < 0) return false; if (tmin > 1) return false; }
return true; #endif
}
//-----------------------------------------------------------------------------
// returns true if there's an intersection between box and ray
//-----------------------------------------------------------------------------
bool FASTCALL IsBoxIntersectingRay( const Vector& boxMin, const Vector& boxMax, const Vector& origin, const Vector& vecDelta, const Vector& vecInvDelta, float flTolerance ) { #if USE_SIMD_RAY_CHECKS
// Load the unaligned ray/box parameters into SIMD registers
fltx4 start = LoadUnaligned3SIMD(origin.Base()); fltx4 delta = LoadUnaligned3SIMD(vecDelta.Base()); fltx4 boxMins = LoadUnaligned3SIMD( boxMin.Base() ); fltx4 boxMaxs = LoadUnaligned3SIMD( boxMax.Base() ); // compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
boxMins = SubSIMD(boxMins, start); boxMaxs = SubSIMD(boxMaxs, start);
// Check to see if both the origin (start point) and the end point (delta) are on the front side
// of any of the box sides - if so there can be no intersection
bi32x4 startOutMins = CmpLtSIMD(Four_Zeros, boxMins); bi32x4 endOutMins = CmpLtSIMD(delta,boxMins); bi32x4 minsMask = AndSIMD( startOutMins, endOutMins ); bi32x4 startOutMaxs = CmpGtSIMD(Four_Zeros, boxMaxs); bi32x4 endOutMaxs = CmpGtSIMD(delta,boxMaxs); bi32x4 maxsMask = AndSIMD( startOutMaxs, endOutMaxs ); if ( IsAnyTrue(SetWToZeroSIMD(OrSIMD(minsMask,maxsMask)))) return false;
// now build the per-axis interval of t for intersections
fltx4 epsilon = ReplicateX4(flTolerance); fltx4 invDelta = LoadUnaligned3SIMD(vecInvDelta.Base()); boxMins = SubSIMD(boxMins, epsilon); boxMaxs = AddSIMD(boxMaxs, epsilon);
boxMins = MulSIMD( boxMins, invDelta ); boxMaxs = MulSIMD( boxMaxs, invDelta );
bi32x4 crossPlane = OrSIMD(XorSIMD(startOutMins,endOutMins), XorSIMD(startOutMaxs,endOutMaxs)); // only consider axes where we crossed a plane
boxMins = MaskedAssign( crossPlane, boxMins, Four_Negative_FLT_MAX ); boxMaxs = MaskedAssign( crossPlane, boxMaxs, Four_FLT_MAX );
// now sort the interval per axis
fltx4 mint = MinSIMD( boxMins, boxMaxs ); fltx4 maxt = MaxSIMD( boxMins, boxMaxs );
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3(maxt); fltx4 lastIn = FindHighestSIMD3(mint); // NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD(firstOut, Four_Ones); lastIn = MaxSIMD(lastIn, Four_Zeros);
// If the final interval is valid lastIn<firstOut, check for separation
bi32x4 separation = CmpGtSIMD(lastIn, firstOut);
return IsAllZeros(separation); #else
// On the x360/ps3, we force use of the SIMD functions.
#if (defined(_X360) || defined(_PS3)) && !defined(PARANOID_SIMD_ASSERTING)
if (IsX360() || IsPS3()) { return IsBoxIntersectingRay( LoadUnaligned3SIMD(boxMin.Base()), LoadUnaligned3SIMD(boxMax.Base()), LoadUnaligned3SIMD(origin.Base()), LoadUnaligned3SIMD(vecDelta.Base()), LoadUnaligned3SIMD(vecInvDelta.Base()), // ray parameters
ReplicateX4(flTolerance) ///< eg from ReplicateX4(flTolerance)
); } #endif
Assert( boxMin[0] <= boxMax[0] ); Assert( boxMin[1] <= boxMax[1] ); Assert( boxMin[2] <= boxMax[2] );
// FIXME: Surely there's a faster way
float tmin = -FLT_MAX; float tmax = FLT_MAX;
for ( int i = 0; i < 3; ++i ) { // Parallel case...
if ( FloatMakePositive( vecDelta[i] ) < 1e-8 ) { // Check that origin is in the box, if not, then it doesn't intersect..
if ( ( origin[i] < boxMin[i] - flTolerance ) || ( origin[i] > boxMax[i] + flTolerance ) ) return false;
continue; }
// Non-parallel case
// Find the t's corresponding to the entry and exit of
// the ray along x, y, and z. The find the furthest entry
// point, and the closest exit point. Once that is done,
// we know we don't collide if the closest exit point
// is behind the starting location. We also don't collide if
// the closest exit point is in front of the furthest entry point
float t1 = ( boxMin[i] - flTolerance - origin[i] ) * vecInvDelta[i]; float t2 = ( boxMax[i] + flTolerance - origin[i] ) * vecInvDelta[i]; if ( t1 > t2 ) { float temp = t1; t1 = t2; t2 = temp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
if (tmax < 0) return false;
if (tmin > 1) return false; }
return true; #endif
}
//-----------------------------------------------------------------------------
// Intersects a ray with a aabb, return true if they intersect
//-----------------------------------------------------------------------------
bool FASTCALL IsBoxIntersectingRay( const Vector& vecBoxMin, const Vector& vecBoxMax, const Ray_t& ray, float flTolerance ) { // On the x360/PS3, we force use of the SIMD functions.
#if defined( _X360 ) || defined( _PS3 )
if ( IsX360() || IsPS3() ) { return IsBoxIntersectingRay( LoadUnaligned3SIMD(vecBoxMin.Base()), LoadUnaligned3SIMD(vecBoxMax.Base()), ray, ReplicateX4(flTolerance)); } #endif
if ( !ray.m_IsSwept ) { Vector rayMins, rayMaxs; VectorSubtract( ray.m_Start, ray.m_Extents, rayMins ); VectorAdd( ray.m_Start, ray.m_Extents, rayMaxs ); if ( flTolerance != 0.0f ) { rayMins.x -= flTolerance; rayMins.y -= flTolerance; rayMins.z -= flTolerance; rayMaxs.x += flTolerance; rayMaxs.y += flTolerance; rayMaxs.z += flTolerance; } return IsBoxIntersectingBox( vecBoxMin, vecBoxMax, rayMins, rayMaxs ); }
Vector vecExpandedBoxMin, vecExpandedBoxMax; VectorSubtract( vecBoxMin, ray.m_Extents, vecExpandedBoxMin ); VectorAdd( vecBoxMax, ray.m_Extents, vecExpandedBoxMax ); return IsBoxIntersectingRay( vecExpandedBoxMin, vecExpandedBoxMax, ray.m_Start, ray.m_Delta, flTolerance ); }
//-----------------------------------------------------------------------------
// returns true if there's an intersection between box and ray (SIMD version)
//-----------------------------------------------------------------------------
#if defined( _X360 ) || defined( _PS3 )
bool FASTCALL IsBoxIntersectingRay( fltx4 boxMin, fltx4 boxMax, fltx4 origin, fltx4 delta, fltx4 invDelta, // ray parameters
fltx4 vTolerance ///< eg from ReplicateX4(flTolerance)
) #else
bool FASTCALL IsBoxIntersectingRay( const fltx4 &inBoxMin, const fltx4 & inBoxMax, const fltx4 & origin, const fltx4 & delta, const fltx4 & invDelta, // ray parameters
const fltx4 & vTolerance ///< eg from ReplicateX4(flTolerance)
) #endif
{ // Load the unaligned ray/box parameters into SIMD registers
// compute the mins/maxs of the box expanded by the ray extents
// relocate the problem so that the ray start is at the origin.
#if defined( _X360 ) || defined( _PS3 )
boxMin = SubSIMD(boxMin, origin); boxMax = SubSIMD(boxMax, origin); #else
fltx4 boxMin = SubSIMD(inBoxMin, origin); fltx4 boxMax = SubSIMD(inBoxMax, origin); #endif
// Check to see if the origin (start point) and the end point (delta) are on the same side
// of any of the box sides - if so there can be no intersection
bi32x4 startOutMins = AndSIMD( CmpLtSIMD(Four_Zeros, boxMin), CmpLtSIMD(delta,boxMin) ); bi32x4 startOutMaxs = AndSIMD( CmpGtSIMD(Four_Zeros, boxMax), CmpGtSIMD(delta,boxMax) ); if ( IsAnyTrue(SetWToZeroSIMD(OrSIMD(startOutMaxs,startOutMins)))) return false;
// now build the per-axis interval of t for intersections
boxMin = SubSIMD(boxMin, vTolerance); boxMax = AddSIMD(boxMax, vTolerance);
boxMin = MulSIMD( boxMin, invDelta ); boxMax = MulSIMD( boxMax, invDelta );
// now sort the interval per axis
fltx4 mint = MinSIMD( boxMin, boxMax ); fltx4 maxt = MaxSIMD( boxMin, boxMax );
// now find the intersection of the intervals on all axes
fltx4 firstOut = FindLowestSIMD3(maxt); fltx4 lastIn = FindHighestSIMD3(mint); // NOTE: This is really a scalar quantity now [t0,t1] == [lastIn,firstOut]
firstOut = MinSIMD(firstOut, Four_Ones); lastIn = MaxSIMD(lastIn, Four_Zeros);
// If the final interval is valid lastIn<firstOut, check for separation
bi32x4 separation = CmpGtSIMD(lastIn, firstOut);
return IsAllZeros(separation); }
#if defined( _X360 ) || defined( _PS3 )
bool FASTCALL IsBoxIntersectingRay( fltx4 boxMin, fltx4 boxMax, const Ray_t& ray, fltx4 fl4Tolerance ) #else
bool FASTCALL IsBoxIntersectingRay( const fltx4& boxMin, const fltx4& boxMax, const Ray_t& ray, const fltx4 &fl4Tolerance ) #endif
{ fltx4 rayStart = LoadAlignedSIMD(ray.m_Start); fltx4 rayExtents = LoadAlignedSIMD(ray.m_Extents); if ( !ray.m_IsSwept ) {
fltx4 rayMins, rayMaxs; rayMins = SubSIMD(rayStart, rayExtents); rayMaxs = AddSIMD(rayStart, rayExtents); rayMins = AddSIMD(rayMins, fl4Tolerance); rayMaxs = AddSIMD(rayMaxs, fl4Tolerance);
VectorAligned vecBoxMin, vecBoxMax, vecRayMins, vecRayMaxs; StoreAlignedSIMD( vecBoxMin.Base(), boxMin ); StoreAlignedSIMD( vecBoxMax.Base(), boxMax ); StoreAlignedSIMD( vecRayMins.Base(), rayMins ); StoreAlignedSIMD( vecRayMaxs.Base(), rayMaxs );
return IsBoxIntersectingBox( vecBoxMin, vecBoxMax, vecRayMins, vecRayMaxs ); }
fltx4 rayDelta = LoadAlignedSIMD(ray.m_Delta); fltx4 vecExpandedBoxMin, vecExpandedBoxMax; vecExpandedBoxMin = SubSIMD( boxMin, rayExtents ); vecExpandedBoxMax = AddSIMD( boxMax, rayExtents );
return IsBoxIntersectingRay( vecExpandedBoxMin, vecExpandedBoxMax, rayStart, rayDelta, ReciprocalSIMD(rayDelta), fl4Tolerance ); }
//-----------------------------------------------------------------------------
// Intersects a ray with a ray, return true if they intersect
// t, s = parameters of closest approach (if not intersecting!)
//-----------------------------------------------------------------------------
bool IntersectRayWithRay( const Ray_t &ray0, const Ray_t &ray1, float &t, float &s ) { Assert( ray0.m_IsRay && ray1.m_IsRay );
//
// r0 = p0 + v0t
// r1 = p1 + v1s
//
// intersection : r0 = r1 :: p0 + v0t = p1 + v1s
// NOTE: v(0,1) are unit direction vectors
//
// subtract p0 from both sides and cross with v1 (NOTE: v1 x v1 = 0)
// (v0 x v1)t = ((p1 - p0 ) x v1)
//
// dotting with (v0 x v1) and dividing by |v0 x v1|^2
// t = Det | (p1 - p0) , v1 , (v0 x v1) | / |v0 x v1|^2
// s = Det | (p1 - p0) , v0 , (v0 x v1) | / |v0 x v1|^2
//
// Det | A B C | = -( A x C ) dot B or -( C x B ) dot A
//
// NOTE: if |v0 x v1|^2 = 0, then the lines are parallel
//
Vector v0( ray0.m_Delta ); Vector v1( ray1.m_Delta ); VectorNormalize( v0 ); VectorNormalize( v1 );
Vector v0xv1 = v0.Cross( v1 ); float lengthSq = v0xv1.LengthSqr(); if( lengthSq == 0.0f ) { t = 0; s = 0; return false; // parallel
}
Vector p1p0 = ray1.m_Start - ray0.m_Start;
Vector AxC = p1p0.Cross( v0xv1 ); AxC.Negate(); float detT = AxC.Dot( v1 ); AxC = p1p0.Cross( v0xv1 ); AxC.Negate(); float detS = AxC.Dot( v0 );
t = detT / lengthSq; s = detS / lengthSq;
// intersection????
Vector i0, i1; i0 = v0 * t; i1 = v1 * s; i0 += ray0.m_Start; i1 += ray1.m_Start; if( i0.x == i1.x && i0.y == i1.y && i0.z == i1.z ) return true;
return false; }
//-----------------------------------------------------------------------------
// Intersects a ray with a plane, returns distance t along ray.
//-----------------------------------------------------------------------------
float IntersectRayWithPlane( const Ray_t& ray, const cplane_t& plane ) { float denom = DotProduct( ray.m_Delta, plane.normal ); if (denom == 0.0f) return 0.0f;
denom = 1.0f / denom; return (plane.dist - DotProduct( ray.m_Start, plane.normal )) * denom; }
float IntersectRayWithPlane( const Vector& org, const Vector& dir, const cplane_t& plane ) { float denom = DotProduct( dir, plane.normal ); if (denom == 0.0f) return 0.0f;
denom = 1.0f / denom; return (plane.dist - DotProduct( org, plane.normal )) * denom; }
float IntersectRayWithPlane( const Vector& org, const Vector& dir, const Vector& normal, float dist ) { float denom = DotProduct( dir, normal ); if (denom == 0.0f) return 0.0f;
denom = 1.0f / denom; return (dist - DotProduct( org, normal )) * denom; }
float IntersectRayWithAAPlane( const Vector& vecStart, const Vector& vecEnd, int nAxis, float flSign, float flDist ) { float denom = flSign * (vecEnd[nAxis] - vecStart[nAxis]); if (denom == 0.0f) return 0.0f;
denom = 1.0f / denom; return (flDist - flSign * vecStart[nAxis]) * denom; }
//-----------------------------------------------------------------------------
// Intersects a ray against a box
//-----------------------------------------------------------------------------
bool IntersectRayWithBox( const Vector &vecRayStart, const Vector &vecRayDelta, const Vector &boxMins, const Vector &boxMaxs, float flTolerance, BoxTraceInfo_t *pTrace ) { int i; float d1, d2; float f;
pTrace->t1 = -1.0f; pTrace->t2 = 1.0f; pTrace->hitside = -1;
// UNDONE: This makes this code a little messy
pTrace->startsolid = true;
for ( i = 0; i < 6; ++i ) { if ( i >= 3 ) { d1 = vecRayStart[i-3] - boxMaxs[i-3]; d2 = d1 + vecRayDelta[i-3]; } else { d1 = -vecRayStart[i] + boxMins[i]; d2 = d1 - vecRayDelta[i]; }
// if completely in front of face, no intersection
if (d1 > 0 && d2 > 0) { // UNDONE: Have to revert this in case it's still set
// UNDONE: Refactor to have only 2 return points (true/false) from this function
pTrace->startsolid = false; return false; }
// completely inside, check next face
if (d1 <= 0 && d2 <= 0) continue;
if (d1 > 0) { pTrace->startsolid = false; }
// crosses face
if (d1 > d2) { f = d1 - flTolerance; if ( f < 0 ) { f = 0; } f = f / (d1-d2); if (f > pTrace->t1) { pTrace->t1 = f; pTrace->hitside = i; } } else { // leave
f = (d1 + flTolerance) / (d1-d2); if (f < pTrace->t2) { pTrace->t2 = f; } } }
return pTrace->startsolid || (pTrace->t1 < pTrace->t2 && pTrace->t1 >= 0.0f); }
//-----------------------------------------------------------------------------
// Intersects a ray against a box
//-----------------------------------------------------------------------------
bool IntersectRayWithBox( const Vector &vecRayStart, const Vector &vecRayDelta, const Vector &boxMins, const Vector &boxMaxs, float flTolerance, CBaseTrace *pTrace, float *pFractionLeftSolid ) { Collision_ClearTrace( vecRayStart, vecRayDelta, pTrace );
BoxTraceInfo_t trace;
if ( IntersectRayWithBox( vecRayStart, vecRayDelta, boxMins, boxMaxs, flTolerance, &trace ) ) { pTrace->startsolid = trace.startsolid; if (trace.t1 < trace.t2 && trace.t1 >= 0.0f) { pTrace->fraction = trace.t1; VectorMA( pTrace->startpos, trace.t1, vecRayDelta, pTrace->endpos ); pTrace->contents = CONTENTS_SOLID; pTrace->plane.normal = vec3_origin; if ( trace.hitside >= 3 ) { trace.hitside -= 3; pTrace->plane.dist = boxMaxs[trace.hitside]; pTrace->plane.normal[trace.hitside] = 1.0f; pTrace->plane.type = trace.hitside; } else { pTrace->plane.dist = -boxMins[trace.hitside]; pTrace->plane.normal[trace.hitside] = -1.0f; pTrace->plane.type = trace.hitside; } return true; }
if ( pTrace->startsolid ) { pTrace->allsolid = (trace.t2 <= 0.0f) || (trace.t2 >= 1.0f); pTrace->fraction = 0; if ( pFractionLeftSolid ) { *pFractionLeftSolid = trace.t2; } pTrace->endpos = pTrace->startpos; pTrace->contents = CONTENTS_SOLID; pTrace->plane.dist = pTrace->startpos[0]; pTrace->plane.normal.Init( 1.0f, 0.0f, 0.0f ); pTrace->plane.type = 0; pTrace->startpos = vecRayStart + (trace.t2 * vecRayDelta); return true; } }
return false; }
//-----------------------------------------------------------------------------
// Intersects a ray against a box
//-----------------------------------------------------------------------------
bool IntersectRayWithBox( const Ray_t &ray, const Vector &boxMins, const Vector &boxMaxs, float flTolerance, CBaseTrace *pTrace, float *pFractionLeftSolid ) { if ( !ray.m_IsRay ) { Vector vecExpandedMins = boxMins - ray.m_Extents; Vector vecExpandedMaxs = boxMaxs + ray.m_Extents; bool bIntersects = IntersectRayWithBox( ray.m_Start, ray.m_Delta, vecExpandedMins, vecExpandedMaxs, flTolerance, pTrace, pFractionLeftSolid ); pTrace->startpos += ray.m_StartOffset; pTrace->endpos += ray.m_StartOffset; return bIntersects; } return IntersectRayWithBox( ray.m_Start, ray.m_Delta, boxMins, boxMaxs, flTolerance, pTrace, pFractionLeftSolid ); }
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB, returns t1 and t2
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB( const Vector &vecRayStart, const Vector &vecRayDelta, const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, BoxTraceInfo_t *pTrace ) { // FIXME: Two transforms is pretty expensive. Should we optimize this?
Vector start, delta; VectorITransform( vecRayStart, matOBBToWorld, start ); VectorIRotate( vecRayDelta, matOBBToWorld, delta );
return IntersectRayWithBox( start, delta, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); }
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB( const Vector &vecRayStart, const Vector &vecRayDelta, const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { Collision_ClearTrace( vecRayStart, vecRayDelta, pTrace );
// FIXME: Make it work with tolerance
Assert( flTolerance == 0.0f );
// OPTIMIZE: Store this in the box instead of computing it here
// compute center in local space
Vector vecBoxExtents = (vecOBBMins + vecOBBMaxs) * 0.5; Vector vecBoxCenter;
// transform to world space
VectorTransform( vecBoxExtents, matOBBToWorld, vecBoxCenter );
// calc extents from local center
vecBoxExtents = vecOBBMaxs - vecBoxExtents;
// OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more
// sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS.
// save the extents of the ray along
Vector extent, uextent; Vector segmentCenter = vecRayStart + vecRayDelta - vecBoxCenter;
extent.Init();
// check box axes for separation
for ( int j = 0; j < 3; j++ ) { extent[j] = vecRayDelta.x * matOBBToWorld[0][j] + vecRayDelta.y * matOBBToWorld[1][j] + vecRayDelta.z * matOBBToWorld[2][j]; uextent[j] = fabsf(extent[j]); float coord = segmentCenter.x * matOBBToWorld[0][j] + segmentCenter.y * matOBBToWorld[1][j] + segmentCenter.z * matOBBToWorld[2][j]; coord = fabsf(coord);
if ( coord > (vecBoxExtents[j] + uextent[j]) ) return false; }
// now check cross axes for separation
float tmp, cextent; Vector cross = vecRayDelta.Cross( segmentCenter ); cextent = cross.x * matOBBToWorld[0][0] + cross.y * matOBBToWorld[1][0] + cross.z * matOBBToWorld[2][0]; cextent = fabsf(cextent); tmp = vecBoxExtents[1]*uextent[2] + vecBoxExtents[2]*uextent[1]; if ( cextent > tmp ) return false;
cextent = cross.x * matOBBToWorld[0][1] + cross.y * matOBBToWorld[1][1] + cross.z * matOBBToWorld[2][1]; cextent = fabsf(cextent); tmp = vecBoxExtents[0]*uextent[2] + vecBoxExtents[2]*uextent[0]; if ( cextent > tmp ) return false;
cextent = cross.x * matOBBToWorld[0][2] + cross.y * matOBBToWorld[1][2] + cross.z * matOBBToWorld[2][2]; cextent = fabsf(cextent); tmp = vecBoxExtents[0]*uextent[1] + vecBoxExtents[1]*uextent[0]; if ( cextent > tmp ) return false;
// !!! We hit this box !!! compute intersection point and return
// Compute ray start in bone space
Vector start; VectorITransform( vecRayStart, matOBBToWorld, start );
// extent is ray.m_Delta in bone space, recompute delta in bone space
extent *= 2.0f;
// delta was prescaled by the current t, so no need to see if this intersection
// is closer
trace_t boxTrace; if ( !IntersectRayWithBox( start, extent, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ) ) return false;
// Fix up the start/end pos and fraction
Vector vecTemp; VectorTransform( pTrace->endpos, matOBBToWorld, vecTemp ); pTrace->endpos = vecTemp;
pTrace->startpos = vecRayStart; pTrace->fraction *= 2.0f;
// Fix up the plane information
float flSign = pTrace->plane.normal[ pTrace->plane.type ]; pTrace->plane.normal[0] = flSign * matOBBToWorld[0][pTrace->plane.type]; pTrace->plane.normal[1] = flSign * matOBBToWorld[1][pTrace->plane.type]; pTrace->plane.normal[2] = flSign * matOBBToWorld[2][pTrace->plane.type]; pTrace->plane.dist = DotProduct( pTrace->endpos, pTrace->plane.normal ); pTrace->plane.type = 3;
return true; }
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB( const Vector &vecRayOrigin, const Vector &vecRayDelta, const Vector &vecBoxOrigin, const QAngle &angBoxRotation, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { if (angBoxRotation == vec3_angle) { Vector vecAbsMins, vecAbsMaxs; VectorAdd( vecBoxOrigin, vecOBBMins, vecAbsMins ); VectorAdd( vecBoxOrigin, vecOBBMaxs, vecAbsMaxs ); return IntersectRayWithBox( vecRayOrigin, vecRayDelta, vecAbsMins, vecAbsMaxs, flTolerance, pTrace ); }
matrix3x4_t obbToWorld; AngleMatrix( angBoxRotation, vecBoxOrigin, obbToWorld ); return IntersectRayWithOBB( vecRayOrigin, vecRayDelta, obbToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); }
//-----------------------------------------------------------------------------
// Box support map
//-----------------------------------------------------------------------------
inline void ComputeSupportMap( const Vector &vecDirection, const Vector &vecBoxMins, const Vector &vecBoxMaxs, float pDist[2] ) { int nIndex = (vecDirection.x > 0.0f); pDist[nIndex] = vecBoxMaxs.x * vecDirection.x; pDist[1 - nIndex] = vecBoxMins.x * vecDirection.x;
nIndex = (vecDirection.y > 0.0f); pDist[nIndex] += vecBoxMaxs.y * vecDirection.y; pDist[1 - nIndex] += vecBoxMins.y * vecDirection.y;
nIndex = (vecDirection.z > 0.0f); pDist[nIndex] += vecBoxMaxs.z * vecDirection.z; pDist[1 - nIndex] += vecBoxMins.z * vecDirection.z; }
inline void ComputeSupportMap( const Vector &vecDirection, int i1, int i2, const Vector &vecBoxMins, const Vector &vecBoxMaxs, float pDist[2] ) { int nIndex = (vecDirection[i1] > 0.0f); pDist[nIndex] = vecBoxMaxs[i1] * vecDirection[i1]; pDist[1 - nIndex] = vecBoxMins[i1] * vecDirection[i1];
nIndex = (vecDirection[i2] > 0.0f); pDist[nIndex] += vecBoxMaxs[i2] * vecDirection[i2]; pDist[1 - nIndex] += vecBoxMins[i2] * vecDirection[i2]; }
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
static int s_ExtIndices[3][2] = { { 2, 1 }, { 0, 2 }, { 0, 1 }, };
static int s_MatIndices[3][2] = { { 1, 2 }, { 2, 0 }, { 1, 0 }, };
bool IntersectRayWithOBB( const Ray_t &ray, const matrix3x4_t &matOBBToWorld, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { if ( ray.m_IsRay ) { return IntersectRayWithOBB( ray.m_Start, ray.m_Delta, matOBBToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); }
Collision_ClearTrace( ray.m_Start + ray.m_StartOffset, ray.m_Delta, pTrace );
// Compute a bounding sphere around the bloated OBB
Vector vecOBBCenter; VectorAdd( vecOBBMins, vecOBBMaxs, vecOBBCenter ); vecOBBCenter *= 0.5f; vecOBBCenter.x += matOBBToWorld[0][3]; vecOBBCenter.y += matOBBToWorld[1][3]; vecOBBCenter.z += matOBBToWorld[2][3];
Vector vecOBBHalfDiagonal; VectorSubtract( vecOBBMaxs, vecOBBMins, vecOBBHalfDiagonal ); vecOBBHalfDiagonal *= 0.5f;
float flRadius = vecOBBHalfDiagonal.Length() + ray.m_Extents.Length(); if ( !IsRayIntersectingSphere( ray.m_Start, ray.m_Delta, vecOBBCenter, flRadius, flTolerance ) ) return false;
// Ok, we passed the trivial reject, so lets do the dirty deed.
// Basically we're going to do the GJK thing explicitly. We'll shrink the ray down
// to a point, and bloat the OBB by the ray's extents. This will generate facet
// planes which are perpendicular to all of the separating axes typically seen in
// a standard seperating axis implementation.
// We're going to create a number of planes through various vertices in the OBB
// which represent all of the separating planes. Then we're going to bloat the planes
// by the ray extents.
// We're going to do all work in OBB-space because it's easier to do the
// support-map in this case
// First, transform the ray into the space of the OBB
Vector vecLocalRayOrigin, vecLocalRayDirection; VectorITransform( ray.m_Start, matOBBToWorld, vecLocalRayOrigin ); VectorIRotate( ray.m_Delta, matOBBToWorld, vecLocalRayDirection );
// Next compute all separating planes
Vector pPlaneNormal[15]; float ppPlaneDist[15][2];
int i; for ( i = 0; i < 3; ++i ) { // Each plane needs to be bloated an amount = to the abs dot product of
// the ray extents with the plane normal
// For the OBB planes, do it in world space;
// and use the direction of the OBB (the ith column of matOBBToWorld) in world space vs extents
pPlaneNormal[i].Init( ); pPlaneNormal[i][i] = 1.0f;
float flExtentDotNormal = FloatMakePositive( matOBBToWorld[0][i] * ray.m_Extents.x ) + FloatMakePositive( matOBBToWorld[1][i] * ray.m_Extents.y ) + FloatMakePositive( matOBBToWorld[2][i] * ray.m_Extents.z );
ppPlaneDist[i][0] = vecOBBMins[i] - flExtentDotNormal; ppPlaneDist[i][1] = vecOBBMaxs[i] + flExtentDotNormal;
// For the ray-extents planes, they are bloated by the extents
// Use the support map to determine which
VectorCopy( matOBBToWorld[i], pPlaneNormal[i+3].Base() ); ComputeSupportMap( pPlaneNormal[i+3], vecOBBMins, vecOBBMaxs, ppPlaneDist[i+3] ); ppPlaneDist[i+3][0] -= ray.m_Extents[i]; ppPlaneDist[i+3][1] += ray.m_Extents[i];
// Now the edge cases... (take the cross product of x,y,z axis w/ ray extent axes
// given by the rows of the obb to world matrix.
// Compute the ray extent bloat in world space because it's easier...
// These are necessary to compute the world-space versions of
// the edges so we can compute the extent dot products
float flRayExtent0 = ray.m_Extents[s_ExtIndices[i][0]]; float flRayExtent1 = ray.m_Extents[s_ExtIndices[i][1]]; const float *pMatRow0 = matOBBToWorld[s_MatIndices[i][0]]; const float *pMatRow1 = matOBBToWorld[s_MatIndices[i][1]];
// x axis of the OBB + world ith axis
pPlaneNormal[i+6].Init( 0.0f, -matOBBToWorld[i][2], matOBBToWorld[i][1] ); ComputeSupportMap( pPlaneNormal[i+6], 1, 2, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+6] ); flExtentDotNormal = FloatMakePositive( pMatRow0[0] ) * flRayExtent0 + FloatMakePositive( pMatRow1[0] ) * flRayExtent1; ppPlaneDist[i+6][0] -= flExtentDotNormal; ppPlaneDist[i+6][1] += flExtentDotNormal; // y axis of the OBB + world ith axis
pPlaneNormal[i+9].Init( matOBBToWorld[i][2], 0.0f, -matOBBToWorld[i][0] ); ComputeSupportMap( pPlaneNormal[i+9], 0, 2, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+9] ); flExtentDotNormal = FloatMakePositive( pMatRow0[1] ) * flRayExtent0 + FloatMakePositive( pMatRow1[1] ) * flRayExtent1; ppPlaneDist[i+9][0] -= flExtentDotNormal; ppPlaneDist[i+9][1] += flExtentDotNormal;
// z axis of the OBB + world ith axis
pPlaneNormal[i+12].Init( -matOBBToWorld[i][1], matOBBToWorld[i][0], 0.0f ); ComputeSupportMap( pPlaneNormal[i+12], 0, 1, vecOBBMins, vecOBBMaxs, ppPlaneDist[i+12] ); flExtentDotNormal = FloatMakePositive( pMatRow0[2] ) * flRayExtent0 + FloatMakePositive( pMatRow1[2] ) * flRayExtent1; ppPlaneDist[i+12][0] -= flExtentDotNormal; ppPlaneDist[i+12][1] += flExtentDotNormal; }
float enterfrac, leavefrac; float d1[2], d2[2]; float f;
int hitplane = -1; int hitside = -1; enterfrac = -1.0f; leavefrac = 1.0f;
pTrace->startsolid = true;
Vector vecLocalRayEnd; VectorAdd( vecLocalRayOrigin, vecLocalRayDirection, vecLocalRayEnd );
for ( i = 0; i < 15; ++i ) { // FIXME: Not particularly optimal since there's a lot of 0's in the plane normals
float flStartDot = DotProduct( pPlaneNormal[i], vecLocalRayOrigin ); float flEndDot = DotProduct( pPlaneNormal[i], vecLocalRayEnd );
// NOTE: Negative here is because the plane normal + dist
// are defined in negative terms for the far plane (plane dist index 0)
d1[0] = -(flStartDot - ppPlaneDist[i][0]); d2[0] = -(flEndDot - ppPlaneDist[i][0]);
d1[1] = flStartDot - ppPlaneDist[i][1]; d2[1] = flEndDot - ppPlaneDist[i][1];
int j; for ( j = 0; j < 2; ++j ) { // if completely in front near plane or behind far plane no intersection
if (d1[j] > 0 && d2[j] > 0) return false;
// completely inside, check next plane set
if (d1[j] <= 0 && d2[j] <= 0) continue;
if (d1[j] > 0) { pTrace->startsolid = false; }
// crosses face
float flDenom = 1.0f / (d1[j] - d2[j]); if (d1[j] > d2[j]) { f = d1[j] - flTolerance; if ( f < 0 ) { f = 0; } f *= flDenom; if (f > enterfrac) { enterfrac = f; hitplane = i; hitside = j; } } else { // leave
f = (d1[j] + flTolerance) * flDenom; if (f < leavefrac) { leavefrac = f; } } } }
if (enterfrac < leavefrac && enterfrac >= 0.0f) { pTrace->fraction = enterfrac; VectorMA( pTrace->startpos, enterfrac, ray.m_Delta, pTrace->endpos ); pTrace->contents = CONTENTS_SOLID;
// Need to transform the plane into world space...
cplane_t temp; temp.normal = pPlaneNormal[hitplane]; temp.dist = ppPlaneDist[hitplane][hitside]; if (hitside == 0) { temp.normal *= -1.0f; temp.dist *= -1.0f; } temp.type = 3;
MatrixITransformPlane( matOBBToWorld, temp, pTrace->plane ); return true; }
if ( pTrace->startsolid ) { pTrace->allsolid = (leavefrac <= 0.0f) || (leavefrac >= 1.0f); pTrace->fraction = 0; pTrace->endpos = pTrace->startpos; pTrace->contents = CONTENTS_SOLID; pTrace->plane.dist = pTrace->startpos[0]; pTrace->plane.normal.Init( 1.0f, 0.0f, 0.0f ); pTrace->plane.type = 0; return true; }
return false; }
//-----------------------------------------------------------------------------
// Intersects a ray against an OBB
//-----------------------------------------------------------------------------
bool IntersectRayWithOBB( const Ray_t &ray, const Vector &vecBoxOrigin, const QAngle &angBoxRotation, const Vector &vecOBBMins, const Vector &vecOBBMaxs, float flTolerance, CBaseTrace *pTrace ) { if ( angBoxRotation == vec3_angle ) { Vector vecWorldMins, vecWorldMaxs; VectorAdd( vecBoxOrigin, vecOBBMins, vecWorldMins ); VectorAdd( vecBoxOrigin, vecOBBMaxs, vecWorldMaxs ); return IntersectRayWithBox( ray, vecWorldMins, vecWorldMaxs, flTolerance, pTrace ); }
if ( ray.m_IsRay ) { return IntersectRayWithOBB( ray.m_Start, ray.m_Delta, vecBoxOrigin, angBoxRotation, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); }
matrix3x4_t matOBBToWorld; AngleMatrix( angBoxRotation, vecBoxOrigin, matOBBToWorld ); return IntersectRayWithOBB( ray, matOBBToWorld, vecOBBMins, vecOBBMaxs, flTolerance, pTrace ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void GetNonMajorAxes( const Vector &vNormal, Vector2D &axes ) { axes[0] = 0; axes[1] = 1;
if( FloatMakePositive( vNormal.x ) > FloatMakePositive( vNormal.y ) ) { if( FloatMakePositive( vNormal.x ) > FloatMakePositive( vNormal.z ) ) { axes[0] = 1; axes[1] = 2; } } else { if( FloatMakePositive( vNormal.y ) > FloatMakePositive( vNormal.z ) ) { axes[0] = 0; axes[1] = 2; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
QuadBarycentricRetval_t QuadWithParallelEdges( const Vector &vecOrigin, const Vector &vecU, float lengthU, const Vector &vecV, float lengthV, const Vector &pt, Vector2D &vecUV ) { Ray_t rayAxis; Ray_t rayPt;
//
// handle the u axis
//
rayAxis.m_Start = vecOrigin; rayAxis.m_Delta = vecU; rayAxis.m_IsRay = true;
rayPt.m_Start = pt; rayPt.m_Delta = vecV * -( lengthV * 10.0f ); rayPt.m_IsRay = true;
float s, t; IntersectRayWithRay( rayAxis, rayPt, t, s ); vecUV[0] = t / lengthU;
//
// handle the v axis
//
rayAxis.m_Delta = vecV;
rayPt.m_Delta = vecU * -( lengthU * 10.0f );
IntersectRayWithRay( rayAxis, rayPt, t, s ); vecUV[1] = t / lengthV;
// inside of the quad??
if( ( vecUV[0] < 0.0f ) || ( vecUV[0] > 1.0f ) || ( vecUV[1] < 0.0f ) || ( vecUV[1] > 1.0f ) ) return BARY_QUADRATIC_FALSE;
return BARY_QUADRATIC_TRUE; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void ResolveQuadratic( double tPlus, double tMinus, const Vector axisU0, const Vector axisU1, const Vector axisV0, const Vector axisV1, const Vector axisOrigin, const Vector pt, int projU, double &s, double &t ) { // calculate the sPlus, sMinus pair(s)
double sDenomPlus = ( axisU0[projU] * ( 1 - tPlus ) ) + ( axisU1[projU] * tPlus ); double sDenomMinus = ( axisU0[projU] * ( 1 - tMinus ) ) + ( axisU1[projU] * tMinus );
double sPlus = UNINIT, sMinus = UNINIT; if( FloatMakePositive( sDenomPlus ) >= 1e-5 ) { sPlus = ( pt[projU] - axisOrigin[projU] - ( axisV0[projU] * tPlus ) ) / sDenomPlus; }
if( FloatMakePositive( sDenomMinus ) >= 1e-5 ) { sMinus = ( pt[projU] - axisOrigin[projU] - ( axisV0[projU] * tMinus ) ) / sDenomMinus; } if( ( tPlus >= 0.0 ) && ( tPlus <= 1.0 ) && ( sPlus >= 0.0 ) && ( sPlus <= 1.0 ) ) { s = sPlus; t = tPlus; return; }
if( ( tMinus >= 0.0 ) && ( tMinus <= 1.0 ) && ( sMinus >= 0.0 ) && ( sMinus <= 1.0 ) ) { s = sMinus; t = tMinus; return; }
double s0, t0, s1, t1;
s0 = sPlus; t0 = tPlus; if( s0 >= 1.0 ) { s0 -= 1.0; } if( t0 >= 1.0 ) { t0 -= 1.0; }
s1 = sMinus; t1 = tMinus; if( s1 >= 1.0 ) { s1 -= 1.0; } if( t1 >= 1.0 ) { t1 -= 1.0; }
s0 = FloatMakePositive( s0 ); t0 = FloatMakePositive( t0 ); s1 = FloatMakePositive( s1 ); t1 = FloatMakePositive( t1 );
double max0, max1; max0 = s0; if( t0 > max0 ) { max0 = t0; } max1 = s1; if( t1 > max1 ) { max1 = t1; }
if( max0 > max1 ) { s = sMinus; t = tMinus; } else { s = sPlus; t = tPlus; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
QuadBarycentricRetval_t PointInQuadToBarycentric( const Vector &v1, const Vector &v2, const Vector &v3, const Vector &v4, const Vector &point, Vector2D &uv ) { #define PIQ_TEXTURE_EPSILON 0.001
#define PIQ_PLANE_EPSILON 0.1
#define PIQ_DOT_EPSILON 0.99f
//
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
// u0 = v2 - v1
// u1 = v3 - v4
// v0 = v4 - v1
// v1 = v3 - v2
//
Vector axisU[2], axisV[2]; Vector axisUNorm[2], axisVNorm[2]; axisU[0] = axisUNorm[0] = v2 - v1; axisU[1] = axisUNorm[1] = v3 - v4; axisV[0] = axisVNorm[0] = v4 - v1; axisV[1] = axisVNorm[1] = v3 - v2;
float lengthU[2], lengthV[2]; lengthU[0] = VectorNormalize( axisUNorm[0] ); lengthU[1] = VectorNormalize( axisUNorm[1] ); lengthV[0] = VectorNormalize( axisVNorm[0] ); lengthV[1] = VectorNormalize( axisVNorm[1] );
//
// check for an early out - parallel opposite edges!
// NOTE: quad property if 1 set of opposite edges is parallel and equal
// in length, then the other set of edges is as well
//
if( axisUNorm[0].Dot( axisUNorm[1] ) > PIQ_DOT_EPSILON ) { if( FloatMakePositive( lengthU[0] - lengthU[1] ) < PIQ_PLANE_EPSILON ) { return QuadWithParallelEdges( v1, axisUNorm[0], lengthU[0], axisVNorm[0], lengthV[0], point, uv ); } }
//
// since we are solving for s in our equations below we need to ensure that
// the v axes are non-parallel
//
bool bFlipped = false; if( axisVNorm[0].Dot( axisVNorm[1] ) > PIQ_DOT_EPSILON ) { Vector tmp[2]; tmp[0] = axisV[0]; tmp[1] = axisV[1]; axisV[0] = axisU[0]; axisV[1] = axisU[1]; axisU[0] = tmp[0]; axisU[1] = tmp[1]; bFlipped = true; }
//
// get the "projection" axes
//
Vector2D projAxes; Vector vNormal = axisU[0].Cross( axisV[0] ); GetNonMajorAxes( vNormal, projAxes );
//
// NOTE: axisU[0][projAxes[0]] < axisU[0][projAxes[1]],
// this is done to decrease error when dividing later
//
if( FloatMakePositive( axisU[0][projAxes[0]] ) < FloatMakePositive( axisU[0][projAxes[1]] ) ) { int tmp = projAxes[0]; projAxes[0] = projAxes[1]; projAxes[1] = tmp; }
// Here's how we got these equations:
//
// Given the points and u,v line segments above...
//
// Then:
//
// (1.0) PT = P0 + U0 * s + V * t
//
// where
//
// (1.1) V = V0 + s * (V1 - V0)
// (1.2) U = U0 + t * (U1 - U0)
//
// Therefore (from 1.1 + 1.0):
// PT - P0 = U0 * s + (V0 + s * (V1-V0)) * t
// Group s's:
// PT - P0 - t * V0 = s * (U0 + t * (V1-V0))
// Two equations and two unknowns in x and y get you the following quadratic:
//
// solve the quadratic
//
double s = 0.0, t = 0.0; double A, negB, C;
A = ( axisU[0][projAxes[1]] * axisV[0][projAxes[0]] ) - ( axisU[0][projAxes[0]] * axisV[0][projAxes[1]] ) - ( axisU[1][projAxes[1]] * axisV[0][projAxes[0]] ) + ( axisU[1][projAxes[0]] * axisV[0][projAxes[1]] ); C = ( v1[projAxes[1]] * axisU[0][projAxes[0]] ) - ( point[projAxes[1]] * axisU[0][projAxes[0]] ) - ( v1[projAxes[0]] * axisU[0][projAxes[1]] ) + ( point[projAxes[0]] * axisU[0][projAxes[1]] ); negB = C - ( v1[projAxes[1]] * axisU[1][projAxes[0]] ) + ( point[projAxes[1]] * axisU[1][projAxes[0]] ) + ( v1[projAxes[0]] * axisU[1][projAxes[1]] ) - ( point[projAxes[0]] * axisU[1][projAxes[1]] ) + ( axisU[0][projAxes[1]] * axisV[0][projAxes[0]] ) - ( axisU[0][projAxes[0]] * axisV[0][projAxes[1]] );
if( ( A > -PIQ_PLANE_EPSILON ) && ( A < PIQ_PLANE_EPSILON ) ) { // shouldn't be here -- this should have been take care of in the "early out"
// Assert( 0 );
Vector vecUAvg, vecVAvg; vecUAvg = ( axisUNorm[0] + axisUNorm[1] ) * 0.5f; vecVAvg = ( axisVNorm[0] + axisVNorm[1] ) * 0.5f; float fLengthUAvg = ( lengthU[0] + lengthU[1] ) * 0.5f; float fLengthVAvg = ( lengthV[0] + lengthV[1] ) * 0.5f;
return QuadWithParallelEdges( v1, vecUAvg, fLengthUAvg, vecVAvg, fLengthVAvg, point, uv );
#if 0
// legacy code -- kept here for completeness!
// not a quadratic -- solve linearly
t = C / negB;
// See (1.2) above
float ui = axisU[0][projAxes[0]] + t * ( axisU[1][projAxes[0]] - axisU[0][projAxes[0]] ); if( FloatMakePositive( ui ) >= 1e-5 ) { // See (1.0) above
s = ( point[projAxes[0]] - v1[projAxes[0]] - axisV[0][projAxes[0]] * t ) / ui; } #endif
} else { // (-b +/- sqrt( b^2 - 4ac )) / 2a
double discriminant = (negB*negB) - (4.0f * A * C); if( discriminant < 0.0f ) { uv[0] = -99999.0f; uv[1] = -99999.0f; return BARY_QUADRATIC_NEGATIVE_DISCRIMINANT; }
double quad = sqrt( discriminant ); double QPlus = ( negB + quad ) / ( 2.0f * A ); double QMinus = ( negB - quad ) / ( 2.0f * A );
ResolveQuadratic( QPlus, QMinus, axisU[0], axisU[1], axisV[0], axisV[1], v1, point, projAxes[0], s, t ); }
if( !bFlipped ) { uv[0] = ( float )s; uv[1] = ( float )t; } else { uv[0] = ( float )t; uv[1] = ( float )s; }
// inside of the quad??
if( ( uv[0] < 0.0f ) || ( uv[0] > 1.0f ) || ( uv[1] < 0.0f ) || ( uv[1] > 1.0f ) ) return BARY_QUADRATIC_FALSE; return BARY_QUADRATIC_TRUE;
#undef PIQ_TEXTURE_EPSILON
#undef PIQ_PLANE_EPSILON
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void PointInQuadFromBarycentric( const Vector &v1, const Vector &v2, const Vector &v3, const Vector &v4, const Vector2D &uv, Vector &point ) { //
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
// find the ray from v0 edge to v1 edge at v
//
Vector vPts[2]; VectorLerp( v1, v4, uv[1], vPts[0] ); VectorLerp( v2, v3, uv[1], vPts[1] ); VectorLerp( vPts[0], vPts[1], uv[0], point ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void TexCoordInQuadFromBarycentric( const Vector2D &v1, const Vector2D &v2, const Vector2D &v3, const Vector2D &v4, const Vector2D &uv, Vector2D &texCoord ) { //
// Think of a quad with points v1, v2, v3, v4 and u, v line segments
// find the ray from v0 edge to v1 edge at v
//
Vector2D vCoords[2]; Vector2DLerp( v1, v4, uv[1], vCoords[0] ); Vector2DLerp( v2, v3, uv[1], vCoords[1] ); Vector2DLerp( vCoords[0], vCoords[1], uv[0], texCoord ); }
//-----------------------------------------------------------------------------
// Compute point from barycentric specification
// Edge u goes from v0 to v1, edge v goes from v0 to v2
//-----------------------------------------------------------------------------
void ComputePointFromBarycentric( const Vector& v0, const Vector& v1, const Vector& v2, float u, float v, Vector& pt ) { Vector edgeU, edgeV; VectorSubtract( v1, v0, edgeU ); VectorSubtract( v2, v0, edgeV ); VectorMA( v0, u, edgeU, pt ); VectorMA( pt, v, edgeV, pt ); }
void ComputePointFromBarycentric( const Vector2D& v0, const Vector2D& v1, const Vector2D& v2, float u, float v, Vector2D& pt ) { Vector2D edgeU, edgeV; Vector2DSubtract( v1, v0, edgeU ); Vector2DSubtract( v2, v0, edgeV ); Vector2DMA( v0, u, edgeU, pt ); Vector2DMA( pt, v, edgeV, pt ); }
//-----------------------------------------------------------------------------
// Compute a matrix that has the correct orientation but which has an origin at
// the center of the bounds
//-----------------------------------------------------------------------------
static void ComputeCenterMatrix( const Vector& origin, const QAngle& angles, const Vector& mins, const Vector& maxs, matrix3x4_t& matrix ) { Vector centroid; VectorAdd( mins, maxs, centroid ); centroid *= 0.5f; AngleMatrix( angles, matrix );
Vector worldCentroid; VectorRotate( centroid, matrix, worldCentroid ); worldCentroid += origin; MatrixSetColumn( worldCentroid, 3, matrix ); }
static void ComputeCenterIMatrix( const Vector& origin, const QAngle& angles, const Vector& mins, const Vector& maxs, matrix3x4_t& matrix ) { Vector centroid; VectorAdd( mins, maxs, centroid ); centroid *= -0.5f; AngleIMatrix( angles, matrix );
// For the translational component here, note that the origin in world space
// is T = R * C + O, (R = rotation matrix, C = centroid in local space, O = origin in world space)
// The IMatrix translation = - transpose(R) * T = -C - transpose(R) * 0
Vector localOrigin; VectorRotate( origin, matrix, localOrigin ); centroid -= localOrigin; MatrixSetColumn( centroid, 3, matrix ); }
//-----------------------------------------------------------------------------
// Compute a matrix which is the absolute value of another
//-----------------------------------------------------------------------------
static inline void ComputeAbsMatrix( const matrix3x4_t& in, matrix3x4_t& out ) { (out[0][0]) = fabsf(in[0][0]); (out[0][1]) = fabsf(in[0][1]); (out[0][2]) = fabsf(in[0][2]); (out[1][0]) = fabsf(in[1][0]); (out[1][1]) = fabsf(in[1][1]); (out[1][2]) = fabsf(in[1][2]); (out[2][0]) = fabsf(in[2][0]); (out[2][1]) = fabsf(in[2][1]); (out[2][2]) = fabsf(in[2][2]); }
//-----------------------------------------------------------------------------
// Compute a separating plane between two boxes (expensive!)
// Returns false if no separating plane exists
//-----------------------------------------------------------------------------
static bool ComputeSeparatingPlane( const matrix3x4_t &worldToBox1, const matrix3x4_t &box2ToWorld, const Vector& box1Size, const Vector& box2Size, float tolerance, cplane_t* pPlane ) { // The various separating planes can be either
// 1) A plane parallel to one of the box face planes
// 2) A plane parallel to the cross-product of an edge from each box
// First, compute the basis of second box in the space of the first box
// NOTE: These basis place the origin at the centroid of each box!
matrix3x4_t box2ToBox1; ConcatTransforms( worldToBox1, box2ToWorld, box2ToBox1 );
// We're going to be using the origin of box2 in the space of box1 alot,
// lets extract it from the matrix....
Vector box2Origin; MatrixGetColumn( box2ToBox1, 3, box2Origin );
// Next get the absolute values of these entries and store in absbox2ToBox1.
matrix3x4_t absBox2ToBox1; ComputeAbsMatrix( box2ToBox1, absBox2ToBox1 );
// There are 15 tests to make. The first 3 involve trying planes parallel
// to the faces of the first box.
// NOTE: The algorithm here involves finding the projections of the two boxes
// onto a particular line. If the projections on the line do not overlap,
// that means that there's a plane perpendicular to the line which separates
// the two boxes; and we've therefore found a separating plane.
// The way we check for overlay is we find the projections of the two boxes
// onto the line, and add them up. We compare the sum with the projection
// of the relative center of box2 onto the same line.
Vector tmp; float boxProjectionSum; float originProjection; // NOTE: For these guys, we're taking advantage of the fact that the ith
// row of the box2ToBox1 is the direction of the box1 (x,y,z)-axis
// transformed into the space of box2.
// First side of box 1
boxProjectionSum = box1Size.x + MatrixRowDotProduct( absBox2ToBox1, 0, box2Size ); originProjection = FloatMakePositive( box2Origin.x ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { VectorCopy( worldToBox1[0], pPlane->normal.Base() ); return true; } // Second side of box 1
boxProjectionSum = box1Size.y + MatrixRowDotProduct( absBox2ToBox1, 1, box2Size ); originProjection = FloatMakePositive( box2Origin.y ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { VectorCopy( worldToBox1[1], pPlane->normal.Base() ); return true; } // Third side of box 1
boxProjectionSum = box1Size.z + MatrixRowDotProduct( absBox2ToBox1, 2, box2Size ); originProjection = FloatMakePositive( box2Origin.z ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { VectorCopy( worldToBox1[2], pPlane->normal.Base() ); return true; } // The next three involve checking splitting planes parallel to the
// faces of the second box.
// NOTE: For these guys, we're taking advantage of the fact that the 0th
// column of the box2ToBox1 is the direction of the box2 x-axis
// transformed into the space of box1.
// Here, we're determining the distance of box2's center from box1's center
// by projecting it onto a line parallel to box2's axis
// First side of box 2
boxProjectionSum = box2Size.x + MatrixColumnDotProduct( absBox2ToBox1, 0, box1Size ); originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 0, box2Origin ) ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, pPlane->normal ); return true; } // Second side of box 2
boxProjectionSum = box2Size.y + MatrixColumnDotProduct( absBox2ToBox1, 1, box1Size ); originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 1, box2Origin ) ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, pPlane->normal ); return true; } // Third side of box 2
boxProjectionSum = box2Size.z + MatrixColumnDotProduct( absBox2ToBox1, 2, box1Size ); originProjection = FloatMakePositive( MatrixColumnDotProduct( box2ToBox1, 2, box2Origin ) ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, pPlane->normal ); return true; } // Next check the splitting planes which are orthogonal to the pairs
// of edges, one from box1 and one from box2. As only direction matters,
// there are 9 pairs since each box has 3 distinct edge directions.
// Here, we take advantage of the fact that the edges from box 1 are all
// axis aligned; therefore the crossproducts are simplified. Let's walk through
// the example of b1e1 x b2e1:
// In this example, the line to check is perpendicular to b1e1 + b2e2
// we can compute this line by taking the cross-product:
//
// [ i j k ]
// [ 1 0 0 ] = - ez j + ey k = l1
// [ ex ey ez ]
// Where ex, ey, ez is the components of box2's x axis in the space of box 1,
// which is == to the 0th column of of box2toBox1
// The projection of box1 onto this line = the absolute dot product of the box size
// against the line, which =
// AbsDot( box1Size, l1 ) = abs( -ez * box1.y ) + abs( ey * box1.z )
// To compute the projection of box2 onto this line, we'll do it in the space of box 2
//
// [ i j k ]
// [ fx fy fz ] = fz j - fy k = l2
// [ 1 0 0 ]
// Where fx, fy, fz is the components of box1's x axis in the space of box 2,
// which is == to the 0th row of of box2toBox1
// The projection of box2 onto this line = the absolute dot product of the box size
// against the line, which =
// AbsDot( box2Size, l2 ) = abs( fz * box2.y ) + abs ( fy * box2.z )
// The projection of the relative origin position on this line is done in the
// space of box 1:
//
// originProjection = DotProduct( <-ez j + ey k>, box2Origin ) =
// -ez * box2Origin.y + ey * box2Origin.z
// NOTE: These checks can be bogus if both edges are parallel. The if
// checks at the beginning of each block are designed to catch that case
// b1e1 x b2e1
if ( absBox2ToBox1[0][0] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.y * absBox2ToBox1[2][0] + box1Size.z * absBox2ToBox1[1][0] + box2Size.y * absBox2ToBox1[0][2] + box2Size.z * absBox2ToBox1[0][1]; originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][0] + box2Origin.z * box2ToBox1[1][0] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, tmp ); CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e1 x b2e2
if ( absBox2ToBox1[0][1] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.y * absBox2ToBox1[2][1] + box1Size.z * absBox2ToBox1[1][1] + box2Size.x * absBox2ToBox1[0][2] + box2Size.z * absBox2ToBox1[0][0]; originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][1] + box2Origin.z * box2ToBox1[1][1] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, tmp ); CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e1 x b2e3
if ( absBox2ToBox1[0][2] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.y * absBox2ToBox1[2][2] + box1Size.z * absBox2ToBox1[1][2] + box2Size.x * absBox2ToBox1[0][1] + box2Size.y * absBox2ToBox1[0][0]; originProjection = FloatMakePositive( -box2Origin.y * box2ToBox1[2][2] + box2Origin.z * box2ToBox1[1][2] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, tmp ); CrossProduct( worldToBox1[0], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e2 x b2e1
if ( absBox2ToBox1[1][0] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[2][0] + box1Size.z * absBox2ToBox1[0][0] + box2Size.y * absBox2ToBox1[1][2] + box2Size.z * absBox2ToBox1[1][1]; originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][0] - box2Origin.z * box2ToBox1[0][0] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, tmp ); CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e2 x b2e2
if ( absBox2ToBox1[1][1] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[2][1] + box1Size.z * absBox2ToBox1[0][1] + box2Size.x * absBox2ToBox1[1][2] + box2Size.z * absBox2ToBox1[1][0]; originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][1] - box2Origin.z * box2ToBox1[0][1] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, tmp ); CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e2 x b2e3
if ( absBox2ToBox1[1][2] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[2][2] + box1Size.z * absBox2ToBox1[0][2] + box2Size.x * absBox2ToBox1[1][1] + box2Size.y * absBox2ToBox1[1][0]; originProjection = FloatMakePositive( box2Origin.x * box2ToBox1[2][2] - box2Origin.z * box2ToBox1[0][2] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, tmp ); CrossProduct( worldToBox1[1], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e3 x b2e1
if ( absBox2ToBox1[2][0] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[1][0] + box1Size.y * absBox2ToBox1[0][0] + box2Size.y * absBox2ToBox1[2][2] + box2Size.z * absBox2ToBox1[2][1]; originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][0] + box2Origin.y * box2ToBox1[0][0] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 0, tmp ); CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e3 x b2e2
if ( absBox2ToBox1[2][1] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[1][1] + box1Size.y * absBox2ToBox1[0][1] + box2Size.x * absBox2ToBox1[2][2] + box2Size.z * absBox2ToBox1[2][0]; originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][1] + box2Origin.y * box2ToBox1[0][1] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 1, tmp ); CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() ); return true; } }
// b1e3 x b2e3
if ( absBox2ToBox1[2][2] < 1.0f - 1e-3f ) { boxProjectionSum = box1Size.x * absBox2ToBox1[1][2] + box1Size.y * absBox2ToBox1[0][2] + box2Size.x * absBox2ToBox1[2][1] + box2Size.y * absBox2ToBox1[2][0]; originProjection = FloatMakePositive( -box2Origin.x * box2ToBox1[1][2] + box2Origin.y * box2ToBox1[0][2] ) + tolerance; if ( FloatBits(originProjection) > FloatBits(boxProjectionSum) ) { MatrixGetColumn( box2ToWorld, 2, tmp ); CrossProduct( worldToBox1[2], tmp.Base(), pPlane->normal.Base() ); return true; } } return false; }
//-----------------------------------------------------------------------------
// Compute a separating plane between two boxes (expensive!)
// Returns false if no separating plane exists
//-----------------------------------------------------------------------------
bool ComputeSeparatingPlane( const Vector& org1, const QAngle& angles1, const Vector& min1, const Vector& max1, const Vector& org2, const QAngle& angles2, const Vector& min2, const Vector& max2, float tolerance, cplane_t* pPlane ) { matrix3x4_t worldToBox1, box2ToWorld; ComputeCenterIMatrix( org1, angles1, min1, max1, worldToBox1 ); ComputeCenterMatrix( org2, angles2, min2, max2, box2ToWorld );
// Then compute the size of the two boxes
Vector box1Size, box2Size; VectorSubtract( max1, min1, box1Size ); VectorSubtract( max2, min2, box2Size ); box1Size *= 0.5f; box2Size *= 0.5f;
return ComputeSeparatingPlane( worldToBox1, box2ToWorld, box1Size, box2Size, tolerance, pPlane ); }
//-----------------------------------------------------------------------------
// Swept OBB test
//-----------------------------------------------------------------------------
bool IsRayIntersectingOBB( const Ray_t &ray, const Vector& org, const QAngle& angles, const Vector& mins, const Vector& maxs ) { if ( angles == vec3_angle ) { Vector vecWorldMins, vecWorldMaxs; VectorAdd( org, mins, vecWorldMins ); VectorAdd( org, maxs, vecWorldMaxs ); return IsBoxIntersectingRay( vecWorldMins, vecWorldMaxs, ray ); }
if ( ray.m_IsRay ) { matrix3x4_t worldToBox; AngleIMatrix( angles, org, worldToBox );
Ray_t rotatedRay; VectorTransform( ray.m_Start, worldToBox, rotatedRay.m_Start ); VectorRotate( ray.m_Delta, worldToBox, rotatedRay.m_Delta ); rotatedRay.m_StartOffset = vec3_origin; rotatedRay.m_Extents = vec3_origin; rotatedRay.m_IsRay = ray.m_IsRay; rotatedRay.m_IsSwept = ray.m_IsSwept;
return IsBoxIntersectingRay( mins, maxs, rotatedRay ); }
if ( !ray.m_IsSwept ) { cplane_t plane; return ComputeSeparatingPlane( ray.m_Start, vec3_angle, -ray.m_Extents, ray.m_Extents, org, angles, mins, maxs, 0.0f, &plane ) == false; }
// NOTE: See the comments in ComputeSeparatingPlane to understand this math
// First, compute the basis of box in the space of the ray
// NOTE: These basis place the origin at the centroid of each box!
matrix3x4_t worldToBox1, box2ToWorld; ComputeCenterMatrix( org, angles, mins, maxs, box2ToWorld );
// Find the center + extents of an AABB surrounding the ray
Vector vecRayCenter; VectorMA( ray.m_Start, 0.5, ray.m_Delta, vecRayCenter ); vecRayCenter *= -1.0f; SetIdentityMatrix( worldToBox1 ); MatrixSetColumn( vecRayCenter, 3, worldToBox1 );
Vector box1Size; box1Size.x = ray.m_Extents.x + FloatMakePositive( ray.m_Delta.x ) * 0.5f; box1Size.y = ray.m_Extents.y + FloatMakePositive( ray.m_Delta.y ) * 0.5f; box1Size.z = ray.m_Extents.z + FloatMakePositive( ray.m_Delta.z ) * 0.5f;
// Then compute the size of the box
Vector box2Size; VectorSubtract( maxs, mins, box2Size ); box2Size *= 0.5f;
// Do an OBB test of the box with the AABB surrounding the ray
cplane_t plane; if ( ComputeSeparatingPlane( worldToBox1, box2ToWorld, box1Size, box2Size, 0.0f, &plane ) ) return false;
// Now deal with the planes which are the cross products of the ray sweep direction vs box edges
Vector vecRayDirection = ray.m_Delta; VectorNormalize( vecRayDirection );
// Need a vector between ray center vs box center measured in the space of the ray (world)
Vector vecCenterDelta; vecCenterDelta.x = box2ToWorld[0][3] - ray.m_Start.x; vecCenterDelta.y = box2ToWorld[1][3] - ray.m_Start.y; vecCenterDelta.z = box2ToWorld[2][3] - ray.m_Start.z;
// Rotate the ray direction into the space of the OBB
Vector vecAbsRayDirBox2; VectorIRotate( vecRayDirection, box2ToWorld, vecAbsRayDirBox2 );
// Make abs versions of the ray in world space + ray in box2 space
VectorAbs( vecAbsRayDirBox2, vecAbsRayDirBox2 );
// Now do the work for the planes which are perpendicular to the edges of the AABB
// and the sweep direction edges...
// In this example, the line to check is perpendicular to box edge x + ray delta
// we can compute this line by taking the cross-product:
//
// [ i j k ]
// [ 1 0 0 ] = - dz j + dy k = l1
// [ dx dy dz ]
// Where dx, dy, dz is the ray delta (normalized)
// The projection of the box onto this line = the absolute dot product of the box size
// against the line, which =
// AbsDot( vecBoxHalfDiagonal, l1 ) = abs( -dz * vecBoxHalfDiagonal.y ) + abs( dy * vecBoxHalfDiagonal.z )
// Because the plane contains the sweep direction, the sweep will produce
// no extra projection onto the line normal to the plane.
// Therefore all we need to do is project the ray extents onto this line also:
// AbsDot( ray.m_Extents, l1 ) = abs( -dz * ray.m_Extents.y ) + abs( dy * ray.m_Extents.z )
Vector vecPlaneNormal;
// box x x ray delta
CrossProduct( vecRayDirection, Vector( box2ToWorld[0][0], box2ToWorld[1][0], box2ToWorld[2][0] ), vecPlaneNormal ); float flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) ); float flBoxProjectionSum = vecAbsRayDirBox2.z * box2Size.y + vecAbsRayDirBox2.y * box2Size.z + DotProductAbs( vecPlaneNormal, ray.m_Extents ); if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) ) return false;
// box y x ray delta
CrossProduct( vecRayDirection, Vector( box2ToWorld[0][1], box2ToWorld[1][1], box2ToWorld[2][1] ), vecPlaneNormal ); flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) ); flBoxProjectionSum = vecAbsRayDirBox2.z * box2Size.x + vecAbsRayDirBox2.x * box2Size.z + DotProductAbs( vecPlaneNormal, ray.m_Extents ); if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) ) return false;
// box z x ray delta
CrossProduct( vecRayDirection, Vector( box2ToWorld[0][2], box2ToWorld[1][2], box2ToWorld[2][2] ), vecPlaneNormal ); flCenterDeltaProjection = FloatMakePositive( DotProduct( vecPlaneNormal, vecCenterDelta ) ); flBoxProjectionSum = vecAbsRayDirBox2.y * box2Size.x + vecAbsRayDirBox2.x * box2Size.y + DotProductAbs( vecPlaneNormal, ray.m_Extents ); if ( FloatBits(flCenterDeltaProjection) > FloatBits(flBoxProjectionSum) ) return false; return true; }
//--------------------------------------------------------------------------
// Purpose:
//
// NOTE:
// triangle points are given in clockwise order (aabb-triangle test)
//
// 1 edge0 = 1 - 0
// | \ edge1 = 2 - 1
// | \ edge2 = 0 - 2
// | \ .
// | \ .
// 0-----2 .
//
//--------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Purpose: find the minima and maxima of the 3 given values
//-----------------------------------------------------------------------------
inline void FindMinMax( float v1, float v2, float v3, float &min, float &max ) { min = max = v1; if ( v2 < min ) { min = v2; } if ( v2 > max ) { max = v2; } if ( v3 < min ) { min = v3; } if ( v3 > max ) { max = v3; } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
inline bool AxisTestEdgeCrossX2( float flEdgeZ, float flEdgeY, float flAbsEdgeZ, float flAbsEdgeY, const Vector &p1, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y
// Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z
float flDist1 = flEdgeZ * p1.y - flEdgeY * p1.z; float flDist3 = flEdgeZ * p3.y - flEdgeY * p3.z;
// Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents.y + flAbsEdgeY * vecExtents.z;
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist3 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; }
return true; }
//--------------------------------------------------------------------------
// Purpose:
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossX3( float flEdgeZ, float flEdgeY, float flAbsEdgeZ, float flAbsEdgeY, const Vector &p1, const Vector &p2, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialX(1,0,0) x edge ): x = 0.0f, y = edge.z, z = -edge.y
// Triangle Point Distances: dist(x) = normal.y * pt(x).y + normal.z * pt(x).z
float flDist1 = flEdgeZ * p1.y - flEdgeY * p1.z; float flDist2 = flEdgeZ * p2.y - flEdgeY * p2.z;
// Extents are symmetric: dist = abs( normal.y ) * extents.y + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents.y + flAbsEdgeY * vecExtents.z;
// Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist2 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; }
return true; }
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossY2( float flEdgeZ, float flEdgeX, float flAbsEdgeZ, float flAbsEdgeX, const Vector &p1, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z
float flDist1 = -flEdgeZ * p1.x + flEdgeX * p1.z; float flDist3 = -flEdgeZ * p3.x + flEdgeX * p3.z;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents.x + flAbsEdgeX * vecExtents.z;
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist3 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; }
return true; }
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossY3( float flEdgeZ, float flEdgeX, float flAbsEdgeZ, float flAbsEdgeX, const Vector &p1, const Vector &p2, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialY(0,1,0) x edge ): x = -edge.z, y = 0.0f, z = edge.x
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.z * pt(x).z
float flDist1 = -flEdgeZ * p1.x + flEdgeX * p1.z; float flDist2 = -flEdgeZ * p2.x + flEdgeX * p2.z;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.z ) * extents.z
float flDistBox = flAbsEdgeZ * vecExtents.x + flAbsEdgeX * vecExtents.z;
// Either dist1, dist2 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist2 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; }
return true; }
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossZ1( float flEdgeY, float flEdgeX, float flAbsEdgeY, float flAbsEdgeX, const Vector &p2, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y
float flDist2 = flEdgeY * p2.x - flEdgeX * p2.y; float flDist3 = flEdgeY * p3.x - flEdgeX * p3.y;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y
float flDistBox = flAbsEdgeY * vecExtents.x + flAbsEdgeX * vecExtents.y;
// Either dist2, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist3 < flDist2 ) { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist2 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist2 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; }
return true; }
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
inline bool AxisTestEdgeCrossZ2( float flEdgeY, float flEdgeX, float flAbsEdgeY, float flAbsEdgeX, const Vector &p1, const Vector &p3, const Vector &vecExtents, float flTolerance ) { // Cross Product( axialZ(0,0,1) x edge ): x = edge.y, y = -edge.x, z = 0.0f
// Triangle Point Distances: dist(x) = normal.x * pt(x).x + normal.y * pt(x).y
float flDist1 = flEdgeY * p1.x - flEdgeX * p1.y; float flDist3 = flEdgeY * p3.x - flEdgeX * p3.y;
// Extents are symmetric: dist = abs( normal.x ) * extents.x + abs( normal.y ) * extents.y
float flDistBox = flAbsEdgeY * vecExtents.x + flAbsEdgeX * vecExtents.y;
// Either dist1, dist3 is the closest point to the box, determine which and test of overlap with box(AABB).
if ( flDist1 < flDist3 ) { if ( ( flDist1 > ( flDistBox + flTolerance ) ) || ( flDist3 < -( flDistBox + flTolerance ) ) ) return false; } else { if ( ( flDist3 > ( flDistBox + flTolerance ) ) || ( flDist1 < -( flDistBox + flTolerance ) ) ) return false; }
return true; }
//-----------------------------------------------------------------------------
// Purpose: Test for an intersection (overlap) between an axial-aligned bounding
// box (AABB) and a triangle.
//
// Using the "Separating-Axis Theorem" to test for intersections between
// a triangle and an axial-aligned bounding box (AABB).
// 1. 3 Axis Planes - x, y, z
// 2. 9 Edge Planes Tests - the 3 edges of the triangle crossed with all 3 axial
// planes (x, y, z)
// 3. 1 Face Plane - the triangle plane (cplane_t plane below)
// Output: false = separating axis (no intersection)
// true = intersection
//-----------------------------------------------------------------------------
bool IsBoxIntersectingTriangle( const Vector &vecBoxCenter, const Vector &vecBoxExtents, const Vector &v1, const Vector &v2, const Vector &v3, const cplane_t &plane, float flTolerance ) { // Test the axial planes (x,y,z) against the min, max of the triangle.
float flMin, flMax; Vector p1, p2, p3;
// x plane
p1.x = v1.x - vecBoxCenter.x; p2.x = v2.x - vecBoxCenter.x; p3.x = v3.x - vecBoxCenter.x; FindMinMax( p1.x, p2.x, p3.x, flMin, flMax ); if ( ( flMin > ( vecBoxExtents.x + flTolerance ) ) || ( flMax < -( vecBoxExtents.x + flTolerance ) ) ) return false;
// y plane
p1.y = v1.y - vecBoxCenter.y; p2.y = v2.y - vecBoxCenter.y; p3.y = v3.y - vecBoxCenter.y; FindMinMax( p1.y, p2.y, p3.y, flMin, flMax ); if ( ( flMin > ( vecBoxExtents.y + flTolerance ) ) || ( flMax < -( vecBoxExtents.y + flTolerance ) ) ) return false;
// z plane
p1.z = v1.z - vecBoxCenter.z; p2.z = v2.z - vecBoxCenter.z; p3.z = v3.z - vecBoxCenter.z; FindMinMax( p1.z, p2.z, p3.z, flMin, flMax ); if ( ( flMin > ( vecBoxExtents.z + flTolerance ) ) || ( flMax < -( vecBoxExtents.z + flTolerance ) ) ) return false;
// Test the 9 edge cases.
Vector vecEdge, vecAbsEdge;
// edge 0 (cross x,y,z)
vecEdge = p2 - p1; vecAbsEdge.y = FloatMakePositive( vecEdge.y ); vecAbsEdge.z = FloatMakePositive( vecEdge.z ); if ( !AxisTestEdgeCrossX2( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p3, vecBoxExtents, flTolerance ) ) return false;
vecAbsEdge.x = FloatMakePositive( vecEdge.x ); if ( !AxisTestEdgeCrossY2( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p3, vecBoxExtents, flTolerance ) ) return false;
if ( !AxisTestEdgeCrossZ1( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p2, p3, vecBoxExtents, flTolerance ) ) return false;
// edge 1 (cross x,y,z)
vecEdge = p3 - p2; vecAbsEdge.y = FloatMakePositive( vecEdge.y ); vecAbsEdge.z = FloatMakePositive( vecEdge.z ); if ( !AxisTestEdgeCrossX2( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p2, vecBoxExtents, flTolerance ) ) return false;
vecAbsEdge.x = FloatMakePositive( vecEdge.x ); if ( !AxisTestEdgeCrossY2( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p2, vecBoxExtents, flTolerance ) ) return false;
if ( !AxisTestEdgeCrossZ2( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p1, p3, vecBoxExtents, flTolerance ) ) return false;
// edge 2 (cross x,y,z)
vecEdge = p1 - p3; vecAbsEdge.y = FloatMakePositive( vecEdge.y ); vecAbsEdge.z = FloatMakePositive( vecEdge.z ); if ( !AxisTestEdgeCrossX3( vecEdge.z, vecEdge.y, vecAbsEdge.z, vecAbsEdge.y, p1, p2, vecBoxExtents, flTolerance ) ) return false;
vecAbsEdge.x = FloatMakePositive( vecEdge.x ); if ( !AxisTestEdgeCrossY3( vecEdge.z, vecEdge.x, vecAbsEdge.z, vecAbsEdge.x, p1, p2, vecBoxExtents, flTolerance ) ) return false;
if ( !AxisTestEdgeCrossZ1( vecEdge.y, vecEdge.x, vecAbsEdge.y, vecAbsEdge.x, p2, p3, vecBoxExtents, flTolerance ) ) return false;
// Test against the triangle face plane.
Vector vecMin, vecMax; VectorSubtract( vecBoxCenter, vecBoxExtents, vecMin ); VectorAdd( vecBoxCenter, vecBoxExtents, vecMax ); if ( BoxOnPlaneSide( vecMin, vecMax, &plane ) != 3 ) return false;
return true; }
// NOTE: JAY: This is untested code based on Real-time Collision Detection by Ericson
#if 0
Vector CalcClosestPointOnTriangle( const Vector &P, const Vector &v0, const Vector &v1, const Vector &v2 ) { Vector e0 = v1 - v0; Vector e1 = v2 - v0; Vector p0 = P - v0;
// voronoi region of v0
float d1 = DotProduct( e0, p0 ); float d2 = DotProduct( e1, p0 ); if (d1 <= 0.0f && d2 <= 0.0f) return v0;
// voronoi region of v1
Vector p1 = P - v1; float d3 = DotProduct( e0, p1 ); float d4 = DotProduct( e1, p1 ); if (d3 >=0.0f && d4 <= d3) return v1;
// voronoi region of e0 (v0-v1)
float ve2 = d1*d4 - d3*d2; if ( ve2 <= 0.0f && d1 >= 0.0f && d3 <= 0.0f ) { float v = d1 / (d1-d3); return v0 + v * e0; } // voronoi region of v2
Vector p2 = P - v2; float d5 = DotProduct( e0, p2 ); float d6 = DotProduct( e1, p2 ); if (d6 >= 0.0f && d5 <= d6) return v2; // voronoi region of e1
float ve1 = d5*d2 - d1*d6; if (ve1 <= 0.0f && d2 >= 0.0f && d6 >= 0.0f) { float w = d2 / (d2-d6); return v0 + w * e1; } // voronoi region on e2
float ve0 = d3*d6 - d5*d4; if ( ve0 <= 0.0f && (d4-d3) >= 0.0f && (d5-d6) >= 0.0f ) { float w = (d4-d3)/((d4-d3) + (d5-d6)); return v1 + w * (v2-v1); } // voronoi region of v0v1v2 triangle
float denom = 1.0f / (ve0+ve1+ve2); float v = ve1*denom; float w = ve2 * denom; return v0 + e0 * v + e1 * w; } #endif
bool OBBHasFullyContainedIntersectionWithQuad( const Vector &vOBBExtent1_Scaled, const Vector &vOBBExtent2_Scaled, const Vector &vOBBExtent3_Scaled, const Vector &ptOBBCenter, const Vector &vQuadNormal, float fQuadPlaneDist, const Vector &ptQuadCenter, const Vector &vQuadExtent1_Normalized, float fQuadExtent1Length, const Vector &vQuadExtent2_Normalized, float fQuadExtent2Length ) { Vector ptOBB[8]; //this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's)
ptOBB[0] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled; ptOBB[1] = ptOBBCenter - vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[2] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[3] = ptOBBCenter - vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled; ptOBB[4] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled - vOBBExtent3_Scaled; ptOBB[5] = ptOBBCenter + vOBBExtent1_Scaled - vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[6] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled + vOBBExtent3_Scaled; ptOBB[7] = ptOBBCenter + vOBBExtent1_Scaled + vOBBExtent2_Scaled - vOBBExtent3_Scaled;
float fDists[8]; for( int i = 0; i != 8; ++i ) fDists[i] = vQuadNormal.Dot( ptOBB[i] ) - fQuadPlaneDist;
int iSides[8]; int iSideMask = 0; for( int i = 0; i != 8; ++i ) { if( fDists[i] > 0.0f ) { iSides[i] = 1; iSideMask |= 1; } else { iSides[i] = 2; iSideMask |= 2; } }
if( iSideMask != 3 ) //points reside entirely on one side of the quad's plane
return false;
Vector ptPlaneIntersections[12]; //only have 12 lines, can only possibly generate 12 split points
int iPlaneIntersectionsCount = 0;
for( int i = 0; i != 8; ++i ) { if( iSides[i] == 2 ) //point behind the plane
{ int iAxisCrossings[3]; iAxisCrossings[0] = i ^ 4; //upper 4 vs lower 4 crosses vOBBExtent1 axis
iAxisCrossings[1] = ((i + 1) & 3) + (i & 4); //cycle to the next element while staying within the upper 4 or lower 4, this will cross either vOBBExtent2 or vOBBExtent3 axis, we don't care which
iAxisCrossings[2] = ((i - 1) & 3) + (i & 4); //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross
for( int j = 0; j != 3; ++j ) { if( iSides[iAxisCrossings[j]] == 1 ) //point in front of the plane
{ //line between ptOBB[i] and ptOBB[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing
float fTotalDist = fDists[iAxisCrossings[j]] - fDists[i]; //remember that fDists[i] is a negative value
ptPlaneIntersections[iPlaneIntersectionsCount] = (ptOBB[iAxisCrossings[j]] * (-fDists[i]/fTotalDist)) + (ptOBB[i] * (fDists[iAxisCrossings[j]]/fTotalDist));
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
++iPlaneIntersectionsCount; } } } }
Assert( iPlaneIntersectionsCount != 0 );
for( int i = 0; i != iPlaneIntersectionsCount; ++i ) { //these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents
Vector vToPointFromQuadCenter = ptPlaneIntersections[i] - ptQuadCenter;
float fExt1Dist = vQuadExtent1_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt1Dist ) > fQuadExtent1Length ) return false; //point is outside boundaries
//vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads
float fExt2Dist = vQuadExtent2_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt2Dist ) > fQuadExtent2Length ) return false; //point is outside boundaries
}
return true; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries
}
//-----------------------------------------------------------------------------
// Compute if the Ray intersects the quad plane, and whether the entire
// Ray/Quad intersection is contained within the quad itself
//
// False if no intersection exists, or if part of the intersection is
// outside the quad's extents
//-----------------------------------------------------------------------------
bool RayHasFullyContainedIntersectionWithQuad( const Ray_t &ray, const Vector &vQuadNormal, float fQuadPlaneDist, const Vector &ptQuadCenter, const Vector &vQuadExtent1_Normalized, float fQuadExtent1Length, const Vector &vQuadExtent2_Normalized, float fQuadExtent2Length ) { Vector ptPlaneIntersections[(12 + 12 + 8)]; //absolute max possible: 12 lines to connect the start box, 12 more to connect the end box, 8 to connect the boxes to eachother
//8 points to make an AABB, 8 lines to connect each point from it's start to end point along the ray, 8 possible intersections
int iPlaneIntersectionsCount = 0;
if( ray.m_IsRay ) { //just 1 line
if( ray.m_IsSwept ) { Vector ptEndPoints[2]; ptEndPoints[0] = ray.m_Start; ptEndPoints[1] = ptEndPoints[0] + ray.m_Delta;
int i; float fDists[2]; for( i = 0; i != 2; ++i ) fDists[i] = vQuadNormal.Dot( ptEndPoints[i] ) - fQuadPlaneDist; for( i = 0; i != 2; ++i ) { if( fDists[i] <= 0.0f ) { int j = 1-i; if( fDists[j] >= 0.0f ) { float fInvTotalDist = 1.0f / (fDists[j] - fDists[i]); //fDists[i] <= 0, ray is swept so no chance that the denom was 0
ptPlaneIntersections[0] = (ptEndPoints[i] * (fDists[j] * fInvTotalDist)) - (ptEndPoints[j] * (fDists[i] * fInvTotalDist)); //fDists[i] <= 0
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
iPlaneIntersectionsCount = 1; } else { return false; } break; } }
if( i == 2 ) return false; } else //not swept, so this is actually a point on quad question
{ if( fabs( vQuadNormal.Dot( ray.m_Start ) - fQuadPlaneDist ) < 1e-6 ) { ptPlaneIntersections[0] = ray.m_Start; iPlaneIntersectionsCount = 1; } else { return false; } } } else { Vector ptEndPoints[2][8]; //this specific ordering helps us web out from a point to its 3 connecting points with some bit math (most importantly, no if's)
ptEndPoints[0][0] = ray.m_Start; ptEndPoints[0][0].x -= ray.m_Extents.x; ptEndPoints[0][0].y -= ray.m_Extents.y; ptEndPoints[0][0].z -= ray.m_Extents.z; ptEndPoints[0][1] = ray.m_Start; ptEndPoints[0][1].x -= ray.m_Extents.x; ptEndPoints[0][1].y -= ray.m_Extents.y; ptEndPoints[0][1].z += ray.m_Extents.z; ptEndPoints[0][2] = ray.m_Start; ptEndPoints[0][2].x -= ray.m_Extents.x; ptEndPoints[0][2].y += ray.m_Extents.y; ptEndPoints[0][2].z += ray.m_Extents.z; ptEndPoints[0][3] = ray.m_Start; ptEndPoints[0][3].x -= ray.m_Extents.x; ptEndPoints[0][3].y += ray.m_Extents.y; ptEndPoints[0][3].z -= ray.m_Extents.z; ptEndPoints[0][4] = ray.m_Start; ptEndPoints[0][4].x += ray.m_Extents.x; ptEndPoints[0][4].y -= ray.m_Extents.y; ptEndPoints[0][4].z -= ray.m_Extents.z; ptEndPoints[0][5] = ray.m_Start; ptEndPoints[0][5].x += ray.m_Extents.x; ptEndPoints[0][5].y -= ray.m_Extents.y; ptEndPoints[0][5].z += ray.m_Extents.z; ptEndPoints[0][6] = ray.m_Start; ptEndPoints[0][6].x += ray.m_Extents.x; ptEndPoints[0][6].y += ray.m_Extents.y; ptEndPoints[0][6].z += ray.m_Extents.z; ptEndPoints[0][7] = ray.m_Start; ptEndPoints[0][7].x += ray.m_Extents.x; ptEndPoints[0][7].y += ray.m_Extents.y; ptEndPoints[0][7].z -= ray.m_Extents.z;
float fDists[2][8]; int iSides[2][8]; int iSideMask[2] = { 0, 0 }; for( int i = 0; i != 8; ++i ) { fDists[0][i] = vQuadNormal.Dot( ptEndPoints[0][i] ) - fQuadPlaneDist; if( fDists[0][i] > 0.0f ) { iSides[0][i] = 1; iSideMask[0] |= 1; } else { iSides[0][i] = 2; iSideMask[0] |= 2; } }
if( ray.m_IsSwept ) { for( int i = 0; i != 8; ++i ) ptEndPoints[1][i] = ptEndPoints[0][i] + ray.m_Delta;
for( int i = 0; i != 8; ++i ) { fDists[1][i] = vQuadNormal.Dot( ptEndPoints[1][i] ) - fQuadPlaneDist; if( fDists[1][i] > 0.0f ) { iSides[1][i] = 1; iSideMask[1] |= 1; } else { iSides[1][i] = 2; iSideMask[1] |= 2; } } }
if( (iSideMask[0] | iSideMask[1]) != 3 ) { //Assert( (iSideMask[0] | iSideMask[1]) != 2 );
return false; //all points resides entirely on one side of the quad
}
//generate intersections for boxes split by the plane at either end of the ray
for( int k = 0; k != 2; ++k ) { if( iSideMask[k] == 3 ) //box is split by the plane
{ for( int i = 0; i != 8; ++i ) { if( iSides[k][i] == 2 ) //point behind the plane
{ int iAxisCrossings[3]; iAxisCrossings[0] = i ^ 4; //upper 4 vs lower 4 crosses X axis
iAxisCrossings[1] = ((i + 1) & 3) + (i & 4); //cycle to the next element while staying within the upper 4 or lower 4, this will cross either Y or Z axis, we don't care which
iAxisCrossings[2] = ((i - 1) & 3) + (i & 4); //cylce to the previous element while staying within the upper 4 or lower 4, this will cross the axis iAxisCrossings[1] didn't cross
for( int j = 0; j != 3; ++j ) { if( iSides[k][iAxisCrossings[j]] == 1 ) //point in front of the plane
{ //line between ptEndPoints[i] and ptEndPoints[iAxisCrossings[j]] intersects the plane, generate a point at the intersection for further testing
float fInvTotalDist = 1.0f / (fDists[k][iAxisCrossings[j]] - fDists[k][i]); //remember that fDists[k][i] is a negative value
ptPlaneIntersections[iPlaneIntersectionsCount] = (ptEndPoints[k][iAxisCrossings[j]] * (-fDists[k][i] * fInvTotalDist)) + (ptEndPoints[k][i] * (fDists[k][iAxisCrossings[j]] * fInvTotalDist));
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
++iPlaneIntersectionsCount; } } } } } }
if( ray.m_IsSwept ) { for( int i = 0; i != 8; ++i ) { if( iSides[0][i] != iSides[1][i] ) { int iPosSide, iNegSide; if( iSides[0][i] == 1 ) { iPosSide = 0; iNegSide = 1; } else { iPosSide = 1; iNegSide = 0; }
Assert( (fDists[iPosSide][i] >= 0.0f) && (fDists[iNegSide][i] <= 0.0f) );
float fInvTotalDist = 1.0f / (fDists[iPosSide][i] - fDists[iNegSide][i]); //remember that fDists[iNegSide][i] is a negative value
ptPlaneIntersections[iPlaneIntersectionsCount] = (ptEndPoints[iPosSide][i] * (-fDists[iNegSide][i] * fInvTotalDist)) + (ptEndPoints[iNegSide][i] * (fDists[iPosSide][i] * fInvTotalDist));
Assert( fabs( ptPlaneIntersections[iPlaneIntersectionsCount].Dot( vQuadNormal ) - fQuadPlaneDist ) < 0.1f ); //intersection point is on plane
++iPlaneIntersectionsCount; } } } }
//down here, we should simply have a collection of plane intersections, now we see if they reside within the quad
Assert( iPlaneIntersectionsCount != 0 );
for( int i = 0; i != iPlaneIntersectionsCount; ++i ) { //these points are guaranteed to be on the plane, now just check to see if they're within the quad's extents
Vector vToPointFromQuadCenter = ptPlaneIntersections[i] - ptQuadCenter;
float fExt1Dist = vQuadExtent1_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt1Dist ) > fQuadExtent1Length ) return false; //point is outside boundaries
//vToPointFromQuadCenter -= vQuadExtent1_Normalized * fExt1Dist; //to handle diamond shaped quads
float fExt2Dist = vQuadExtent2_Normalized.Dot( vToPointFromQuadCenter ); if( fabs( fExt2Dist ) > fQuadExtent2Length ) return false; //point is outside boundaries
}
return true; //there were lines crossing the quad plane, and every line crossing that plane had its intersection with the plane within the quad's boundaries
}
//-----------------------------------------------------------------------------
// Purpose: override how single player rays hit the player
//-----------------------------------------------------------------------------
bool LineCircleIntersection(const Vector2D ¢er, const float radius, const Vector2D &vLinePt, const Vector2D &vLineDir, float *fIntersection1, float *fIntersection2) { // Line = P + Vt
// Sphere = r (assume we've translated to origin)
// (P + Vt)^2 = r^2
// VVt^2 + 2PVt + (PP - r^2)
// Solve as quadratic: (-b +/- sqrt(b^2 - 4ac)) / 2a
// If (b^2 - 4ac) is < 0 there is no solution.
// If (b^2 - 4ac) is = 0 there is one solution
// If (b^2 - 4ac) is > 0 there are two solutions.
// Translate circle to origin.
const Vector2D P( vLinePt - center );
const float a = vLineDir.Dot(vLineDir); const float b = 2.0f * P.Dot(vLineDir); const float c = P.Dot(P) - (radius * radius);
const float insideSqr = b*b - 4*a*c;
// No solution - (b^2 - 4ac) is < 0
if( insideSqr < -1.0e-6f ) { return false; } else { const float sqr = (float)FastSqrt(insideSqr); const float denom = 1.0 / (2.0f * a); const float t0 = (-b - sqr) * denom; const float t1 = (-b + sqr) * denom;
// One solution - (b^2 - 4ac) is = 0
if( insideSqr < 1.0e-6f ) { // a = 0 if the line direction is the zero vector, in which case,
// the line starts inside the circle but will never exit. We fudge
// it for this case and say it intersects at the origin of the line.
// Otherwise, the result is the smallest positive result
*fIntersection1 = *fIntersection2 = ( a == 0.0f ) ? 0.0f : ( t0 < 0 ? t1 : t0 ); Assert( !IS_NAN(*fIntersection1) );
// Started inside of the sphere (the only way we get one solution, unless
// the ray direction is the zero vector)
return c < 0; } // Two solutions - (b^2 - 4ac) is > 0
else { *fIntersection1 = t0; *fIntersection2 = t1; }
return true; } }
bool IntersectRayWithAACylinder( const Ray_t &ray, const Vector ¢er, float radius, float height, CBaseTrace *pTrace ) { Assert( ray.m_IsRay ); Collision_ClearTrace( ray.m_Start, ray.m_Delta, pTrace );
// First intersect the ray with the top + bottom planes
float halfHeight = height * 0.5;
// Handle parallel case
Vector vStart = ray.m_Start - center; Vector vEnd = vStart + ray.m_Delta;
float flEnterFrac, flLeaveFrac; if (FloatMakePositive(ray.m_Delta.z) < 1e-8) { if ( (vStart.z < -halfHeight) || (vStart.z > halfHeight) ) { return false; // no hit
} flEnterFrac = 0.0f; flLeaveFrac = 1.0f; } else { // Clip the ray to the top and bottom of box
flEnterFrac = IntersectRayWithAAPlane( vStart, vEnd, 2, 1, halfHeight); flLeaveFrac = IntersectRayWithAAPlane( vStart, vEnd, 2, 1, -halfHeight);
if ( flLeaveFrac < flEnterFrac ) { float temp = flLeaveFrac; flLeaveFrac = flEnterFrac; flEnterFrac = temp; }
if ( flLeaveFrac < 0 || flEnterFrac > 1) { return false; } }
// Intersect with circle
float flCircleEnterFrac, flCircleLeaveFrac; if ( !LineCircleIntersection( vec3_origin.AsVector2D(), radius, vStart.AsVector2D(), ray.m_Delta.AsVector2D(), &flCircleEnterFrac, &flCircleLeaveFrac ) ) { return false; // no hit
}
Assert( flCircleEnterFrac <= flCircleLeaveFrac ); if ( flCircleLeaveFrac < 0 || flCircleEnterFrac > 1) { return false; }
if ( flEnterFrac < flCircleEnterFrac ) flEnterFrac = flCircleEnterFrac; if ( flLeaveFrac > flCircleLeaveFrac ) flLeaveFrac = flCircleLeaveFrac;
if ( flLeaveFrac < flEnterFrac ) return false;
VectorMA( ray.m_Start, flEnterFrac , ray.m_Delta, pTrace->endpos ); pTrace->fraction = flEnterFrac; pTrace->contents = CONTENTS_SOLID;
// Calculate the point on our center line where we're nearest the intersection point
Vector collisionCenter; CalcClosestPointOnLineSegment( pTrace->endpos, center + Vector( 0, 0, halfHeight ), center - Vector( 0, 0, halfHeight ), collisionCenter );
// Our normal is the direction from that center point to the intersection point
pTrace->plane.normal = pTrace->endpos - collisionCenter; VectorNormalize( pTrace->plane.normal );
return true; }
#endif // !_STATIC_LINKED || _SHARED_LIB
|