|
|
//===== Copyright � 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#ifdef _WIN32
#include <windows.h>
#pragma warning( disable : 4530 ) // warning: exception handler -GX option
#include "tier0/valve_off.h"
#include "tier0/pmelib.h"
#if _MSC_VER >=1300
#else
#include "winioctl.h"
#endif
#include "tier0/valve_on.h"
#include "tier0/ioctlcodes.h"
// NOTE: This has to be the last file included!
#include "tier0/memdbgon.h"
PME* PME::_singleton = 0;
// Single interface.
PME* PME::Instance() { if (_singleton == 0) { _singleton = new PME; } return _singleton; }
//---------------------------------------------------------------------------
// Open the device driver and detect the processor
//---------------------------------------------------------------------------
HRESULT PME::Init( void ) { OSVERSIONINFO OS;
if ( bDriverOpen ) return E_DRIVER_ALREADY_OPEN;
switch( vendor ) { case INTEL: case AMD: break; default: bDriverOpen = FALSE; // not an Intel or Athlon processor so return false
return E_UNKNOWN_CPU_VENDOR; }
//-----------------------------------------------------------------------
// Get the operating system version
//-----------------------------------------------------------------------
OS.dwOSVersionInfoSize = sizeof( OSVERSIONINFO ); GetVersionEx( &OS );
if ( OS.dwPlatformId == VER_PLATFORM_WIN32_NT ) { hFile = CreateFile( // WINDOWS NT
"\\\\.\\GDPERF", GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); } else { hFile = CreateFile( // WINDOWS 95
"\\\\.\\GDPERF.VXD", GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); }
if (hFile == INVALID_HANDLE_VALUE ) return E_CANT_OPEN_DRIVER;
bDriverOpen = TRUE;
//-------------------------------------------------------------------
// We have successfully opened the device driver, get the family
// of the processor.
//-------------------------------------------------------------------
//-------------------------------------------------------------------
// We need to write to counter 0 on the pro family to enable both
// of the performance counters. We write to both so they start in a
// known state. For the pentium this is not necessary.
//-------------------------------------------------------------------
if (vendor == INTEL && version.Family == PENTIUMPRO_FAMILY) { SelectP5P6PerformanceEvent(P6_CLOCK, 0, TRUE, TRUE); SelectP5P6PerformanceEvent(P6_CLOCK, 1, TRUE, TRUE); }
return S_OK;
}
//---------------------------------------------------------------------------
// Close the device driver
//---------------------------------------------------------------------------
HRESULT PME::Close(void) { if (bDriverOpen == false) // driver is not going
return E_DRIVER_NOT_OPEN;
bDriverOpen = false;
if (hFile) // if we have no driver handle, return FALSE
{ BOOL result = CloseHandle(hFile);
hFile = NULL; return result ? S_OK : HRESULT_FROM_WIN32( GetLastError() ); } else return E_DRIVER_NOT_OPEN;
}
//---------------------------------------------------------------------------
// Select the event to monitor with counter 0
//
HRESULT PME::SelectP5P6PerformanceEvent(uint32 dw_event, uint32 dw_counter, bool b_user, bool b_kernel) { HRESULT hr = S_OK;
if (dw_counter>1) // is the counter valid
return E_BAD_COUNTER;
if (bDriverOpen == false) // driver is not going
return E_DRIVER_NOT_OPEN;
if ( ((dw_event>>28)&0xF) != (uint32)version.Family) { return E_ILLEGAL_OPERATION; // this operation is not for this processor
}
if ( (((dw_event & 0x300)>>8) & (dw_counter+1)) == 0 ) { return E_ILLEGAL_OPERATION; // this operation is not for this counter
}
switch(version.Family) { case PENTIUM_FAMILY: { uint64 i64_cesr; int i_kernel_bit,i_user_bit; BYTE u1_event = (BYTE)((dw_event & (0x3F0000))>>16);
if (dw_counter==0) // the kernel and user mode bits depend on
{ // counter being used.
i_kernel_bit = 6; i_user_bit = 7; } else { i_kernel_bit = 22; i_user_bit = 23; }
ReadMSR(0x11, &i64_cesr); // get current P5 event select (cesr)
// top 32bits of cesr are not valid so ignore them
i64_cesr &= ((dw_counter == 0)?0xffff0000:0x0000ffff); WriteMSR(0x11,i64_cesr); // stop the counter
WriteMSR((dw_counter==0)?0x12:0x13,0ui64); // clear the p.counter
// set the user and kernel mode bits
i64_cesr |= ( b_user?(1<<7):0 ) | ( b_kernel?(1<<6):0 );
// is this the special P5 value that signals count clocks??
if (u1_event == 0x3f) { WriteMSR(0x11, i64_cesr|0x100); // Count clocks
} else { WriteMSR(0x11, i64_cesr|u1_event); // Count events
}
} break;
case PENTIUMPRO_FAMILY:
{ BYTE u1_event = (BYTE)((dw_event & (0xFF0000))>>16); BYTE u1_mask = (BYTE)((dw_event & 0xFF));
// Event select 0 and 1 are identical.
hr = WriteMSR((dw_counter==0)?0x186:0x187, uint64((u1_event | (b_user?(1<<16):0) | (b_kernel?(1<<17):0) | (1<<22) | (1<<18) | (u1_mask<<8)) ) ); } break;
case PENTIUM4_FAMILY: // use the p4 path
break;
default: return E_UNKNOWN_CPU; }
return hr; }
//---------------------------------------------------------------------------
// Read model specific register
//---------------------------------------------------------------------------
HRESULT PME::ReadMSR(uint32 dw_reg, int64 * pi64_value) { DWORD dw_ret_len;
if (bDriverOpen == false) // driver is not going
return E_DRIVER_NOT_OPEN;
BOOL result = DeviceIoControl ( hFile, // Handle to device
(DWORD) IOCTL_READ_MSR, // IO Control code for Read
&dw_reg, // Input Buffer to driver.
sizeof(uint32), // Length of input buffer.
pi64_value, // Output Buffer from driver.
sizeof(int64), // Length of output buffer in bytes.
&dw_ret_len, // Bytes placed in output buffer.
NULL // NULL means wait till op. completes
);
HRESULT hr = result ? S_OK : HRESULT_FROM_WIN32( GetLastError() ); if (hr == S_OK && dw_ret_len != sizeof(int64)) hr = E_BAD_DATA;
return hr; }
HRESULT PME::ReadMSR(uint32 dw_reg, uint64 * pi64_value) { DWORD dw_ret_len;
if (bDriverOpen == false) // driver is not going
return E_DRIVER_NOT_OPEN;
BOOL result = DeviceIoControl ( hFile, // Handle to device
(DWORD) IOCTL_READ_MSR, // IO Control code for Read
&dw_reg, // Input Buffer to driver.
sizeof(uint32), // Length of input buffer.
pi64_value, // Output Buffer from driver.
sizeof(uint64), // Length of output buffer in bytes.
&dw_ret_len, // Bytes placed in output buffer.
NULL // NULL means wait till op. completes
);
HRESULT hr = result ? S_OK : HRESULT_FROM_WIN32( GetLastError() ); if (hr == S_OK && dw_ret_len != sizeof(uint64)) hr = E_BAD_DATA;
return hr; }
//---------------------------------------------------------------------------
// Write model specific register
//---------------------------------------------------------------------------
HRESULT PME::WriteMSR(uint32 dw_reg, const int64 & i64_value) { DWORD dw_buffer[3]; DWORD dw_ret_len;
if (bDriverOpen == false) // driver is not going
return E_DRIVER_NOT_OPEN;
dw_buffer[0] = dw_reg; // setup the 12 byte input
*((int64*)(&dw_buffer[1]))= i64_value;
BOOL result = DeviceIoControl ( hFile, // Handle to device
(DWORD) IOCTL_WRITE_MSR, // IO Control code for Read
dw_buffer, // Input Buffer to driver.
12, // Length of Input buffer
NULL, // Buffer from driver, None for WRMSR
0, // Length of output buffer in bytes.
&dw_ret_len, // Bytes placed in DataBuffer.
NULL // NULL means wait till op. completes.
);
HRESULT hr = result ? S_OK : HRESULT_FROM_WIN32( GetLastError() ); if (hr == S_OK && dw_ret_len != 0) hr = E_BAD_DATA;
return hr; }
HRESULT PME::WriteMSR(uint32 dw_reg, const uint64 & i64_value) { DWORD dw_buffer[3]; DWORD dw_ret_len;
if (bDriverOpen == false) // driver is not going
return E_DRIVER_NOT_OPEN;
dw_buffer[0] = dw_reg; // setup the 12 byte input
*((uint64*)(&dw_buffer[1]))= i64_value;
BOOL result = DeviceIoControl ( hFile, // Handle to device
(DWORD) IOCTL_WRITE_MSR, // IO Control code for Read
dw_buffer, // Input Buffer to driver.
12, // Length of Input buffer
NULL, // Buffer from driver, None for WRMSR
0, // Length of output buffer in bytes.
&dw_ret_len, // Bytes placed in DataBuffer.
NULL // NULL means wait till op. completes.
);
//E_POINTER
HRESULT hr = result ? S_OK : HRESULT_FROM_WIN32( GetLastError() ); if (hr == S_OK && dw_ret_len != 0) hr = E_BAD_DATA;
return hr; }
#pragma hdrstop
//---------------------------------------------------------------------------
// Return the frequency of the processor in Hz.
//
double PME::GetCPUClockSpeedFast(void) { int64 i64_perf_start, i64_perf_freq, i64_perf_end; int64 i64_clock_start,i64_clock_end; double d_loop_period, d_clock_freq;
//-----------------------------------------------------------------------
// Query the performance of the Windows high resolution timer.
//-----------------------------------------------------------------------
QueryPerformanceFrequency((LARGE_INTEGER*)&i64_perf_freq);
//-----------------------------------------------------------------------
// Query the current value of the Windows high resolution timer.
//-----------------------------------------------------------------------
QueryPerformanceCounter((LARGE_INTEGER*)&i64_perf_start); i64_perf_end = 0;
//-----------------------------------------------------------------------
// Time of loop of 250000 windows cycles with RDTSC
//-----------------------------------------------------------------------
RDTSC(i64_clock_start); while(i64_perf_end<i64_perf_start+250000) { QueryPerformanceCounter((LARGE_INTEGER*)&i64_perf_end); } RDTSC(i64_clock_end);
//-----------------------------------------------------------------------
// Caclulate the frequency of the RDTSC timer and therefore calculate
// the frequency of the processor.
//-----------------------------------------------------------------------
i64_clock_end -= i64_clock_start;
d_loop_period = ((double)(i64_perf_freq)) / 250000.0; d_clock_freq = ((double)(i64_clock_end & 0xffffffff))*d_loop_period;
return (float)d_clock_freq; }
// takes 1 second
double PME::GetCPUClockSpeedSlow(void) {
if (m_CPUClockSpeed != 0) return m_CPUClockSpeed;
unsigned long start_ms, stop_ms; unsigned long start_tsc,stop_tsc;
// boosting priority helps with noise. its optional and i dont think
// it helps all that much
PME * pme = PME::Instance();
pme->SetProcessPriority(ProcessPriorityHigh);
// wait for millisecond boundary
start_ms = GetTickCount() + 5; while (start_ms <= GetTickCount());
// read timestamp (you could use QueryPerformanceCounter in hires mode if you want)
#ifdef COMPILER_MSVC64
RDTSC(start_tsc); #else
__asm { rdtsc mov dword ptr [start_tsc+0],eax mov dword ptr [start_tsc+4],edx } #endif
// wait for end
stop_ms = start_ms + 1000; // longer wait gives better resolution
while (stop_ms > GetTickCount());
// read timestamp (you could use QueryPerformanceCounter in hires mode if you want)
#ifdef COMPILER_MSVC64
RDTSC(stop_tsc); #else
__asm { rdtsc mov dword ptr [stop_tsc+0],eax mov dword ptr [stop_tsc+4],edx } #endif
// normalize priority
pme->SetProcessPriority(ProcessPriorityNormal);
// return clock speed
// optionally here you could round to known clocks, like speeds that are multimples
// of 100, 133, 166, etc.
m_CPUClockSpeed = ((stop_tsc - start_tsc) * 1000.0) / (double)(stop_ms - start_ms); return m_CPUClockSpeed;
}
const unsigned short cccr_escr_map[NCOUNTERS][8] = { { 0x3B2, 0x3B4, 0x3AA, 0x3B6, 0x3AC, 0x3C8, 0x3A2, 0x3A0, }, { 0x3B2, 0x3B4, 0x3AA, 0x3B6, 0x3AC, 0x3C8, 0x3A2, 0x3A0, }, { 0x3B3, 0x3B5, 0x3AB, 0x3B7, 0x3AD, 0x3C9, 0x3A3, 0x3A1, }, { 0x3B3, 0x3B5, 0x3AB, 0x3B7, 0x3AD, 0x3C9, 0x3A3, 0x3A1, }, { 0x3C0, 0x3C4, 0x3C2, }, { 0x3C0, 0x3C4, 0x3C2, }, { 0x3C1, 0x3C5, 0x3C3, }, { 0x3C1, 0x3C5, 0x3C3, }, { 0x3A6, 0x3A4, 0x3AE, 0x3B0, 0, 0x3A8, }, { 0x3A6, 0x3A4, 0x3AE, 0x3B0, 0, 0x3A8, }, { 0x3A7, 0x3A5, 0x3AF, 0x3B1, 0, 0x3A9, }, { 0x3A7, 0x3A5, 0x3AF, 0x3B1, 0, 0x3A9, }, {
0x3BA, 0x3CA, 0x3BC, 0x3BE, 0x3B8, 0x3CC, 0x3E0, }, {
0x3BA, 0x3CA, 0x3BC, 0x3BE, 0x3B8, 0x3CC, 0x3E0, }, {
0x3BB, 0x3CB, 0x3BD, 0, 0x3B9, 0x3CD, 0x3E1, }, {
0x3BB, 0x3CB, 0x3BD, 0, 0x3B9, 0x3CD, 0x3E1, }, { 0x3BA, 0x3CA, 0x3BC, 0x3BE, 0x3B8, 0x3CC, 0x3E0, }, {
0x3BB, 0x3CB, 0x3BD, 0, 0x3B9, 0x3CD, 0x3E1, }, };
#ifdef DBGFLAG_VALIDATE
//-----------------------------------------------------------------------------
// Purpose: Ensure that all of our internal structures are consistent, and
// account for all memory that we've allocated.
// Input: validator - Our global validator object
// pchName - Our name (typically a member var in our container)
//-----------------------------------------------------------------------------
void PME::Validate( CValidator &validator, tchar *pchName ) { validator.Push( _T("PME"), this, pchName );
validator.ClaimMemory( this );
validator.ClaimMemory( cache );
validator.ClaimMemory( ( void * ) vendor_name.c_str( ) ); validator.ClaimMemory( ( void * ) brand.c_str( ) );
validator.Pop( ); } #endif // DBGFLAG_VALIDATE
#pragma warning( default : 4530 ) // warning: exception handler -GX option
#endif
|