Counter Strike : Global Offensive Source Code
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
//===== Copyright � 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose: Basic random number generator
//
// $NoKeywords: $
//===========================================================================//
#include <time.h>
#include "Random.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define IA 16807
#define IM 2147483647
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
static long idum = 0;
void SeedRandomNumberGenerator(long lSeed) { if (lSeed) { idum = lSeed; } else { idum = -time(NULL); } if (1000 < idum) { idum = -idum; } else if (-1000 < idum) { idum -= 22261048; } }
long ran1(void) { int j; long k; static long iy=0; static long iv[NTAB]; if (idum <= 0 || !iy) { if (-(idum) < 1) idum=1; else idum = -(idum); for (j=NTAB+7;j>=0;j--) { k=(idum)/IQ; idum=IA*(idum-k*IQ)-IR*k; if (idum < 0) idum += IM; if (j < NTAB) iv[j] = idum; } iy=iv[0]; } k=(idum)/IQ; idum=IA*(idum-k*IQ)-IR*k; if (idum < 0) idum += IM; j=iy/NDIV; iy=iv[j]; iv[j] = idum;
return iy; }
// fran1 -- return a random floating-point number on the interval [0,1)
//
#define AM (1.0/IM)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
float fran1(void) { float temp = (float)AM*ran1(); if (temp > RNMX) return (float)RNMX; else return temp; }
float RandomFloat( float flLow, float flHigh ) { if (idum == 0) { SeedRandomNumberGenerator(0); }
float fl = fran1(); // float in [0,1)
return (fl * (flHigh-flLow)) + flLow; // float in [low,high)
}
long RandomLong( long lLow, long lHigh ) { if (idum == 0) { SeedRandomNumberGenerator(0); }
unsigned long maxAcceptable; unsigned long x = lHigh-lLow+1; unsigned long n; if (x <= 0 || MAX_RANDOM_RANGE < x-1) { return lLow; }
// The following maps a uniform distribution on the interval [0,MAX_RANDOM_RANGE]
// to a smaller, client-specified range of [0,x-1] in a way that doesn't bias
// the uniform distribution unfavorably. Even for a worst case x, the loop is
// guaranteed to be taken no more than half the time, so for that worst case x,
// the average number of times through the loop is 2. For cases where x is
// much smaller than MAX_RANDOM_RANGE, the average number of times through the
// loop is very close to 1.
//
maxAcceptable = MAX_RANDOM_RANGE - ((MAX_RANDOM_RANGE+1) % x ); do { n = ran1(); } while (n > maxAcceptable);
return lLow + (n % x); }
|