|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
// extracephonemes.cpp : Defines the entry point for the console application.
//
#define PROTECTED_THINGS_DISABLE
#include "tier0/wchartypes.h"
#include <stdio.h>
#include <windows.h>
#include <tchar.h>
#include "sphelper.h"
#include "spddkhlp.h"
// ATL Header Files
#include <atlbase.h>
// Face poser and util includes
#include "utlvector.h"
#include "phonemeextractor/PhonemeExtractor.h"
#include "PhonemeConverter.h"
#include "sentence.h"
#include "tier0/dbg.h"
#include "tier0/icommandline.h"
#include "FileSystem.h"
// Extract phoneme grammar id
#define EP_GRAM_ID 101
// First rule of dynamic sentence rule set
#define DYN_SENTENCERULE 102
// # of milliseconds to allow for processing before timeout
#define SR_WAVTIMEOUT 4000
// Weight tag for rule to rule word/rule transitions
#define CONFIDENCE_WEIGHT 0.0f
//#define LOGGING 1
#define LOGFILE "c:\\fp.log"
void LogReset( void ) { #if LOGGING
FILE *fp = fopen( LOGFILE, "w" ); if ( fp ) fclose( fp ); #endif
}
char *va( const char *fmt, ... );
DEFINE_LOGGING_CHANNEL_NO_TAGS( LOG_PhonemeExtractor, "PhonemeExtractor" );
//-----------------------------------------------------------------------------
// Purpose:
// Input : *words -
//-----------------------------------------------------------------------------
void LogWords( CSentence& sentence ) { Log_Msg( LOG_PhonemeExtractor, "Wordcount == %i\n", sentence.m_Words.Count() );
for ( int i = 0; i < sentence.m_Words.Count(); i++ ) { const CWordTag *w = sentence.m_Words[ i ]; Log_Msg( LOG_PhonemeExtractor, "Word %s %u to %u\n", w->GetWord(), w->m_uiStartByte, w->m_uiEndByte ); } }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *phonemes -
//-----------------------------------------------------------------------------
void LogPhonemes( CSentence& sentence ) { return;
Log_Msg( LOG_PhonemeExtractor, "Phonemecount == %i\n", sentence.CountPhonemes() );
for ( int i = 0; i < sentence.m_Words.Count(); i++ ) { const CWordTag *w = sentence.m_Words[ i ];
for ( int j = 0; j < w->m_Phonemes.Count(); j++ ) { const CPhonemeTag *p = w->m_Phonemes[ j ]; Log_Msg( LOG_PhonemeExtractor, "Phoneme %s %u to %u\n", p->GetTag(), p->m_uiStartByte, p->m_uiEndByte ); } } }
#define NANO_CONVERT 10000000.0f;
//-----------------------------------------------------------------------------
// Purpose: Walk list of words and phonemes and create phoneme tags in CSentence object
// FIXME: Right now, phonemes are assumed to evenly space out across a word.
// Input : *converter -
// result -
// sentence -
//-----------------------------------------------------------------------------
void EnumeratePhonemes( ISpPhoneConverter *converter, const ISpRecoResult* result, CSentence& sentence ) { USES_CONVERSION;
// Grab access to element container
ISpPhrase *phrase = ( ISpPhrase * )result; if ( !phrase ) return;
SPPHRASE *pElements; if ( !SUCCEEDED( phrase->GetPhrase( &pElements ) ) ) return;
// Only use it if it's better/same size as what we already had on-hand
if ( pElements->Rule.ulCountOfElements > 0 ) //(unsigned int)( sentence.m_Words.Size() - sentence.GetWordBase() ) )
{ sentence.ResetToBase();
// Walk list of words
for ( ULONG i = 0; i < pElements->Rule.ulCountOfElements; i++ ) { unsigned int wordstart, wordend;
// Get start/end sample index
wordstart = pElements->pElements[i].ulAudioStreamOffset + (unsigned int)pElements->ullAudioStreamPosition; wordend = wordstart + pElements->pElements[i].ulAudioSizeBytes;
// Create word tag
CWordTag *w = new CWordTag( W2T( pElements->pElements[i].pszDisplayText ) ); Assert( w ); w->m_uiStartByte = wordstart; w->m_uiEndByte = wordend;
sentence.AddWordTag( w );
// Count # of phonemes in this word
SPPHONEID pstr[ 2 ]; pstr[ 1 ] = 0; WCHAR wszPhoneme[ SP_MAX_PRON_LENGTH ];
const SPPHONEID *current; SPPHONEID phoneme; current = pElements->pElements[i].pszPronunciation; float total_weight = 0.0f; while ( 1 ) { phoneme = *current++; if ( !phoneme ) break;
pstr[ 0 ] = phoneme; wszPhoneme[ 0 ] = L'\0';
converter->IdToPhone( pstr, wszPhoneme );
total_weight += WeightForPhoneme( W2A( wszPhoneme ) ); }
current = pElements->pElements[i].pszPronunciation;
// Decide # of bytes/phoneme weight
float psize = 0; if ( total_weight ) { psize = ( wordend - wordstart ) / total_weight; }
int number = 0;
// Re-walk the phoneme list and create true phoneme tags
float startWeight = 0.0f; while ( 1 ) { phoneme = *current++; if ( !phoneme ) break;
pstr[ 0 ] = phoneme; wszPhoneme[ 0 ] = L'\0';
converter->IdToPhone( pstr, wszPhoneme ); CPhonemeTag *p = new CPhonemeTag( W2A( wszPhoneme ) ); Assert( p ); float weight = WeightForPhoneme( W2A( wszPhoneme ) );
p->m_uiStartByte = wordstart + (int)( startWeight * psize ); p->m_uiEndByte = p->m_uiStartByte + (int)( psize * weight );
startWeight += weight;
// Convert to IPA phoneme code
p->SetPhonemeCode( TextToPhoneme( p->GetTag() ) );
sentence.AddPhonemeTag( w, p );
number++; } } }
// Free memory
::CoTaskMemFree(pElements); }
//-----------------------------------------------------------------------------
// Purpose: Create rules for each word in the reference sentence
//-----------------------------------------------------------------------------
typedef struct { int ruleId; SPSTATEHANDLE hRule; CSpDynamicString word; char plaintext[ 256 ]; } WORDRULETYPE;
//-----------------------------------------------------------------------------
// Purpose: Creates start for word of sentence
// Input : cpRecoGrammar -
// *root -
// *rules -
// word -
//-----------------------------------------------------------------------------
void AddWordRule( ISpRecoGrammar* cpRecoGrammar, SPSTATEHANDLE *root, CUtlVector< WORDRULETYPE > *rules, CSpDynamicString& word ) { USES_CONVERSION; HRESULT hr; WORDRULETYPE *newrule;
int idx = (*rules).AddToTail();
newrule = &(*rules)[ idx ];
newrule->ruleId = DYN_SENTENCERULE + idx + 1; newrule->word = word;
strcpy( newrule->plaintext, W2T( word ) );
// Create empty rule
hr = cpRecoGrammar->CreateNewState( *root, &newrule->hRule ); Assert( !FAILED( hr ) ); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : cpRecoGrammar -
// *from -
// *to -
//-----------------------------------------------------------------------------
void AddWordTransitionRule( ISpRecoGrammar* cpRecoGrammar, WORDRULETYPE *from, WORDRULETYPE *to ) { USES_CONVERSION;
HRESULT hr; Assert( from );
if ( from && !to ) { OutputDebugString( va( "Transition from %s to TERM\r\n", from->plaintext ) ); } else { OutputDebugString( va( "Transition from %s to %s\r\n", from->plaintext, to->plaintext ) ); }
hr = cpRecoGrammar->AddWordTransition( from->hRule, to ? to->hRule : NULL, (WCHAR *)from->word, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL ); Assert( !FAILED( hr ) ); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : cpRecoGrammar -
// *from -
// *to -
//-----------------------------------------------------------------------------
void AddOptionalTransitionRule( ISpRecoGrammar* cpRecoGrammar, WORDRULETYPE *from, WORDRULETYPE *to ) { USES_CONVERSION;
HRESULT hr; Assert( from );
if ( from && !to ) { OutputDebugString( va( "Opt transition from %s to TERM\r\n", from->plaintext ) ); } else { OutputDebugString( va( "Opt transition from %s to %s\r\n", from->plaintext, to->plaintext ) ); }
hr = cpRecoGrammar->AddWordTransition( from->hRule, to ? to->hRule : NULL, NULL, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL ); Assert( !FAILED( hr ) ); }
#define MAX_WORD_SKIP 1
//-----------------------------------------------------------------------------
// Purpose: Links together all word rule states into a sentence rule CFG
// Input : singleword -
// cpRecoGrammar -
// *root -
// *rules -
//-----------------------------------------------------------------------------
bool BuildRules( ISpRecoGrammar* cpRecoGrammar, SPSTATEHANDLE *root, CUtlVector< WORDRULETYPE > *rules ) { HRESULT hr; WORDRULETYPE *rule, *next;
int numrules = (*rules).Count();
rule = &(*rules)[ 0 ];
// Add transition
hr = cpRecoGrammar->AddWordTransition( *root, rule->hRule, NULL, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL ); Assert( !FAILED( hr ) );
for ( int i = 0; i < numrules; i++ ) { rule = &(*rules)[ i ]; if ( i < numrules - 1 ) { next = &(*rules)[ i + 1 ]; } else { next = NULL; }
AddWordTransitionRule( cpRecoGrammar, rule, next ); }
if ( numrules > 1 ) { for ( int skip = 1; skip <= min( MAX_WORD_SKIP, numrules ); skip++ ) { OutputDebugString( va( "Opt transition from Root to %s\r\n", (*rules)[ 0 ].plaintext ) );
hr = cpRecoGrammar->AddWordTransition( *root, (*rules)[ 0 ].hRule, NULL, NULL, SPWT_LEXICAL, CONFIDENCE_WEIGHT, NULL );
// Now build rules where you can skip 1 to N intervening words
for ( int i = 1; i < numrules; i++ ) { // Start at the beginning?
rule = &(*rules)[ i ]; if ( i < numrules - skip ) { next = &(*rules)[ i + skip ]; } else { continue; }
// Add transition
AddOptionalTransitionRule( cpRecoGrammar, rule, next ); }
// Go from final rule to end point
AddOptionalTransitionRule( cpRecoGrammar, rule, NULL ); } }
// Store it
hr = cpRecoGrammar->Commit(NULL); if ( FAILED( hr ) ) return false;
return true; }
//-----------------------------------------------------------------------------
// Purpose: Debugging, prints alternate list if one is created
// Input : cpResult -
// (*pfnPrint -
//-----------------------------------------------------------------------------
void PrintAlternates( ISpRecoResult* cpResult, void (*pfnPrint)( const char *fmt, ... ) ) { ISpPhraseAlt *rgPhraseAlt[ 32 ]; memset( rgPhraseAlt, 0, sizeof( rgPhraseAlt ) );
ULONG ulCount; ISpPhrase *phrase = ( ISpPhrase * )cpResult; if ( phrase ) { SPPHRASE *pElements; if ( SUCCEEDED( phrase->GetPhrase( &pElements ) ) ) { if ( pElements->Rule.ulCountOfElements > 0 ) { HRESULT hr = cpResult->GetAlternates( pElements->Rule.ulFirstElement, pElements->Rule.ulCountOfElements, 32, rgPhraseAlt, &ulCount); Assert( !FAILED( hr ) ); for ( ULONG r = 0 ; r < ulCount; r++ ) { CSpDynamicString dstrText; hr = rgPhraseAlt[ r ]->GetText( (ULONG)SP_GETWHOLEPHRASE, (ULONG)SP_GETWHOLEPHRASE, TRUE, &dstrText, NULL); Assert( !FAILED( hr ) );
pfnPrint( "[ ALT ]" ); pfnPrint( dstrText.CopyToChar() ); pfnPrint( "\r\n" ); } } } }
for ( int i = 0; i < 32; i++ ) { if ( rgPhraseAlt[ i ] ) { rgPhraseAlt[ i ]->Release(); rgPhraseAlt[ i ] = NULL; } } }
void PrintWordsAndPhonemes( CSentence& sentence, void (*pfnPrint)( const char *fmt, ... ) ) { char sz[ 256 ]; int i;
pfnPrint( "WORDS\r\n\r\n" );
for ( i = 0 ; i < sentence.m_Words.Count(); i++ ) { CWordTag *word = sentence.m_Words[ i ]; if ( !word ) continue;
sprintf( sz, "<%u - %u> %s\r\n", word->m_uiStartByte, word->m_uiEndByte, word->GetWord() );
pfnPrint( sz );
for ( int j = 0 ; j < word->m_Phonemes.Count(); j++ ) { CPhonemeTag *phoneme = word->m_Phonemes[ j ]; if ( !phoneme ) continue;
sprintf( sz, " <%u - %u> %s\r\n", phoneme->m_uiStartByte, phoneme->m_uiEndByte, phoneme->GetTag() );
pfnPrint( sz ); } }
pfnPrint( "\r\n" ); }
//-----------------------------------------------------------------------------
// Purpose: Given a wave file and a string of words "text", creates a CFG from the
// sentence and stores the resulting words/phonemes in CSentence
// Input : *wavname -
// text -
// sentence -
// (*pfnPrint -
// Output : SR_RESULT
//-----------------------------------------------------------------------------
SR_RESULT ExtractPhonemes( const char *wavname, CSpDynamicString& text, CSentence& sentence, void (*pfnPrint)( const char *fmt, ...) ) { // Assume failure
SR_RESULT result = SR_RESULT_ERROR;
if ( text.Length() <= 0 ) { pfnPrint( "Error: no rule / text specified\n" ); return result; }
USES_CONVERSION; HRESULT hr; CUtlVector < WORDRULETYPE > wordRules;
CComPtr<ISpStream> cpInputStream; CComPtr<ISpRecognizer> cpRecognizer; CComPtr<ISpRecoContext> cpRecoContext; CComPtr<ISpRecoGrammar> cpRecoGrammar; CComPtr<ISpPhoneConverter> cpPhoneConv; // Create basic SAPI stream object
// NOTE: The helper SpBindToFile can be used to perform the following operations
hr = cpInputStream.CoCreateInstance(CLSID_SpStream); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Stream object not installed?\n" ); return result; }
CSpStreamFormat sInputFormat; // setup stream object with wav file MY_WAVE_AUDIO_FILENAME
// for read-only access, since it will only be access by the SR engine
hr = cpInputStream->BindToFile( T2W(wavname), SPFM_OPEN_READONLY, NULL, sInputFormat.WaveFormatExPtr(), SPFEI_ALL_EVENTS );
if ( FAILED( hr ) ) { pfnPrint( "Error: couldn't open wav file %s\n", wavname ); return result; } // Create in-process speech recognition engine
hr = cpRecognizer.CoCreateInstance(CLSID_SpInprocRecognizer); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 In process recognizer object not installed?\n" ); return result; }
// Create recognition context to receive events
hr = cpRecognizer->CreateRecoContext(&cpRecoContext); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to create recognizer context\n" ); return result; } // Create a grammar
hr = cpRecoContext->CreateGrammar( EP_GRAM_ID, &cpRecoGrammar ); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to create recognizer grammar\n" ); return result; }
LANGID englishID = 0x409; // 1033 decimal
bool userSpecified = false; LANGID langID = SpGetUserDefaultUILanguage();
// Allow commandline override
if ( CommandLine()->FindParm( "-languageid" ) != 0 ) { userSpecified = true; langID = CommandLine()->ParmValue( "-languageid", langID ); }
// Create a phoneme converter ( so we can convert to IPA codes )
hr = SpCreatePhoneConverter( langID, NULL, NULL, &cpPhoneConv ); if ( FAILED( hr ) ) { if ( langID != englishID ) { if ( userSpecified ) { pfnPrint( "Warning: SAPI 5.1 Unable to create phoneme converter for command line override -languageid %i\n", langID ); } else { pfnPrint( "Warning: SAPI 5.1 Unable to create phoneme converter for default UI language %i\n",langID ); }
// Try english!!!
langID = englishID; hr = SpCreatePhoneConverter( langID, NULL, NULL, &cpPhoneConv ); }
if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to create phoneme converter for English language id %i\n", langID ); return result; } else { pfnPrint( "Note: SAPI 5.1 Falling back to use english -languageid %i\n", langID ); } } else if ( userSpecified ) { pfnPrint( "Note: SAPI 5.1 Using user specified -languageid %i\n",langID ); }
SPSTATEHANDLE hStateRoot; // create/re-create Root level rule of grammar
hr = cpRecoGrammar->GetRule(L"Root", 0, SPRAF_TopLevel | SPRAF_Active, TRUE, &hStateRoot); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to create root rule\n" ); return result; }
// Inactivate it so we can alter it
hr = cpRecoGrammar->SetRuleState( NULL, NULL, SPRS_INACTIVE ); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to deactivate grammar rules\n" ); return result; }
// Create the rule set from the words in text
{ CSpDynamicString currentWord; WCHAR *pos = ( WCHAR * )text; WCHAR str[ 2 ]; str[1]= 0;
while ( *pos ) { if ( *pos == L' ' /*|| *pos == L'.' || *pos == L'-'*/ ) { // Add word to rule set
if ( currentWord.Length() > 0 ) { AddWordRule( cpRecoGrammar, &hStateRoot, &wordRules, currentWord ); currentWord.Clear(); } pos++; continue; }
// Skip anything that's inside a [ xxx ] pair.
if ( *pos == L'[' ) { while ( *pos && *pos != L']' ) { pos++; }
if ( *pos ) { pos++; } continue; }
str[ 0 ] = *pos;
currentWord.Append( str ); pos++; }
if ( currentWord.Length() > 0 ) { AddWordRule( cpRecoGrammar, &hStateRoot, &wordRules, currentWord ); }
if ( wordRules.Count() <= 0 ) { pfnPrint( "Error: Text %s contained no usable words\n", text ); return result; }
// Build all word to word transitions in the grammar
if ( !BuildRules( cpRecoGrammar, &hStateRoot, &wordRules ) ) { pfnPrint( "Error: Rule set for %s could not be generated\n", text ); return result; } }
// check for recognitions and end of stream event
const ULONGLONG ullInterest = SPFEI(SPEI_RECOGNITION) | SPFEI(SPEI_END_SR_STREAM) | SPFEI(SPEI_FALSE_RECOGNITION) | SPFEI(SPEI_PHRASE_START ) | SPFEI(SPEI_HYPOTHESIS ) | SPFEI(SPEI_INTERFERENCE) ; hr = cpRecoContext->SetInterest( ullInterest, ullInterest ); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to set interest level\n" ); return result; } // use Win32 events for command-line style application
hr = cpRecoContext->SetNotifyWin32Event(); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to set win32 notify event\n" ); return result; } // connect wav input to recognizer
// SAPI will negotiate mismatched engine/input audio formats using system audio codecs, so second parameter is not important - use default of TRUE
hr = cpRecognizer->SetInput(cpInputStream, TRUE); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to associate input stream\n" ); return result; }
// Activate the CFG ( rather than using dictation )
hr = cpRecoGrammar->SetRuleState( NULL, NULL, SPRS_ACTIVE ); if ( FAILED( hr ) ) { switch ( hr ) { case E_INVALIDARG: pfnPrint( "pszName is invalid or bad. Alternatively, pReserved is non-NULL\n" ); break; case SP_STREAM_UNINITIALIZED: pfnPrint( "ISpRecognizer::SetInput has not been called with the InProc recognizer\n" ); break; case SPERR_UNINITIALIZED: pfnPrint( "The object has not been properly initialized.\n"); break; case SPERR_UNSUPPORTED_FORMAT: pfnPrint( "Audio format is bad or is not recognized. Alternatively, the device driver may be busy by another application and cannot be accessed.\n" ); break; case SPERR_NOT_TOPLEVEL_RULE: pfnPrint( "The rule pszName exists, but is not a top-level rule.\n" ); break; default: pfnPrint( "Unknown error\n" ); break; } pfnPrint( "Error: SAPI 5.1 Unable to activate rule set\n" ); return result; }
// while events occur, continue processing
// timeout should be greater than the audio stream length, or a reasonable amount of time expected to pass before no more recognitions are expected in an audio stream
BOOL fEndStreamReached = FALSE; while (!fEndStreamReached && S_OK == cpRecoContext->WaitForNotifyEvent( SR_WAVTIMEOUT )) { CSpEvent spEvent; // pull all queued events from the reco context's event queue
while (!fEndStreamReached && S_OK == spEvent.GetFrom(cpRecoContext)) { // Check event type
switch (spEvent.eEventId) { case SPEI_INTERFERENCE: { SPINTERFERENCE interference = spEvent.Interference();
switch ( interference ) { case SPINTERFERENCE_NONE: pfnPrint( "[ I None ]\r\n" ); break; case SPINTERFERENCE_NOISE: pfnPrint( "[ I Noise ]\r\n" ); break; case SPINTERFERENCE_NOSIGNAL: pfnPrint( "[ I No Signal ]\r\n" ); break; case SPINTERFERENCE_TOOLOUD: pfnPrint( "[ I Too Loud ]\r\n" ); break; case SPINTERFERENCE_TOOQUIET: pfnPrint( "[ I Too Quiet ]\r\n" ); break; case SPINTERFERENCE_TOOFAST: pfnPrint( "[ I Too Fast ]\r\n" ); break; case SPINTERFERENCE_TOOSLOW: pfnPrint( "[ I Too Slow ]\r\n" ); break; default: break; } } break; case SPEI_PHRASE_START: pfnPrint( "Phrase Start\r\n" ); sentence.MarkNewPhraseBase(); break;
case SPEI_HYPOTHESIS: case SPEI_RECOGNITION: case SPEI_FALSE_RECOGNITION: { CComPtr<ISpRecoResult> cpResult; cpResult = spEvent.RecoResult();
CSpDynamicString dstrText; if (spEvent.eEventId == SPEI_FALSE_RECOGNITION) { dstrText = L"(Unrecognized)";
result = SR_RESULT_FAILED;
// It's possible that the failed recog might have more words, so see if that's the case
EnumeratePhonemes( cpPhoneConv, cpResult, sentence ); } else { // Hypothesis or recognition success
cpResult->GetText( (ULONG)SP_GETWHOLEPHRASE, (ULONG)SP_GETWHOLEPHRASE, TRUE, &dstrText, NULL);
EnumeratePhonemes( cpPhoneConv, cpResult, sentence );
if ( spEvent.eEventId == SPEI_RECOGNITION ) { result = SR_RESULT_SUCCESS; }
pfnPrint( va( "%s%s\r\n", spEvent.eEventId == SPEI_HYPOTHESIS ? "[ Hypothesis ] " : "", dstrText.CopyToChar() ) ); } cpResult.Release(); } break; // end of the wav file was reached by the speech recognition engine
case SPEI_END_SR_STREAM: fEndStreamReached = TRUE; break; } // clear any event data/object references
spEvent.Clear(); }// END event pulling loop - break on empty event queue OR end stream
}// END event polling loop - break on event timeout OR end stream
// Deactivate rule
hr = cpRecoGrammar->SetRuleState( NULL, NULL, SPRS_INACTIVE ); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to deactivate rule set\n" ); return result; }
// close the input stream, since we're done with it
// NOTE: smart pointer will call SpStream's destructor, and consequently ::Close, but code may want to check for errors on ::Close operation
hr = cpInputStream->Close(); if ( FAILED( hr ) ) { pfnPrint( "Error: SAPI 5.1 Unable to close input stream\n" ); return result; }
return result; }
//-----------------------------------------------------------------------------
// Purpose: HACK HACK: We have to delete the RecoContext key or sapi starts to train
// itself on each iteration which was causing some problems.
// Input : hKey -
//-----------------------------------------------------------------------------
void RecursiveRegDelKey(HKEY hKey) { char keyname[256]={0}; DWORD namesize=256;
//base case: no subkeys when RegEnumKeyEx returns error on index 0
LONG lResult=RegEnumKeyEx(hKey,0,keyname,&namesize,NULL,NULL,NULL,NULL); if (lResult!=ERROR_SUCCESS) { return; }
do { HKEY subkey; LONG lResult2; LONG lDelResult; lResult2=RegOpenKeyEx(hKey,keyname,0,KEY_ALL_ACCESS,&subkey); if (lResult2==ERROR_SUCCESS) { RecursiveRegDelKey(subkey);
RegCloseKey(subkey); lDelResult=RegDeleteKey(hKey,keyname); namesize=256; //use 0 in the next function call because when you delete one, the rest shift down!
lResult=RegEnumKeyEx(hKey,0,keyname,&namesize,NULL,NULL,NULL,NULL); }
else { break; }
} while (lResult!=ERROR_NO_MORE_ITEMS); }
bool IsUseable( CWordTag *word ) { if ( word->m_uiStartByte || word->m_uiEndByte ) return true;
return false; }
int FindLastUsableWord( CSentence& outwords ) { int numwords = outwords.m_Words.Count(); if ( numwords < 1 ) { Assert( 0 ); return -1; }
for ( int i = numwords-1; i >= 0; i-- ) { CWordTag *check = outwords.m_Words[ i ]; if ( IsUseable( check ) ) { return i; } }
return -1; }
int FindFirstUsableWord( CSentence& outwords ) { int numwords = outwords.m_Words.Count(); if ( numwords < 1 ) { Assert( 0 ); return -1; }
for ( int i = 0; i < numwords; i++ ) { CWordTag *check = outwords.m_Words[ i ]; if ( IsUseable( check ) ) { return i; } }
return -1; }
//-----------------------------------------------------------------------------
// Purpose: Counts words which have either a valid start or end byte
// Input : *outwords -
// Output : int
//-----------------------------------------------------------------------------
int CountUsableWords( CSentence& outwords ) { int count = 0; int numwords = outwords.m_Words.Count(); // Nothing to do
if ( numwords <= 0 ) return count;
for ( int i = 0; i < numwords; i++ ) { CWordTag *word = outwords.m_Words[ i ]; if ( !IsUseable( word ) ) continue;
count++; }
return count; }
//-----------------------------------------------------------------------------
// Purpose: Counts words which have either a valid start or end byte
// Input : *outwords -
// Output : int
//-----------------------------------------------------------------------------
int CountUnuseableWords( CSentence& outwords ) { int count = 0; int numwords = outwords.m_Words.Count(); // Nothing to do
if ( numwords <= 0 ) return count;
for ( int i = 0; i < numwords; i++ ) { CWordTag *word = outwords.m_Words[ i ]; if ( IsUseable( word ) ) continue;
count++; }
return count; }
// Keeps same relative spacing, but rebases list
void RepartitionPhonemes( CWordTag *word, unsigned int oldStart, unsigned int oldEnd ) { // Repartition phonemes based on old range
float oldRange = ( float )( oldEnd - oldStart ); float newRange = ( float )( word->m_uiEndByte - word->m_uiStartByte );
for ( int i = 0; i < word->m_Phonemes.Count(); i++ ) { CPhonemeTag *tag = word->m_Phonemes[ i ]; Assert( tag );
float frac1 = 0.0f, frac2 = 0.0f; float delta1, delta2; delta1 = ( float ) ( tag->m_uiStartByte - oldStart ); delta2 = ( float ) ( tag->m_uiEndByte - oldStart ); if ( oldRange > 0.0f ) { frac1 = delta1 / oldRange; frac2 = delta2 / oldRange; }
tag->m_uiStartByte = word->m_uiStartByte + ( unsigned int ) ( frac1 * newRange ); tag->m_uiEndByte = word->m_uiStartByte + ( unsigned int ) ( frac2 * newRange ); } }
void PartitionWords( CSentence& outwords, int start, int end, int sampleStart, int sampleEnd ) { int wordCount = end - start + 1; Assert( wordCount >= 1 ); int stepSize = ( sampleEnd - sampleStart ) / wordCount;
int currentStart = sampleStart;
for ( int i = start; i <= end; i++ ) { CWordTag *word = outwords.m_Words[ i ]; Assert( word );
unsigned int oldStart = word->m_uiStartByte; unsigned int oldEnd = word->m_uiEndByte;
word->m_uiStartByte = currentStart; word->m_uiEndByte = currentStart + stepSize;
RepartitionPhonemes( word, oldStart, oldEnd );
currentStart += stepSize; } }
void MergeWords( CWordTag *w1, CWordTag *w2 ) { unsigned int start, end;
start = min( w1->m_uiStartByte, w2->m_uiStartByte ); end = max( w1->m_uiEndByte, w2->m_uiEndByte );
unsigned int mid = ( start + end ) / 2;
unsigned int oldw1start, oldw2start, oldw1end, oldw2end;
oldw1start = w1->m_uiStartByte; oldw2start = w2->m_uiStartByte; oldw1end = w1->m_uiEndByte; oldw2end = w2->m_uiEndByte;
w1->m_uiStartByte = start; w1->m_uiEndByte = mid; w2->m_uiStartByte = mid; w2->m_uiEndByte = end;
RepartitionPhonemes( w1, oldw1start, oldw1end ); RepartitionPhonemes( w2, oldw2start, oldw2end ); }
void FixupZeroLengthWords( CSentence& outwords ) { while ( 1 ) { int i; for ( i = 0 ; i < outwords.m_Words.Count() - 1; i++ ) { CWordTag *current, *next;
current = outwords.m_Words[ i ]; next = outwords.m_Words[ i + 1 ];
if ( current->m_uiEndByte - current->m_uiStartByte <= 0 ) { MergeWords( current, next ); break; }
if ( next->m_uiEndByte - next->m_uiStartByte <= 0 ) { MergeWords( current, next ); break; } }
if ( i >= outwords.m_Words.Count() - 1 ) { break; } } }
void ComputeMissingByteSpans( int numsamples, CSentence& outwords ) { int numwords = outwords.m_Words.Count(); // Nothing to do
if ( numwords <= 0 ) return;
int interationcount = 1;
while( 1 ) { Log_Msg( LOG_PhonemeExtractor, "\nCompute %i\n", interationcount++ ); LogWords( outwords );
int wordNumber;
// Done!
if ( !CountUnuseableWords( outwords ) ) { FixupZeroLengthWords( outwords ); break; }
if ( !CountUsableWords( outwords ) ) { // Evenly space words across full sample time
PartitionWords( outwords, 0, numwords - 1, 0, numsamples ); break; }
wordNumber = FindFirstUsableWord( outwords ); // Not the first word
if ( wordNumber > 0 ) { // Repartition all of the unusables and the first one starting at zero over the range
CWordTag *firstUsable = outwords.m_Words[ wordNumber ]; Assert( firstUsable );
if ( firstUsable->m_uiStartByte != 0 ) { PartitionWords( outwords, 0, wordNumber - 1, 0, firstUsable->m_uiStartByte ); } else { PartitionWords( outwords, 0, wordNumber, 0, firstUsable->m_uiEndByte ); }
// Start over
continue; }
wordNumber = FindLastUsableWord( outwords ); // Not the last word
if ( wordNumber >= 0 && wordNumber < numwords - 1 ) { // Repartition all of the unusables and the first one starting at zero over the range
CWordTag *lastUsable = outwords.m_Words[ wordNumber ]; Assert( lastUsable );
if ( lastUsable->m_uiEndByte != (unsigned int)numsamples ) { PartitionWords( outwords, wordNumber + 1, numwords-1, lastUsable->m_uiEndByte, numsamples ); } else { PartitionWords( outwords, wordNumber, numwords-1, lastUsable->m_uiStartByte, numsamples ); }
// Start over
continue; }
// If we get here it means that the start and end of the list are okay and we just have to
// iterate across the list and fix things in the middle
int startByte = 0; int endByte = 0; for ( int i = 0; i < numwords ; i++ ) { CWordTag *word = outwords.m_Words[ i ]; if ( IsUseable( word ) ) { startByte = word->m_uiEndByte; continue; }
// Found the start of a chain of 1 or more unusable words
// Find the startbyte of the next usable word and count how many words we check
int wordCount = 1; for ( int j = i + 1; j < numwords; j++ ) { CWordTag *next = outwords.m_Words[ j ]; if ( IsUseable( next ) ) { endByte = next->m_uiStartByte; break; }
wordCount++; }
// Now partition words across the gap and go to start again
PartitionWords( outwords, i, i + wordCount - 1, startByte, endByte ); break; } } }
//-----------------------------------------------------------------------------
// Purpose: Given a wavfile and a list of inwords, determines the word/phonene
// sample counts for the sentce
// Input : *wavfile -
// *inwords -
// *outphonemes{ text.Clear( -
// Output : SR_RESULT
//-----------------------------------------------------------------------------
static SR_RESULT SAPI_ExtractPhonemes( const char *wavfile, int numsamples, void (*pfnPrint)( const char *fmt, ... ), CSentence& inwords, CSentence& outwords ) { LogReset();
USES_CONVERSION;
CSpDynamicString text; text.Clear();
HKEY hkwipe; LONG lResult = RegOpenKeyEx( HKEY_CURRENT_USER, "Software\\Microsoft\\Speech\\RecoProfiles", 0, KEY_ALL_ACCESS, &hkwipe ); if ( lResult == ERROR_SUCCESS ) { RecursiveRegDelKey( hkwipe ); RegCloseKey( hkwipe ); }
if ( strlen( inwords.GetText() ) <= 0 ) { inwords.SetTextFromWords(); }
// Construct a string from the inwords array
text.Append( T2W( inwords.GetText() ) );
// Assume failure
SR_RESULT result = SR_RESULT_ERROR;
if ( text.Length() > 0 ) { CSentence sentence;
pfnPrint( "Processing...\r\n" );
// Give it a try
result = ExtractPhonemes( wavfile, text, sentence, pfnPrint );
pfnPrint( "Finished.\r\n" ); // PrintWordsAndPhonemes( sentence, pfnPrint );
// Copy results to outputs
outwords.Reset();
outwords.SetText( inwords.GetText() ); Log_Msg( LOG_PhonemeExtractor, "Starting\n" ); LogWords( inwords );
if ( SR_RESULT_ERROR != result ) { int i;
Log_Msg( LOG_PhonemeExtractor, "Hypothesized\n" ); LogWords( sentence );
for( i = 0 ; i < sentence.m_Words.Count(); i++ ) { CWordTag *tag = sentence.m_Words[ i ]; if ( tag ) { // Skip '...' tag
if ( stricmp( tag->GetWord(), "..." ) ) { CWordTag *newTag = new CWordTag( *tag );
outwords.m_Words.AddToTail( newTag ); } } }
// Now insert unrecognized/skipped words from original list
//
int frompos = 0, topos = 0;
while( 1 ) { // End of source list
if ( frompos >= inwords.m_Words.Count() ) break;
const CWordTag *fromTag = inwords.m_Words[ frompos ];
// Reached end of destination list, just copy words over from from source list until
// we run out of source words
if ( topos >= outwords.m_Words.Count() ) { // Just copy words over
CWordTag *newWord = new CWordTag( *fromTag );
// Remove phonemes
while ( newWord->m_Phonemes.Count() > 0 ) { CPhonemeTag *kill = newWord->m_Phonemes[ 0 ]; newWord->m_Phonemes.Remove( 0 ); delete kill; }
outwords.m_Words.AddToTail( newWord ); frompos++; topos++; continue; }
// Destination word
const CWordTag *toTag = outwords.m_Words[ topos ];
// Words match, just skip ahead
if ( !stricmp( fromTag->GetWord(), toTag->GetWord() ) ) { frompos++; topos++; continue; }
// The only case we handle is that something in the source wasn't in the destination
// Find the next source word that appears in the destination
int skipAhead = frompos + 1; bool found = false; while ( skipAhead < inwords.m_Words.Count() ) { const CWordTag *sourceWord = inwords.m_Words[ skipAhead ]; if ( !stricmp( sourceWord->GetWord(), toTag->GetWord() ) ) { found = true; break; }
skipAhead++; }
// Uh oh destination has words that are not in source, just skip to next destination word?
if ( !found ) { topos++; } else { // Copy words from from source list into destination
//
int skipCount = skipAhead - frompos;
while ( --skipCount>= 0 ) { const CWordTag *sourceWord = inwords.m_Words[ frompos++ ]; CWordTag *newWord = new CWordTag( *sourceWord );
// Remove phonemes
while ( newWord->m_Phonemes.Count() > 0 ) { CPhonemeTag *kill = newWord->m_Phonemes[ 0 ]; newWord->m_Phonemes.Remove( 0 ); delete kill; }
outwords.m_Words.InsertBefore( topos, newWord ); topos++; }
frompos++; topos++; } }
Log_Msg( LOG_PhonemeExtractor, "\nDone simple check\n" );
LogWords( outwords ); LogPhonemes( outwords );
ComputeMissingByteSpans( numsamples, outwords );
Log_Msg( LOG_PhonemeExtractor, "\nFinal check\n" );
LogWords( outwords ); LogPhonemes( outwords ); } } else { pfnPrint( "Input sentence is empty!\n" ); }
// Return results
return result; }
//-----------------------------------------------------------------------------
// Purpose: Expose the interface
//-----------------------------------------------------------------------------
class CPhonemeExtractorSAPI : public IPhonemeExtractor { public: virtual PE_APITYPE GetAPIType() const { return SPEECH_API_SAPI; }
// Used for menus, etc
virtual char const *GetName() const { return "MS SAPI 5.1"; }
SR_RESULT Extract( const char *wavfile, int numsamples, void (*pfnPrint)( const char *fmt, ... ), CSentence& inwords, CSentence& outwords ) { return SAPI_ExtractPhonemes( wavfile, numsamples, pfnPrint, inwords, outwords ); } };
EXPOSE_SINGLE_INTERFACE( CPhonemeExtractorSAPI, IPhonemeExtractor, VPHONEME_EXTRACTOR_INTERFACE );
|