|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Implements a particle system steam jet.
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "particle_prototype.h"
#include "particle_util.h"
#include "baseparticleentity.h"
#include "fx.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//NOTENOTE: Mirrored in dlls\steamjet.h
#define STEAM_NORMAL 0
#define STEAM_HEATWAVE 1
#define STEAMJET_NUMRAMPS 5
#define SF_EMISSIVE 0x00000001
//==================================================
// C_SteamJet
//==================================================
class C_SteamJet : public C_BaseParticleEntity, public IPrototypeAppEffect { public: DECLARE_CLIENTCLASS(); DECLARE_CLASS( C_SteamJet, C_BaseParticleEntity );
C_SteamJet(); ~C_SteamJet();
class SteamJetParticle : public Particle { public: Vector m_Velocity; float m_flRoll; float m_flRollDelta; float m_Lifetime; float m_DieTime; unsigned char m_uchStartSize; unsigned char m_uchEndSize; };
int IsEmissive( void ) { return ( m_spawnflags & SF_EMISSIVE ); }
//C_BaseEntity
public:
virtual void OnDataChanged( DataUpdateType_t updateType );
//IPrototypeAppEffect
public: virtual void Start(CParticleMgr *pParticleMgr, IPrototypeArgAccess *pArgs); virtual bool GetPropEditInfo(RecvTable **ppTable, void **ppObj);
//IParticleEffect
public: virtual void Update(float fTimeDelta); virtual void RenderParticles( CParticleRenderIterator *pIterator ); virtual void SimulateParticles( CParticleSimulateIterator *pIterator );
//Stuff from the datatable
public:
float m_SpreadSpeed; float m_Speed; float m_StartSize; float m_EndSize; float m_Rate; float m_JetLength; // Length of the jet. Lifetime is derived from this.
int m_bEmit; // Emit particles?
int m_nType; // Type of particles to emit
bool m_bFaceLeft; // For support of legacy env_steamjet entity, which faced left instead of forward.
int m_spawnflags; float m_flRollSpeed;
private:
void UpdateLightingRamp();
private:
// Stored the last time it updates the lighting ramp, so it can cache the values.
Vector m_vLastRampUpdatePos; QAngle m_vLastRampUpdateAngles;
float m_Lifetime; // Calculated from m_JetLength / m_Speed;
// We sample the world to get these colors and ramp the particles.
Vector m_Ramps[STEAMJET_NUMRAMPS];
CParticleMgr *m_pParticleMgr; PMaterialHandle m_MaterialHandle; TimedEvent m_ParticleSpawn;
private: C_SteamJet( const C_SteamJet & ); };
// ------------------------------------------------------------------------- //
// Tables.
// ------------------------------------------------------------------------- //
// Expose to the particle app.
EXPOSE_PROTOTYPE_EFFECT(SteamJet, C_SteamJet);
// Datatable..
IMPLEMENT_CLIENTCLASS_DT(C_SteamJet, DT_SteamJet, CSteamJet) RecvPropFloat(RECVINFO(m_SpreadSpeed), 0), RecvPropFloat(RECVINFO(m_Speed), 0), RecvPropFloat(RECVINFO(m_StartSize), 0), RecvPropFloat(RECVINFO(m_EndSize), 0), RecvPropFloat(RECVINFO(m_Rate), 0), RecvPropFloat(RECVINFO(m_JetLength), 0), RecvPropInt(RECVINFO(m_bEmit), 0), RecvPropInt(RECVINFO(m_bFaceLeft), 0), RecvPropInt(RECVINFO(m_nType), 0), RecvPropInt( RECVINFO( m_spawnflags ) ), RecvPropFloat(RECVINFO(m_flRollSpeed), 0 ), END_RECV_TABLE()
// ------------------------------------------------------------------------- //
// C_SteamJet implementation.
// ------------------------------------------------------------------------- //
C_SteamJet::C_SteamJet() { m_pParticleMgr = NULL; m_MaterialHandle = INVALID_MATERIAL_HANDLE; m_SpreadSpeed = 15; m_Speed = 120; m_StartSize = 10; m_EndSize = 25; m_Rate = 26; m_JetLength = 80; m_bEmit = true; m_bFaceLeft = false; m_ParticleEffect.SetAlwaysSimulate( false ); // Don't simulate outside the PVS or frustum.
m_vLastRampUpdatePos.Init( 1e24, 1e24, 1e24 ); m_vLastRampUpdateAngles.Init( 1e24, 1e24, 1e24 ); }
C_SteamJet::~C_SteamJet() { if(m_pParticleMgr) m_pParticleMgr->RemoveEffect( &m_ParticleEffect ); }
//-----------------------------------------------------------------------------
// Purpose: Called after a data update has occured
// Input : bnewentity -
//-----------------------------------------------------------------------------
void C_SteamJet::OnDataChanged(DataUpdateType_t updateType) { C_BaseEntity::OnDataChanged(updateType);
if(updateType == DATA_UPDATE_CREATED) { Start(ParticleMgr(), NULL); }
// Recalulate lifetime in case length or speed changed.
m_Lifetime = m_JetLength / m_Speed; m_ParticleEffect.SetParticleCullRadius( MAX(m_StartSize, m_EndSize) ); }
//-----------------------------------------------------------------------------
// Purpose: Starts the effect
// Input : *pParticleMgr -
// *pArgs -
//-----------------------------------------------------------------------------
void C_SteamJet::Start(CParticleMgr *pParticleMgr, IPrototypeArgAccess *pArgs) { pParticleMgr->AddEffect( &m_ParticleEffect, this ); switch(m_nType) { case STEAM_NORMAL: default: m_MaterialHandle = g_Mat_DustPuff[0]; break;
case STEAM_HEATWAVE: m_MaterialHandle = m_ParticleEffect.FindOrAddMaterial("sprites/heatwave"); break; }
m_ParticleSpawn.Init(m_Rate); m_Lifetime = m_JetLength / m_Speed; m_pParticleMgr = pParticleMgr;
UpdateLightingRamp(); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : **ppTable -
// **ppObj -
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool C_SteamJet::GetPropEditInfo( RecvTable **ppTable, void **ppObj ) { *ppTable = &REFERENCE_RECV_TABLE(DT_SteamJet); *ppObj = this; return true; }
// This might be useful someday.
/*
void CalcFastApproximateRenderBoundsAABB( C_BaseEntity *pEnt, float flBloatSize, Vector *pMin, Vector *pMax ) { C_BaseEntity *pParent = pEnt->GetMoveParent(); if ( pParent ) { // Get the parent's abs space world bounds.
CalcFastApproximateRenderBoundsAABB( pParent, 0, pMin, pMax );
// Add the maximum of our local render bounds. This is making the assumption that we can be at any
// point and at any angle within the parent's world space bounds.
Vector vAddMins, vAddMaxs; pEnt->GetRenderBounds( vAddMins, vAddMaxs );
flBloatSize += MAX( vAddMins.Length(), vAddMaxs.Length() ); } else { // Start out with our own render bounds. Since we don't have a parent, this won't incur any nasty
pEnt->GetRenderBoundsWorldspace( *pMin, *pMax ); }
// Bloat the box.
if ( flBloatSize ) { *pMin -= Vector( flBloatSize, flBloatSize, flBloatSize ); *pMax += Vector( flBloatSize, flBloatSize, flBloatSize ); } } */
//-----------------------------------------------------------------------------
// Purpose:
// Input : fTimeDelta -
//-----------------------------------------------------------------------------
void C_SteamJet::Update(float fTimeDelta) { if(!m_pParticleMgr) { assert(false); return; }
if( m_bEmit ) { // Add new particles.
int nToEmit = 0; float tempDelta = fTimeDelta; while( m_ParticleSpawn.NextEvent(tempDelta) ) ++nToEmit;
if ( nToEmit > 0 ) { Vector forward, right, up; AngleVectors(GetAbsAngles(), &forward, &right, &up);
// Legacy env_steamjet entities faced left instead of forward.
if (m_bFaceLeft) { Vector temp = forward; forward = -right; right = temp; }
// EVIL: Ideally, we could tell the renderer our OBB, and let it build a big box that encloses
// the entity with its parent so it doesn't have to setup its parent's bones here.
Vector vEndPoint = GetAbsOrigin() + forward * m_Speed; Vector vMin, vMax; VectorMin( GetAbsOrigin(), vEndPoint, vMin ); VectorMax( GetAbsOrigin(), vEndPoint, vMax ); m_ParticleEffect.SetBBox( vMin, vMax );
if ( m_ParticleEffect.WasDrawnPrevFrame() ) { while ( nToEmit-- ) { // Make a new particle.
if( SteamJetParticle *pParticle = (SteamJetParticle*) m_ParticleEffect.AddParticle( sizeof(SteamJetParticle), m_MaterialHandle ) ) { pParticle->m_Pos = GetAbsOrigin(); pParticle->m_Velocity = FRand(-m_SpreadSpeed,m_SpreadSpeed) * right + FRand(-m_SpreadSpeed,m_SpreadSpeed) * up + m_Speed * forward; pParticle->m_Lifetime = 0; pParticle->m_DieTime = m_Lifetime;
pParticle->m_uchStartSize = m_StartSize; pParticle->m_uchEndSize = m_EndSize;
pParticle->m_flRoll = random->RandomFloat( 0, 360 ); pParticle->m_flRollDelta = random->RandomFloat( -m_flRollSpeed, m_flRollSpeed ); } } }
UpdateLightingRamp(); } } }
// Render a quad on the screen where you pass in color and size.
// Normal is random and "flutters"
inline void RenderParticle_ColorSizePerturbNormal( ParticleDraw* pDraw, const Vector &pos, const Vector &color, const float alpha, const float size ) { // Don't render totally transparent particles.
if( alpha < 0.001f ) return;
CMeshBuilder *pBuilder = pDraw->GetMeshBuilder(); if( !pBuilder ) return;
unsigned char ubColor[4]; ubColor[0] = (unsigned char)RoundFloatToInt( color.x * 254.9f ); ubColor[1] = (unsigned char)RoundFloatToInt( color.y * 254.9f ); ubColor[2] = (unsigned char)RoundFloatToInt( color.z * 254.9f ); ubColor[3] = (unsigned char)RoundFloatToInt( alpha * 254.9f );
Vector vNorm; vNorm.Random( -1.0f, 1.0f ); // Add the 4 corner vertices.
pBuilder->Position3f( pos.x-size, pos.y-size, pos.z ); pBuilder->Color4ubv( ubColor ); pBuilder->Normal3fv( vNorm.Base() ); pBuilder->TexCoord2f( 0, 0, 1.0f ); pBuilder->AdvanceVertex();
pBuilder->Position3f( pos.x-size, pos.y+size, pos.z ); pBuilder->Color4ubv( ubColor ); pBuilder->Normal3fv( vNorm.Base() ); pBuilder->TexCoord2f( 0, 0, 0 ); pBuilder->AdvanceVertex();
pBuilder->Position3f( pos.x+size, pos.y+size, pos.z ); pBuilder->Color4ubv( ubColor ); pBuilder->Normal3fv( vNorm.Base() ); pBuilder->TexCoord2f( 0, 1.0f, 0 ); pBuilder->AdvanceVertex();
pBuilder->Position3f( pos.x+size, pos.y-size, pos.z ); pBuilder->Color4ubv( ubColor ); pBuilder->Normal3fv( vNorm.Base() ); pBuilder->TexCoord2f( 0, 1.0f, 1.0f ); pBuilder->AdvanceVertex(); }
void C_SteamJet::RenderParticles( CParticleRenderIterator *pIterator ) { const SteamJetParticle *pParticle = (const SteamJetParticle*)pIterator->GetFirst(); while ( pParticle ) { // Render.
Vector tPos; TransformParticle(m_pParticleMgr->GetModelView(), pParticle->m_Pos, tPos); float sortKey = tPos.z;
float lifetimeT = pParticle->m_Lifetime / (pParticle->m_DieTime + 0.001); float fRamp = lifetimeT * (STEAMJET_NUMRAMPS-1); int iRamp = (int)fRamp; float fraction = fRamp - iRamp; Vector vRampColor = m_Ramps[iRamp] + (m_Ramps[iRamp+1] - m_Ramps[iRamp]) * fraction;
vRampColor[0] = MIN( 1.0f, vRampColor[0] ); vRampColor[1] = MIN( 1.0f, vRampColor[1] ); vRampColor[2] = MIN( 1.0f, vRampColor[2] );
float sinLifetime = sin(pParticle->m_Lifetime * 3.14159f / pParticle->m_DieTime);
if ( m_nType == STEAM_HEATWAVE ) { RenderParticle_ColorSizePerturbNormal( pIterator->GetParticleDraw(), tPos, vRampColor, sinLifetime * (GetRenderAlpha()/255.0f), FLerp(m_StartSize, m_EndSize, pParticle->m_Lifetime)); } else { RenderParticle_ColorSizeAngle( pIterator->GetParticleDraw(), tPos, vRampColor, sinLifetime * (GetRenderAlpha()/255.0f), FLerp(pParticle->m_uchStartSize, pParticle->m_uchEndSize, pParticle->m_Lifetime), pParticle->m_flRoll ); }
pParticle = (const SteamJetParticle*)pIterator->GetNext( sortKey ); } }
void C_SteamJet::SimulateParticles( CParticleSimulateIterator *pIterator ) { //Don't simulate if we're emiting particles...
//This fixes the cases where looking away from a steam jet and then looking back would cause a break on the stream.
if ( m_ParticleEffect.WasDrawnPrevFrame() == false && m_bEmit ) return;
SteamJetParticle *pParticle = (SteamJetParticle*)pIterator->GetFirst(); while ( pParticle ) { // Should this particle die?
pParticle->m_Lifetime += pIterator->GetTimeDelta(); if( pParticle->m_Lifetime > pParticle->m_DieTime ) { pIterator->RemoveParticle( pParticle ); } else { pParticle->m_flRoll += pParticle->m_flRollDelta * pIterator->GetTimeDelta(); pParticle->m_Pos = pParticle->m_Pos + pParticle->m_Velocity * pIterator->GetTimeDelta(); }
pParticle = (SteamJetParticle*)pIterator->GetNext(); } }
void C_SteamJet::UpdateLightingRamp() { if( VectorsAreEqual( m_vLastRampUpdatePos, GetAbsOrigin(), 0.1 ) && QAnglesAreEqual( m_vLastRampUpdateAngles, GetAbsAngles(), 0.1 ) ) { return; }
m_vLastRampUpdatePos = GetAbsOrigin(); m_vLastRampUpdateAngles = GetAbsAngles();
// Sample the world lighting where we think the particles will be.
Vector forward, right, up; AngleVectors(GetAbsAngles(), &forward, &right, &up);
// Legacy env_steamjet entities faced left instead of forward.
if (m_bFaceLeft) { Vector temp = forward; forward = -right; right = temp; }
Vector startPos = GetAbsOrigin(); Vector endPos = GetAbsOrigin() + forward * (m_Speed * m_Lifetime);
for(int iRamp=0; iRamp < STEAMJET_NUMRAMPS; iRamp++) { float t = (float)iRamp / (STEAMJET_NUMRAMPS-1); Vector vTestPos = startPos + (endPos - startPos) * t; Vector *pRamp = &m_Ramps[iRamp]; *pRamp = WorldGetLightForPoint(vTestPos, false); if ( IsEmissive() ) { pRamp->x += (GetRenderColorR()/255.0f); pRamp->y += (GetRenderColorG()/255.0f); pRamp->z += (GetRenderColorB()/255.0f);
pRamp->x = clamp( pRamp->x, 0.0f, 1.0f ); pRamp->y = clamp( pRamp->y, 0.0f, 1.0f ); pRamp->z = clamp( pRamp->z, 0.0f, 1.0f ); } else { pRamp->x *= (GetRenderColorR()/255.0f); pRamp->y *= (GetRenderColorG()/255.0f); pRamp->z *= (GetRenderColorB()/255.0f); }
// Renormalize?
float maxVal = MAX(pRamp->x, MAX(pRamp->y, pRamp->z)); if(maxVal > 1) { *pRamp = *pRamp / maxVal; } } }
|