|
|
//===== Copyright � 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
// $NoKeywords: $
//===========================================================================//
#include "cbase.h"
#include "collisionproperty.h"
#include "igamesystem.h"
#include "utlvector.h"
#include "tier0/threadtools.h"
#include "tier0/tslist.h"
#ifdef CLIENT_DLL
#include "c_baseentity.h"
#include "c_baseanimating.h"
#include "recvproxy.h"
#include "engine/ivdebugoverlay.h"
#else
#include "baseentity.h"
#include "baseanimating.h"
#include "sendproxy.h"
#include "hierarchy.h"
#endif
#include "predictable_entity.h"
#ifdef _PS3
#include "tls_ps3.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//#define DEBUG_SNC_TYPE_PUN_BUG
#if defined( _PS3 ) && defined( DEBUG_SNC_TYPE_PUN_BUG )
#undef ASSERT_COORD
#define ASSERT_COORD( V ) do{ if( !TEST_COORD( V ) ) __builtin_snpause(); } while(0)
#endif
//-----------------------------------------------------------------------------
// KD tree query callbacks
//-----------------------------------------------------------------------------
class CDirtySpatialPartitionEntityList : public CAutoGameSystem, public IPartitionQueryCallback { public: CDirtySpatialPartitionEntityList( char const *name );
// Members of IGameSystem
virtual bool Init(); virtual void Shutdown(); virtual void LevelShutdownPostEntity();
// Members of IPartitionQueryCallback
virtual void OnPreQuery( SpatialPartitionListMask_t listMask ); virtual void OnPostQuery( SpatialPartitionListMask_t listMask );
void AddEntity( CBaseEntity *pEntity ); ~CDirtySpatialPartitionEntityList(); void LockPartitionForRead() { int nThreadId = g_nThreadID; if ( m_nReadLockCount[nThreadId] == 0 ) { m_partitionMutex.LockForRead(); } m_nReadLockCount[nThreadId]++; } void UnlockPartitionForRead() { int nThreadId = g_nThreadID; m_nReadLockCount[nThreadId]--; if ( m_nReadLockCount[nThreadId] == 0 ) { m_partitionMutex.UnlockRead(); } }
private: CTSListWithFreeList<CBaseHandle> m_DirtyEntities; CThreadSpinRWLock m_partitionMutex; int m_partitionWriteId; int m_nReadLockCount[MAX_THREADS_SUPPORTED]; };
//-----------------------------------------------------------------------------
// Singleton instance
//-----------------------------------------------------------------------------
static CDirtySpatialPartitionEntityList s_DirtyKDTree( "CDirtySpatialPartitionEntityList" );
//-----------------------------------------------------------------------------
// Force spatial partition updates (to avoid threading problems caused by lazy update)
//-----------------------------------------------------------------------------
void UpdateDirtySpatialPartitionEntities() { SpatialPartitionListMask_t listMask; #ifdef CLIENT_DLL
listMask = PARTITION_CLIENT_GAME_EDICTS; #else
listMask = PARTITION_SERVER_GAME_EDICTS; #endif
s_DirtyKDTree.OnPreQuery( listMask ); s_DirtyKDTree.OnPostQuery( listMask ); }
//-----------------------------------------------------------------------------
// Purpose: Constructor.
//-----------------------------------------------------------------------------
CDirtySpatialPartitionEntityList::CDirtySpatialPartitionEntityList( char const *name ) : CAutoGameSystem( name ) { m_DirtyEntities.Purge(); memset( m_nReadLockCount, 0, sizeof( m_nReadLockCount ) ); }
//-----------------------------------------------------------------------------
// Purpose: Deconstructor.
//-----------------------------------------------------------------------------
CDirtySpatialPartitionEntityList::~CDirtySpatialPartitionEntityList() { m_DirtyEntities.Purge(); }
//-----------------------------------------------------------------------------
// Initialization, shutdown
//-----------------------------------------------------------------------------
bool CDirtySpatialPartitionEntityList::Init() { ::partition->InstallQueryCallback( this ); return true; }
void CDirtySpatialPartitionEntityList::Shutdown() { ::partition->RemoveQueryCallback( this ); }
//-----------------------------------------------------------------------------
// Makes sure all entries in the KD tree are in the correct position
//-----------------------------------------------------------------------------
void CDirtySpatialPartitionEntityList::AddEntity( CBaseEntity *pEntity ) { m_DirtyEntities.PushItem( pEntity->GetRefEHandle() ); }
//-----------------------------------------------------------------------------
// Members of IGameSystem
//-----------------------------------------------------------------------------
void CDirtySpatialPartitionEntityList::LevelShutdownPostEntity() { m_DirtyEntities.RemoveAll(); }
//-----------------------------------------------------------------------------
// Makes sure all entries in the KD tree are in the correct position
//-----------------------------------------------------------------------------
void CDirtySpatialPartitionEntityList::OnPreQuery( SpatialPartitionListMask_t listMask ) { #ifdef CLIENT_DLL
const int validMask = PARTITION_CLIENT_GAME_EDICTS; #else
const int validMask = PARTITION_SERVER_GAME_EDICTS; #endif
if ( !( listMask & validMask ) ) return;
int nThreadID = g_nThreadID;
if ( m_partitionWriteId != 0 && m_partitionWriteId == nThreadID + 1 ) return;
#ifdef CLIENT_DLL
// FIXME: This should really be an assertion... feh!
if ( !C_BaseEntity::IsAbsRecomputationsEnabled() ) { LockPartitionForRead(); return; } #endif
// if you're holding a read lock, then these are entities that were still dirty after your trace started
// or became dirty due to some other thread or callback. Updating them may cause corruption further up the
// stack (e.g. partition iterator). Ignoring the state change should be safe since it happened after the
// trace was requested or was unable to be resolved in a previous attempt (still dirty).
if ( m_DirtyEntities.Count() && !m_nReadLockCount[nThreadID] ) { CUtlVector< CBaseHandle > vecStillDirty; m_partitionMutex.LockForWrite(); m_partitionWriteId = nThreadID + 1; CTSListWithFreeList<CBaseHandle>::Node_t *pCurrent, *pNext; while ( ( pCurrent = m_DirtyEntities.Detach() ) != NULL ) { while ( pCurrent ) { CBaseHandle handle = pCurrent->elem; pNext = (CTSListWithFreeList<CBaseHandle>::Node_t *)pCurrent->Next; m_DirtyEntities.FreeNode( pCurrent ); pCurrent = pNext;
#ifndef CLIENT_DLL
CBaseEntity *pEntity = gEntList.GetBaseEntity( handle ); #else
CBaseEntity *pEntity = cl_entitylist->GetBaseEntityFromHandle( handle ); #endif
if ( pEntity ) { // If an entity is in the middle of bone setup, don't call UpdatePartition
// which can cause it to redo bone setup on the same frame causing a recursive
// call to bone setup.
if ( !pEntity->IsEFlagSet( EFL_SETTING_UP_BONES ) ) { pEntity->CollisionProp()->UpdatePartition(); } else { vecStillDirty.AddToTail( handle ); } } } } if ( vecStillDirty.Count() > 0 ) { for ( int i = 0; i < vecStillDirty.Count(); i++ ) { m_DirtyEntities.PushItem( vecStillDirty[i] ); } } m_partitionWriteId = 0; m_partitionMutex.UnlockWrite(); } LockPartitionForRead(); }
//-----------------------------------------------------------------------------
// Makes sure all entries in the KD tree are in the correct position
//-----------------------------------------------------------------------------
void CDirtySpatialPartitionEntityList::OnPostQuery( SpatialPartitionListMask_t listMask ) { #ifdef CLIENT_DLL
if ( !( listMask & PARTITION_CLIENT_GAME_EDICTS ) ) return; #else
if ( !( listMask & PARTITION_SERVER_GAME_EDICTS ) ) return; #endif
if ( m_partitionWriteId != 0 ) return;
UnlockPartitionForRead(); }
//-----------------------------------------------------------------------------
// Save/load
//-----------------------------------------------------------------------------
#ifndef CLIENT_DLL
BEGIN_DATADESC_NO_BASE( CCollisionProperty )
// DEFINE_FIELD( m_pOuter, FIELD_CLASSPTR ),
DEFINE_GLOBAL_FIELD( m_vecMins, FIELD_VECTOR ), DEFINE_GLOBAL_FIELD( m_vecMaxs, FIELD_VECTOR ), DEFINE_KEYFIELD( m_nSolidType, FIELD_CHARACTER, "solid" ), DEFINE_FIELD( m_usSolidFlags, FIELD_SHORT ), DEFINE_FIELD( m_nSurroundType, FIELD_CHARACTER ), DEFINE_FIELD( m_flRadius, FIELD_FLOAT ), DEFINE_FIELD( m_triggerBloat, FIELD_CHARACTER ), DEFINE_FIELD( m_vecSpecifiedSurroundingMins, FIELD_VECTOR ), DEFINE_FIELD( m_vecSpecifiedSurroundingMaxs, FIELD_VECTOR ), DEFINE_FIELD( m_vecSurroundingMins, FIELD_VECTOR ), DEFINE_FIELD( m_vecSurroundingMaxs, FIELD_VECTOR ), // DEFINE_FIELD( m_Partition, FIELD_SHORT ),
// DEFINE_PHYSPTR( m_pPhysicsObject ),
END_DATADESC()
#else
//-----------------------------------------------------------------------------
// Prediction
//-----------------------------------------------------------------------------
BEGIN_PREDICTION_DATA_NO_BASE( CCollisionProperty )
DEFINE_PRED_FIELD( m_vecMins, FIELD_VECTOR, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_vecMaxs, FIELD_VECTOR, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_nSolidType, FIELD_CHARACTER, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_usSolidFlags, FIELD_SHORT, FTYPEDESC_INSENDTABLE ), DEFINE_PRED_FIELD( m_triggerBloat, FIELD_CHARACTER, FTYPEDESC_INSENDTABLE ),
END_PREDICTION_DATA()
#endif
//-----------------------------------------------------------------------------
// Networking
//-----------------------------------------------------------------------------
#ifdef CLIENT_DLL
static void RecvProxy_Solid( const CRecvProxyData *pData, void *pStruct, void *pOut ) { ((CCollisionProperty*)pStruct)->SetSolid( (SolidType_t)pData->m_Value.m_Int ); }
static void RecvProxy_SolidFlags( const CRecvProxyData *pData, void *pStruct, void *pOut ) { ((CCollisionProperty*)pStruct)->SetSolidFlags( pData->m_Value.m_Int ); }
static void RecvProxy_OBBMins( const CRecvProxyData *pData, void *pStruct, void *pOut ) { CCollisionProperty *pProp = ((CCollisionProperty*)pStruct); Vector &vecMins = *((Vector*)pData->m_Value.m_Vector); pProp->SetCollisionBounds( vecMins, pProp->OBBMaxs() ); }
static void RecvProxy_OBBMaxs( const CRecvProxyData *pData, void *pStruct, void *pOut ) { CCollisionProperty *pProp = ((CCollisionProperty*)pStruct); Vector &vecMaxs = *((Vector*)pData->m_Value.m_Vector); pProp->SetCollisionBounds( pProp->OBBMins(), vecMaxs ); }
static void RecvProxy_VectorDirtySurround( const CRecvProxyData *pData, void *pStruct, void *pOut ) { Vector &vecold = *((Vector*)pOut); Vector vecnew( pData->m_Value.m_Vector[0], pData->m_Value.m_Vector[1], pData->m_Value.m_Vector[2] );
if ( vecold != vecnew ) { vecold = vecnew; ((CCollisionProperty*)pStruct)->MarkSurroundingBoundsDirty(); } }
static void RecvProxy_IntDirtySurround( const CRecvProxyData *pData, void *pStruct, void *pOut ) { if ( *((unsigned char*)pOut) != pData->m_Value.m_Int ) { *((unsigned char*)pOut) = pData->m_Value.m_Int; ((CCollisionProperty*)pStruct)->MarkSurroundingBoundsDirty(); } }
#else
static void SendProxy_Solid( const SendProp *pProp, const void *pStruct, const void *pData, DVariant *pOut, int iElement, int objectID ) { pOut->m_Int = ((CCollisionProperty*)pStruct)->GetSolid(); }
static void SendProxy_SolidFlags( const SendProp *pProp, const void *pStruct, const void *pData, DVariant *pOut, int iElement, int objectID ) { pOut->m_Int = ((CCollisionProperty*)pStruct)->GetSolidFlags(); }
#endif
BEGIN_NETWORK_TABLE_NOBASE( CCollisionProperty, DT_CollisionProperty )
#ifdef CLIENT_DLL
RecvPropVector( RECVINFO(m_vecMins), 0, RecvProxy_OBBMins ), RecvPropVector( RECVINFO(m_vecMaxs), 0, RecvProxy_OBBMaxs ), RecvPropInt( RECVINFO( m_nSolidType ), 0, RecvProxy_Solid ), RecvPropInt( RECVINFO( m_usSolidFlags ), 0, RecvProxy_SolidFlags ), RecvPropInt( RECVINFO(m_nSurroundType), 0, RecvProxy_IntDirtySurround ), RecvPropInt( RECVINFO(m_triggerBloat), 0, RecvProxy_IntDirtySurround ), RecvPropVector( RECVINFO(m_vecSpecifiedSurroundingMins), 0, RecvProxy_VectorDirtySurround ), RecvPropVector( RECVINFO(m_vecSpecifiedSurroundingMaxs), 0, RecvProxy_VectorDirtySurround ), #else
SendPropVector( SENDINFO(m_vecMins), 0, SPROP_NOSCALE), SendPropVector( SENDINFO(m_vecMaxs), 0, SPROP_NOSCALE), SendPropInt( SENDINFO( m_nSolidType ), 3, SPROP_UNSIGNED, SendProxy_Solid ), SendPropInt( SENDINFO( m_usSolidFlags ), FSOLID_MAX_BITS, SPROP_UNSIGNED, SendProxy_SolidFlags ), SendPropInt( SENDINFO( m_nSurroundType ), SURROUNDING_TYPE_BIT_COUNT, SPROP_UNSIGNED ), SendPropInt( SENDINFO(m_triggerBloat), 0, SPROP_UNSIGNED), SendPropVector( SENDINFO(m_vecSpecifiedSurroundingMins), 0, SPROP_NOSCALE), SendPropVector( SENDINFO(m_vecSpecifiedSurroundingMaxs), 0, SPROP_NOSCALE), #endif
END_NETWORK_TABLE()
//-----------------------------------------------------------------------------
// Constructor, destructor
//-----------------------------------------------------------------------------
CCollisionProperty::CCollisionProperty() { m_Partition = PARTITION_INVALID_HANDLE; Init( NULL ); }
CCollisionProperty::~CCollisionProperty() { DestroyPartitionHandle(); }
inline const Vector& CCollisionProperty::GetCollisionOrigin_Inline() const { return GetOuter()->GetAbsOrigin(); }
//-----------------------------------------------------------------------------
// Initialization
//-----------------------------------------------------------------------------
void CCollisionProperty::Init( CBaseEntity *pEntity ) { m_pOuter = pEntity; m_vecMins.GetForModify().Init(); m_vecMaxs.GetForModify().Init(); m_flRadius = 0.0f; m_triggerBloat = 0; m_usSolidFlags = 0; m_nSolidType = SOLID_NONE;
// NOTE: This replicates previous behavior; we may always want to use BEST_COLLISION_BOUNDS
m_nSurroundType = USE_OBB_COLLISION_BOUNDS; m_vecSurroundingMins = vec3_origin; m_vecSurroundingMaxs = vec3_origin; m_vecSpecifiedSurroundingMins.GetForModify().Init(); m_vecSpecifiedSurroundingMaxs.GetForModify().Init(); }
//-----------------------------------------------------------------------------
// EntityHandle
//-----------------------------------------------------------------------------
IHandleEntity *CCollisionProperty::GetEntityHandle() { return m_pOuter; }
//-----------------------------------------------------------------------------
// Collision group
//-----------------------------------------------------------------------------
int CCollisionProperty::GetCollisionGroup() const { return m_pOuter->GetCollisionGroup(); }
uint CCollisionProperty::GetRequiredTriggerFlags() const { // debris only touches certain triggers
if ( GetCollisionGroup() == COLLISION_GROUP_DEBRIS ) return FSOLID_TRIGGER_TOUCH_DEBRIS;
// triggers don't touch other triggers (might be solid to other ents as well as trigger)
if ( IsSolidFlagSet( FSOLID_TRIGGER ) ) return 0;
return FSOLID_TRIGGER; }
const matrix3x4_t *CCollisionProperty::GetRootParentToWorldTransform() const { if ( IsSolidFlagSet( FSOLID_ROOT_PARENT_ALIGNED ) ) { CBaseEntity *pEntity = m_pOuter->GetRootMoveParent(); Assert(pEntity); if ( pEntity ) { return &pEntity->CollisionProp()->CollisionToWorldTransform(); } } return NULL; }
IPhysicsObject *CCollisionProperty::GetVPhysicsObject() const { return m_pOuter->VPhysicsGetObject(); }
//-----------------------------------------------------------------------------
// IClientUnknown
//-----------------------------------------------------------------------------
IClientUnknown* CCollisionProperty::GetIClientUnknown() { #ifdef CLIENT_DLL
return ( m_pOuter != NULL ) ? m_pOuter->GetIClientUnknown() : NULL; #else
return NULL; #endif
}
//-----------------------------------------------------------------------------
// Check for untouch
//-----------------------------------------------------------------------------
void CCollisionProperty::CheckForUntouch() { #ifndef CLIENT_DLL
if ( !IsSolid() && !IsSolidFlagSet(FSOLID_TRIGGER)) { // If this ent's touch list isn't empty, it's transitioning to not solid
if ( m_pOuter->IsCurrentlyTouching() ) { // mark ent so that at the end of frame it will check to
// see if it's no longer touching ents
m_pOuter->SetCheckUntouch( true ); } } #endif
}
//-----------------------------------------------------------------------------
// Sets the solid type
//-----------------------------------------------------------------------------
void CCollisionProperty::SetSolid( SolidType_t val ) { if ( m_nSolidType == val ) return;
#ifndef CLIENT_DLL
bool bWasNotSolid = IsSolid(); #endif
MarkSurroundingBoundsDirty();
// OBB is not yet implemented
if ( val == SOLID_BSP ) { if ( GetOuter()->GetMoveParent() ) { if ( GetOuter()->GetRootMoveParent()->GetSolid() != SOLID_BSP ) { // must be SOLID_VPHYSICS because parent might rotate
val = SOLID_VPHYSICS; } } #ifndef CLIENT_DLL
// UNDONE: This should be fine in the client DLL too. Move GetAllChildren() into shared code.
// If the root of the hierarchy is SOLID_BSP, then assume that the designer
// wants the collisions to rotate with this hierarchy so that the player can
// move while riding the hierarchy.
if ( !GetOuter()->GetMoveParent() ) { // NOTE: This assumes things don't change back from SOLID_BSP
// NOTE: This is 100% true for HL2 - need to support removing the flag to support changing from SOLID_BSP
CUtlVector<CBaseEntity *> list; GetAllChildren( GetOuter(), list ); for ( int i = list.Count()-1; i>=0; --i ) { list[i]->AddSolidFlags( FSOLID_ROOT_PARENT_ALIGNED ); } } #endif
}
m_nSolidType = val;
#ifndef CLIENT_DLL
m_pOuter->CollisionRulesChanged();
UpdateServerPartitionMask( );
if ( bWasNotSolid != IsSolid() ) { CheckForUntouch(); } #endif
}
SolidType_t CCollisionProperty::GetSolid() const { return (SolidType_t)m_nSolidType.Get(); }
//-----------------------------------------------------------------------------
// Sets the solid flags
//-----------------------------------------------------------------------------
void CCollisionProperty::SetSolidFlags( int flags ) { int oldFlags = m_usSolidFlags; m_usSolidFlags = (unsigned short)(flags & 0xFFFF); if ( oldFlags == m_usSolidFlags ) return;
// These two flags, if changed, can produce different surrounding bounds
if ( (oldFlags & (FSOLID_FORCE_WORLD_ALIGNED | FSOLID_USE_TRIGGER_BOUNDS)) != (m_usSolidFlags & (FSOLID_FORCE_WORLD_ALIGNED | FSOLID_USE_TRIGGER_BOUNDS)) ) { MarkSurroundingBoundsDirty(); }
if ( (oldFlags & (FSOLID_NOT_SOLID|FSOLID_TRIGGER)) != (m_usSolidFlags & (FSOLID_NOT_SOLID|FSOLID_TRIGGER)) ) { m_pOuter->CollisionRulesChanged(); }
#ifndef CLIENT_DLL
if ( (oldFlags & (FSOLID_NOT_SOLID | FSOLID_TRIGGER)) != (m_usSolidFlags & (FSOLID_NOT_SOLID | FSOLID_TRIGGER)) ) { UpdateServerPartitionMask( ); CheckForUntouch(); } #endif
}
//-----------------------------------------------------------------------------
// Coordinate system of the collision model
//-----------------------------------------------------------------------------
const Vector& CCollisionProperty::GetCollisionOrigin() const { return GetCollisionOrigin_Inline(); }
const QAngle& CCollisionProperty::GetCollisionAngles() const { if ( IsBoundsDefinedInEntitySpace() ) { return m_pOuter->GetAbsAngles(); }
return vec3_angle; }
const matrix3x4_t& CCollisionProperty::CollisionToWorldTransform() const { static matrix3x4_t s_matTemp[4]; static int s_nIndex = 0;
matrix3x4_t &matResult = s_matTemp[s_nIndex]; s_nIndex = (s_nIndex+1) & 0x3;
if ( IsBoundsDefinedInEntitySpace() ) { return m_pOuter->EntityToWorldTransform(); }
SetIdentityMatrix( matResult ); MatrixSetColumn( GetCollisionOrigin_Inline(), 3, matResult ); return matResult; }
//-----------------------------------------------------------------------------
// Sets the collision bounds + the size
//-----------------------------------------------------------------------------
void CCollisionProperty::SetCollisionBounds( const Vector& mins, const Vector &maxs ) { if ( (m_vecMins == mins) && (m_vecMaxs == maxs) ) return; m_vecMins = mins; m_vecMaxs = maxs; ASSERT_COORD( mins ); ASSERT_COORD( maxs );
Vector vecSize; VectorSubtract( maxs, mins, vecSize ); m_flRadius = vecSize.Length() * 0.5f;
MarkSurroundingBoundsDirty(); }
//-----------------------------------------------------------------------------
// Lazily calculates the 2D bounding radius. If we do this enough, we should
// calculate this in SetCollisionBounds above and cache the results in a data member!
//-----------------------------------------------------------------------------
float CCollisionProperty::BoundingRadius2D() const { Vector vecSize; VectorSubtract( m_vecMaxs, m_vecMins, vecSize );
vecSize.z = 0; return vecSize.Length() * 0.5f; }
//-----------------------------------------------------------------------------
// Bounding representation (OBB)
//-----------------------------------------------------------------------------
const Vector& CCollisionProperty::OBBMins( ) const { return m_vecMins.Get(); }
const Vector& CCollisionProperty::OBBMaxs( ) const { return m_vecMaxs.Get(); }
//-----------------------------------------------------------------------------
// Special trigger representation (OBB)
//-----------------------------------------------------------------------------
void CCollisionProperty::WorldSpaceTriggerBounds( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) const { WorldSpaceAABB( pVecWorldMins, pVecWorldMaxs ); if ( ( GetSolidFlags() & FSOLID_USE_TRIGGER_BOUNDS ) == 0 ) return;
// Don't bloat below, we don't want to trigger it with our heads
pVecWorldMins->x -= m_triggerBloat; pVecWorldMins->y -= m_triggerBloat;
pVecWorldMaxs->x += m_triggerBloat; pVecWorldMaxs->y += m_triggerBloat; pVecWorldMaxs->z += (float)m_triggerBloat * 0.5f; }
void CCollisionProperty::UseTriggerBounds( bool bEnable, float flBloat ) { Assert( flBloat <= 127.0f ); m_triggerBloat = (char )flBloat; if ( bEnable ) { AddSolidFlags( FSOLID_USE_TRIGGER_BOUNDS ); Assert( flBloat > 0.0f ); } else { RemoveSolidFlags( FSOLID_USE_TRIGGER_BOUNDS ); } }
//-----------------------------------------------------------------------------
// Collision model (BSP)
//-----------------------------------------------------------------------------
int CCollisionProperty::GetCollisionModelIndex() { return m_pOuter->GetModelIndex(); }
const model_t* CCollisionProperty::GetCollisionModel() { return m_pOuter->GetModel(); }
//-----------------------------------------------------------------------------
// Collision methods implemented in the entity
// FIXME: This shouldn't happen there!!
//-----------------------------------------------------------------------------
bool CCollisionProperty::TestCollision( const Ray_t &ray, unsigned int fContentsMask, trace_t& tr ) { return m_pOuter->TestCollision( ray, fContentsMask, tr ); }
bool CCollisionProperty::TestHitboxes( const Ray_t &ray, unsigned int fContentsMask, trace_t& tr ) { return m_pOuter->TestHitboxes( ray, fContentsMask, tr ); }
//-----------------------------------------------------------------------------
// Computes a "normalized" point (range 0,0,0 - 1,1,1) in collision space
//-----------------------------------------------------------------------------
const Vector & CCollisionProperty::NormalizedToCollisionSpace( const Vector &in, Vector *pResult ) const { pResult->x = Lerp( in.x, m_vecMins.Get().x, m_vecMaxs.Get().x ); pResult->y = Lerp( in.y, m_vecMins.Get().y, m_vecMaxs.Get().y ); pResult->z = Lerp( in.z, m_vecMins.Get().z, m_vecMaxs.Get().z ); return *pResult; }
//-----------------------------------------------------------------------------
// Transforms a point in collision space to normalized space
//-----------------------------------------------------------------------------
const Vector & CCollisionProperty::CollisionToNormalizedSpace( const Vector &in, Vector *pResult ) const { Vector vecSize = OBBSize( ); pResult->x = ( vecSize.x != 0.0f ) ? ( in.x - m_vecMins.Get().x ) / vecSize.x : 0.5f; pResult->y = ( vecSize.y != 0.0f ) ? ( in.y - m_vecMins.Get().y ) / vecSize.y : 0.5f; pResult->z = ( vecSize.z != 0.0f ) ? ( in.z - m_vecMins.Get().z ) / vecSize.z : 0.5f; return *pResult; }
//-----------------------------------------------------------------------------
// Computes a "normalized" point (range 0,0,0 - 1,1,1) in world space
//-----------------------------------------------------------------------------
const Vector & CCollisionProperty::NormalizedToWorldSpace( const Vector &in, Vector *pResult ) const { Vector vecCollisionSpace; NormalizedToCollisionSpace( in, &vecCollisionSpace ); CollisionToWorldSpace( vecCollisionSpace, pResult ); return *pResult; }
//-----------------------------------------------------------------------------
// Transforms a point in world space to normalized space
//-----------------------------------------------------------------------------
const Vector & CCollisionProperty::WorldToNormalizedSpace( const Vector &in, Vector *pResult ) const { Vector vecCollisionSpace; WorldToCollisionSpace( in, &vecCollisionSpace ); CollisionToNormalizedSpace( vecCollisionSpace, pResult ); return *pResult; }
//-----------------------------------------------------------------------------
// Selects a random point in the bounds given the normalized 0-1 bounds
//-----------------------------------------------------------------------------
void CCollisionProperty::RandomPointInBounds( const Vector &vecNormalizedMins, const Vector &vecNormalizedMaxs, Vector *pPoint) const { Vector vecNormalizedSpace; vecNormalizedSpace.x = random->RandomFloat( vecNormalizedMins.x, vecNormalizedMaxs.x ); vecNormalizedSpace.y = random->RandomFloat( vecNormalizedMins.y, vecNormalizedMaxs.y ); vecNormalizedSpace.z = random->RandomFloat( vecNormalizedMins.z, vecNormalizedMaxs.z ); NormalizedToWorldSpace( vecNormalizedSpace, pPoint ); }
#ifndef DEBUG_SNC_TYPE_PUN_BUG
const #endif
bool g_bRepeatTransformAABB = false;
//-----------------------------------------------------------------------------
// Transforms an AABB measured in entity space to a box that surrounds it in world space
//-----------------------------------------------------------------------------
void CCollisionProperty::CollisionAABBToWorldAABB( const Vector &entityMins, const Vector &entityMaxs, Vector *pWorldMins, Vector *pWorldMaxs ) const { Vector copyEntityMins = entityMins, copyEntityMaxs = entityMaxs; ASSERT_COORD( entityMins ); ASSERT_COORD( entityMaxs ); if ( !IsBoundsDefinedInEntitySpace() || (GetCollisionAngles() == vec3_angle) ) { VectorAdd( entityMins, GetCollisionOrigin_Inline(), *pWorldMins ); VectorAdd( entityMaxs, GetCollisionOrigin_Inline(), *pWorldMaxs ); ASSERT_COORD( *pWorldMins ); ASSERT_COORD( *pWorldMaxs ); } else { #ifdef _DEBUG
// this copy is here for debugging purposes: sometimes entityMins/maxs get overwritten while this function is being called
Vector copyEntityMins = entityMins; Vector copyEntityMaxs = entityMaxs; #endif
do { matrix3x4_t tm = CollisionToWorldTransform(); ASSERT_COORD( entityMins ); ASSERT_COORD( entityMaxs ); TransformAABB( tm, entityMins, entityMaxs, *pWorldMins, *pWorldMaxs ); ASSERT_COORD( *pWorldMins ); ASSERT_COORD( *pWorldMaxs ); } while( g_bRepeatTransformAABB ); } }
/*
void CCollisionProperty::WorldAABBToCollisionAABB( const Vector &worldMins, const Vector &worldMaxs, Vector *pEntityMins, Vector *pEntityMaxs ) const { if ( !IsBoundsDefinedInEntitySpace() || (GetCollisionAngles() == vec3_angle) ) { VectorSubtract( worldMins, GetAbsOrigin(), *pEntityMins ); VectorSubtract( worldMaxs, GetAbsOrigin(), *pEntityMaxs ); } else { ITransformAABB( CollisionToWorldTransform(), worldMins, worldMaxs, *pEntityMins, *pEntityMaxs ); } } */
//-----------------------------------------------------------------------------
// Is a worldspace point within the bounds of the OBB?
//-----------------------------------------------------------------------------
bool CCollisionProperty::IsPointInBounds( const Vector &vecWorldPt ) const { Vector vecLocalSpace; WorldToCollisionSpace( vecWorldPt, &vecLocalSpace ); return ( ( vecLocalSpace.x >= m_vecMins.Get().x && vecLocalSpace.x <= m_vecMaxs.Get().x ) && ( vecLocalSpace.y >= m_vecMins.Get().y && vecLocalSpace.y <= m_vecMaxs.Get().y ) && ( vecLocalSpace.z >= m_vecMins.Get().z && vecLocalSpace.z <= m_vecMaxs.Get().z ) ); }
//-----------------------------------------------------------------------------
// Computes the nearest point in the OBB to a point specified in world space
//-----------------------------------------------------------------------------
void CCollisionProperty::CalcNearestPoint( const Vector &vecWorldPt, Vector *pVecNearestWorldPt ) const { // Calculate physics force
Vector localPt, localClosestPt; WorldToCollisionSpace( vecWorldPt, &localPt ); CalcClosestPointOnAABB( m_vecMins.Get(), m_vecMaxs.Get(), localPt, localClosestPt ); CollisionToWorldSpace( localClosestPt, pVecNearestWorldPt ); }
//-----------------------------------------------------------------------------
// Computes the nearest point in the OBB to a point specified in world space
//-----------------------------------------------------------------------------
float CCollisionProperty::CalcDistanceFromPoint( const Vector &vecWorldPt ) const { // Calculate physics force
Vector localPt, localClosestPt; WorldToCollisionSpace( vecWorldPt, &localPt ); CalcClosestPointOnAABB( m_vecMins.Get(), m_vecMaxs.Get(), localPt, localClosestPt ); return localPt.DistTo( localClosestPt ); }
//-----------------------------------------------------------------------------
// Computes the square distance of the closest point in the OBB to a point specified in world space
//-----------------------------------------------------------------------------
float CCollisionProperty::CalcSqrDistanceFromPoint( const Vector &vecWorldPt ) const { // Calculate physics force
Vector localPt, localClosestPt; WorldToCollisionSpace( vecWorldPt, &localPt ); CalcClosestPointOnAABB( m_vecMins.Get(), m_vecMaxs.Get(), localPt, localClosestPt ); return localPt.DistToSqr( localClosestPt ); }
//-----------------------------------------------------------------------------
// Compute the largest dot product of the OBB and the specified direction vector
//-----------------------------------------------------------------------------
float CCollisionProperty::ComputeSupportMap( const Vector &vecDirection ) const { Vector vecCollisionDir; WorldDirectionToCollisionSpace( vecDirection, &vecCollisionDir );
float flResult = DotProduct( GetCollisionOrigin_Inline(), vecDirection ); flResult += (( vecCollisionDir.x >= 0.0f ) ? m_vecMaxs.Get().x : m_vecMins.Get().x) * vecCollisionDir.x; flResult += (( vecCollisionDir.y >= 0.0f ) ? m_vecMaxs.Get().y : m_vecMins.Get().y) * vecCollisionDir.y; flResult += (( vecCollisionDir.z >= 0.0f ) ? m_vecMaxs.Get().z : m_vecMins.Get().z) * vecCollisionDir.z;
return flResult; }
//-----------------------------------------------------------------------------
// Expand trigger bounds..
//-----------------------------------------------------------------------------
void CCollisionProperty::ComputeVPhysicsSurroundingBox( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { bool bSetBounds = false; IPhysicsObject *pPhysicsObject = GetOuter()->VPhysicsGetObject(); if ( pPhysicsObject ) { if ( pPhysicsObject->GetCollide() ) { physcollision->CollideGetAABB( pVecWorldMins, pVecWorldMaxs, pPhysicsObject->GetCollide(), GetCollisionOrigin_Inline(), GetCollisionAngles() ); bSetBounds = true; } else if ( pPhysicsObject->GetSphereRadius( ) ) { float flRadius = pPhysicsObject->GetSphereRadius( ); Vector vecExtents( flRadius, flRadius, flRadius ); VectorSubtract( GetCollisionOrigin_Inline(), vecExtents, *pVecWorldMins ); VectorAdd( GetCollisionOrigin_Inline(), vecExtents, *pVecWorldMaxs ); bSetBounds = true; } }
if ( !bSetBounds ) { *pVecWorldMins = GetCollisionOrigin_Inline(); *pVecWorldMaxs = *pVecWorldMins; }
// Also, lets expand for the trigger bounds also
if ( IsSolidFlagSet( FSOLID_USE_TRIGGER_BOUNDS ) ) { Vector vecWorldTriggerMins, vecWorldTriggerMaxs; WorldSpaceTriggerBounds( &vecWorldTriggerMins, &vecWorldTriggerMaxs ); VectorMin( vecWorldTriggerMins, *pVecWorldMins, *pVecWorldMins ); VectorMax( vecWorldTriggerMaxs, *pVecWorldMaxs, *pVecWorldMaxs ); } }
//-----------------------------------------------------------------------------
// Expand trigger bounds..
//-----------------------------------------------------------------------------
bool CCollisionProperty::ComputeHitboxSurroundingBox( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { CBaseAnimating *pAnim = GetOuter()->GetBaseAnimating(); if (pAnim) { return pAnim->ComputeHitboxSurroundingBox( pVecWorldMins, pVecWorldMaxs ); }
return false; }
//-----------------------------------------------------------------------------
// Computes the surrounding collision bounds based on the current sequence box
//-----------------------------------------------------------------------------
void CCollisionProperty::ComputeOBBBounds( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { bool bUseVPhysics = false; if ( ( GetSolid() == SOLID_VPHYSICS ) && ( GetOuter()->GetMoveType() == MOVETYPE_VPHYSICS ) ) { // UNDONE: This may not be necessary any more.
IPhysicsObject *pPhysics = GetOuter()->VPhysicsGetObject(); bUseVPhysics = pPhysics && pPhysics->IsAsleep(); } ComputeCollisionSurroundingBox( bUseVPhysics, pVecWorldMins, pVecWorldMaxs ); }
//-----------------------------------------------------------------------------
// Computes the surrounding collision bounds from the current sequence box
//-----------------------------------------------------------------------------
void CCollisionProperty::ComputeRotationExpandedSequenceBounds( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { CBaseAnimating *pAnim = GetOuter()->GetBaseAnimating(); if ( !pAnim ) { ComputeOBBBounds( pVecWorldMins, pVecWorldMaxs ); return; }
Vector mins, maxs; pAnim->ExtractBbox( pAnim->GetSequence(), mins, maxs );
float flRadius = MAX( MAX( FloatMakePositive( mins.x ), FloatMakePositive( maxs.x ) ), MAX( FloatMakePositive( mins.y ), FloatMakePositive( maxs.y ) ) ); mins.x = mins.y = -flRadius; maxs.x = maxs.y = flRadius;
// Add bloat to account for gesture sequences
Vector vecBloat( 6, 6, 0 ); mins -= vecBloat; maxs += vecBloat; ASSERT_COORD( m_vecSurroundingMins ); ASSERT_COORD( m_vecSurroundingMaxs ); // NOTE: This is necessary because the server doesn't know how to blend
// animations together. Therefore, we have to just pick a box that can
// surround all of our potential sequences. This should be something we
// should be able to compute @ tool time instead, however.
VectorMin( mins, m_vecSurroundingMins, mins ); VectorMax( maxs, m_vecSurroundingMaxs, maxs );
VectorAdd( mins, GetCollisionOrigin_Inline(), *pVecWorldMins ); VectorAdd( maxs, GetCollisionOrigin_Inline(), *pVecWorldMaxs ); }
//-----------------------------------------------------------------------------
// Expand trigger bounds..
//-----------------------------------------------------------------------------
bool CCollisionProperty::ComputeEntitySpaceHitboxSurroundingBox( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { CBaseAnimating *pAnim = GetOuter()->GetBaseAnimating(); if (pAnim) { return pAnim->ComputeEntitySpaceHitboxSurroundingBox( pVecWorldMins, pVecWorldMaxs ); }
return false; }
//-----------------------------------------------------------------------------
// Computes the surrounding collision bounds from the the OBB (not vphysics)
//-----------------------------------------------------------------------------
void CCollisionProperty::ComputeRotationExpandedBounds( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { if ( !IsBoundsDefinedInEntitySpace() ) { *pVecWorldMins = m_vecMins; *pVecWorldMaxs = m_vecMaxs; } else { float flMaxVal; flMaxVal = MAX( FloatMakePositive(m_vecMins.Get().x), FloatMakePositive(m_vecMaxs.Get().x) ); pVecWorldMins->x = -flMaxVal; pVecWorldMaxs->x = flMaxVal;
flMaxVal = MAX( FloatMakePositive(m_vecMins.Get().y), FloatMakePositive(m_vecMaxs.Get().y) ); pVecWorldMins->y = -flMaxVal; pVecWorldMaxs->y = flMaxVal;
flMaxVal = MAX( FloatMakePositive(m_vecMins.Get().z), FloatMakePositive(m_vecMaxs.Get().z) ); pVecWorldMins->z = -flMaxVal; pVecWorldMaxs->z = flMaxVal; } }
//-----------------------------------------------------------------------------
// Computes the surrounding collision bounds based on whatever algorithm we want...
//-----------------------------------------------------------------------------
void CCollisionProperty::ComputeCollisionSurroundingBox( bool bUseVPhysics, Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { Assert( GetSolid() != SOLID_CUSTOM );
// NOTE: For solid none, we are still going to use the bounds; necessary because
// the surrounding box is used for the PVS...
// FIXME: Should we make some other call for the PVS stuff?? If so, we should return
// a point bounds for SOLID_NONE...
// if ( GetSolid() == SOLID_NONE )
// {
// *pVecWorldMins = GetCollisionOrigin_Inline();
// *pVecWorldMaxs = *pVecWorldMins;
// return;
// }
if ( bUseVPhysics ) { ComputeVPhysicsSurroundingBox( pVecWorldMins, pVecWorldMaxs ); } else { // Will expand the bounds for the trigger, if it is a trigger
WorldSpaceTriggerBounds( pVecWorldMins, pVecWorldMaxs ); } }
//-----------------------------------------------------------------------------
// Computes the surrounding collision bounds based on whatever algorithm we want...
//-----------------------------------------------------------------------------
#ifdef CLIENT_DLL
static ConVar cl_show_bounds_errors( "cl_show_bounds_errors", "0" ); #endif
void CCollisionProperty::ComputeSurroundingBox( Vector *pVecWorldMins, Vector *pVecWorldMaxs ) { if (( GetSolid() == SOLID_CUSTOM ) && (m_nSurroundType != USE_GAME_CODE )) { // NOTE: This can only happen in transition periods, say during network
// reception on the client. We expect USE_GAME_CODE to be used with SOLID_CUSTOM
*pVecWorldMins = GetCollisionOrigin_Inline(); *pVecWorldMaxs = *pVecWorldMins; return; }
switch( m_nSurroundType ) { case USE_OBB_COLLISION_BOUNDS: Assert( GetSolid() != SOLID_CUSTOM ); ComputeOBBBounds( pVecWorldMins, pVecWorldMaxs ); break;
case USE_BEST_COLLISION_BOUNDS: Assert( GetSolid() != SOLID_CUSTOM ); ComputeCollisionSurroundingBox( (GetSolid() == SOLID_VPHYSICS), pVecWorldMins, pVecWorldMaxs ); break;
case USE_ROTATION_EXPANDED_SEQUENCE_BOUNDS: ComputeRotationExpandedSequenceBounds( pVecWorldMins, pVecWorldMaxs ); break;
case USE_COLLISION_BOUNDS_NEVER_VPHYSICS: Assert( GetSolid() != SOLID_CUSTOM ); ComputeCollisionSurroundingBox( false, pVecWorldMins, pVecWorldMaxs ); break;
case USE_HITBOXES: ComputeHitboxSurroundingBox( pVecWorldMins, pVecWorldMaxs ); break;
case USE_ROTATION_EXPANDED_BOUNDS: ComputeRotationExpandedBounds( pVecWorldMins, pVecWorldMaxs ); break;
case USE_SPECIFIED_BOUNDS: VectorAdd( GetCollisionOrigin_Inline(), m_vecSpecifiedSurroundingMins, *pVecWorldMins ); VectorAdd( GetCollisionOrigin_Inline(), m_vecSpecifiedSurroundingMaxs, *pVecWorldMaxs ); break;
case USE_GAME_CODE: GetOuter()->ComputeWorldSpaceSurroundingBox( pVecWorldMins, pVecWorldMaxs ); Assert( pVecWorldMins->x <= pVecWorldMaxs->x ); Assert( pVecWorldMins->y <= pVecWorldMaxs->y ); Assert( pVecWorldMins->z <= pVecWorldMaxs->z ); return; }
//#ifdef DEBUG
#ifdef CLIENT_DLL
if ( cl_show_bounds_errors.GetBool() && ( m_nSurroundType == USE_ROTATION_EXPANDED_SEQUENCE_BOUNDS ) ) { // For debugging purposes, make sure the bounds actually does surround the thing.
// Otherwise the optimization we were using isn't really all that great, is it?
Vector vecTestMins, vecTestMaxs; if ( GetOuter()->GetBaseAnimating() ) { GetOuter()->GetBaseAnimating()->InvalidateBoneCache(); } ComputeHitboxSurroundingBox( &vecTestMins, &vecTestMaxs ); Assert( vecTestMins.x >= pVecWorldMins->x && vecTestMins.y >= pVecWorldMins->y && vecTestMins.z >= pVecWorldMins->z ); Assert( vecTestMaxs.x <= pVecWorldMaxs->x && vecTestMaxs.y <= pVecWorldMaxs->y && vecTestMaxs.z <= pVecWorldMaxs->z );
if ( vecTestMins.x < pVecWorldMins->x || vecTestMins.y < pVecWorldMins->y || vecTestMins.z < pVecWorldMins->z || vecTestMaxs.x > pVecWorldMaxs->x || vecTestMaxs.y > pVecWorldMaxs->y || vecTestMaxs.z > pVecWorldMaxs->z ) { const char *pSeqName = "<unknown seq>"; C_BaseAnimating *pAnim = GetOuter()->GetBaseAnimating(); if ( pAnim ) { int nSequence = pAnim->GetSequence(); pSeqName = pAnim->GetSequenceName( nSequence ); }
Warning( "*** Bounds problem, index %d Eng %s, Seqeuence %s ", GetOuter()->entindex(), GetOuter()->GetClassname(), pSeqName ); Vector vecDelta = *pVecWorldMins - vecTestMins; Vector vecDelta2 = vecTestMaxs - *pVecWorldMaxs; if ( vecDelta.x > 0.0f || vecDelta2.x > 0.0f || vecDelta.y > 0.0f || vecDelta2.y > 0.0f ) { Msg( "Outside X/Y by %.2f ", MAX( MAX( vecDelta.x, vecDelta2.x ), MAX( vecDelta.y, vecDelta2.y ) ) ); } if ( vecDelta.z > 0.0f || vecDelta2.z > 0.0f ) { Msg( "Outside Z by (below) %.2f, (above) %.2f ", MAX( vecDelta.z, 0.0f ), MAX( vecDelta2.z, 0.0f ) ); } Msg( "\n" );
char pTemp[MAX_PATH]; Q_snprintf( pTemp, sizeof(pTemp), "%s [seq: %s]", GetOuter()->GetClassname(), pSeqName );
debugoverlay->AddBoxOverlay( vec3_origin, vecTestMins, vecTestMaxs, vec3_angle, 255, 0, 0, 0, 2 ); debugoverlay->AddBoxOverlay( vec3_origin, *pVecWorldMins, *pVecWorldMaxs, vec3_angle, 0, 0, 255, 0, 2 ); debugoverlay->AddTextOverlay( ( vecTestMins + vecTestMaxs ) * 0.5f, 2, "%s", pTemp ); } } #endif
//#endif
}
//-----------------------------------------------------------------------------
// Sets the method by which the surrounding collision bounds is set
//-----------------------------------------------------------------------------
void CCollisionProperty::SetSurroundingBoundsType( SurroundingBoundsType_t type, const Vector *pMins, const Vector *pMaxs ) { m_nSurroundType = type; if (type != USE_SPECIFIED_BOUNDS) { Assert( !pMins && !pMaxs ); MarkSurroundingBoundsDirty(); } else { Assert( pMins && pMaxs ); ASSERT_COORD( *pMins ); ASSERT_COORD( *pMaxs ); m_vecSpecifiedSurroundingMins = *pMins; m_vecSpecifiedSurroundingMaxs = *pMaxs; m_vecSurroundingMins = *pMins; m_vecSurroundingMaxs = *pMaxs;
ASSERT_COORD( m_vecSurroundingMins ); ASSERT_COORD( m_vecSurroundingMaxs ); } }
//-----------------------------------------------------------------------------
// Marks the entity has having a dirty surrounding box
//-----------------------------------------------------------------------------
void CCollisionProperty::MarkSurroundingBoundsDirty() { // don't bother with the world
if ( m_pOuter->entindex() == 0 ) return;
GetOuter()->AddEFlags( EFL_DIRTY_SURROUNDING_COLLISION_BOUNDS ); MarkPartitionHandleDirty();
#ifdef CLIENT_DLL
GetOuter()->MarkRenderHandleDirty(); g_pClientShadowMgr->AddToDirtyShadowList( GetOuter() ); g_pClientShadowMgr->MarkRenderToTextureShadowDirty( GetOuter()->GetShadowHandle() ); #else
GetOuter()->NetworkProp()->MarkPVSInformationDirty(); #endif
}
//-----------------------------------------------------------------------------
// Does VPhysicsUpdate make us need to recompute the surrounding box?
//-----------------------------------------------------------------------------
bool CCollisionProperty::DoesVPhysicsInvalidateSurroundingBox( ) const { switch ( m_nSurroundType ) { case USE_BEST_COLLISION_BOUNDS: return true;
case USE_OBB_COLLISION_BOUNDS: return (GetSolid() == SOLID_VPHYSICS) && (GetOuter()->GetMoveType() == MOVETYPE_VPHYSICS) && GetOuter()->VPhysicsGetObject();
// In the case of game code, we don't really know, so we have to assume it does
case USE_GAME_CODE: return true;
case USE_COLLISION_BOUNDS_NEVER_VPHYSICS: case USE_HITBOXES: case USE_ROTATION_EXPANDED_BOUNDS: case USE_SPECIFIED_BOUNDS: case USE_ROTATION_EXPANDED_SEQUENCE_BOUNDS: return false;
default: Assert(0); return true; } }
//-----------------------------------------------------------------------------
// Computes the surrounding collision bounds based on whatever algorithm we want...
//-----------------------------------------------------------------------------
void CCollisionProperty::WorldSpaceSurroundingBounds( Vector *pVecMins, Vector *pVecMaxs ) { const Vector &vecAbsOrigin = GetCollisionOrigin_Inline(); if ( GetOuter()->IsEFlagSet( EFL_DIRTY_SURROUNDING_COLLISION_BOUNDS )) { GetOuter()->RemoveEFlags( EFL_DIRTY_SURROUNDING_COLLISION_BOUNDS ); ComputeSurroundingBox( pVecMins, pVecMaxs ); ASSERT_COORD( *pVecMins ); ASSERT_COORD( *pVecMaxs ); VectorSubtract( *pVecMins, vecAbsOrigin, m_vecSurroundingMins ); VectorSubtract( *pVecMaxs, vecAbsOrigin, m_vecSurroundingMaxs ); ASSERT_COORD( m_vecSurroundingMins ); ASSERT_COORD( m_vecSurroundingMaxs ); } else { VectorAdd( m_vecSurroundingMins, vecAbsOrigin, *pVecMins ); VectorAdd( m_vecSurroundingMaxs, vecAbsOrigin, *pVecMaxs ); } }
//-----------------------------------------------------------------------------
// Spatial partition
//-----------------------------------------------------------------------------
void CCollisionProperty::CreatePartitionHandle() { // Put the entity into the spatial partition.
Assert( m_Partition == PARTITION_INVALID_HANDLE ); m_Partition = ::partition->CreateHandle( GetEntityHandle() ); }
void CCollisionProperty::DestroyPartitionHandle() { if ( m_Partition != PARTITION_INVALID_HANDLE ) { ::partition->DestroyHandle( m_Partition ); m_Partition = PARTITION_INVALID_HANDLE; } }
uint CCollisionProperty::ComputeServerPartitionMask( ) { uint nMask = 0; #ifndef CLIENT_DLL
// Don't bother with deleted things
// don't add the world
if ( m_pOuter->edict() && m_pOuter->entindex() != 0 ) {
// Make sure it's in the list of all entities
bool bIsSolid = IsSolid() || IsSolidFlagSet(FSOLID_TRIGGER); if ( bIsSolid || m_pOuter->IsEFlagSet(EFL_USE_PARTITION_WHEN_NOT_SOLID) ) { nMask |= PARTITION_ENGINE_NON_STATIC_EDICTS; }
if ( bIsSolid ) { // Insert it into the appropriate lists.
// We have to continually reinsert it because its solid type may have changed
if ( !IsSolidFlagSet(FSOLID_NOT_SOLID) ) { nMask |= PARTITION_ENGINE_SOLID_EDICTS; } if ( IsSolidFlagSet(FSOLID_TRIGGER) ) { nMask |= PARTITION_ENGINE_TRIGGER_EDICTS; } int nMoveType = GetOuter()->GetMoveType(); if ( IsPushableMoveType( nMoveType ) ) { nMask |= PARTITION_ENGINE_PUSHABLE; } } } #endif
return nMask; }
//-----------------------------------------------------------------------------
// Updates the spatial partition
//-----------------------------------------------------------------------------
void CCollisionProperty::UpdateServerPartitionMask( ) { #ifndef CLIENT_DLL
SpatialPartitionHandle_t handle = GetPartitionHandle(); if ( handle == PARTITION_INVALID_HANDLE ) return;
uint nMask = ComputeServerPartitionMask(); // Remove it from whatever lists it may be in at the moment
// We'll re-add it below if we need to.
::partition->RemoveAndInsert( ~0, nMask, handle ); #endif
}
//-----------------------------------------------------------------------------
// Marks the spatial partition dirty
//-----------------------------------------------------------------------------
void CCollisionProperty::MarkPartitionHandleDirty() { if ( !m_pOuter->IsEFlagSet( EFL_DIRTY_SPATIAL_PARTITION ) ) { s_DirtyKDTree.AddEntity( m_pOuter ); m_pOuter->AddEFlags( EFL_DIRTY_SPATIAL_PARTITION ); } }
//-----------------------------------------------------------------------------
// Updates the spatial partition
//-----------------------------------------------------------------------------
void CCollisionProperty::UpdatePartition( ) { if ( m_pOuter->IsEFlagSet( EFL_DIRTY_SPATIAL_PARTITION ) ) { m_pOuter->RemoveEFlags( EFL_DIRTY_SPATIAL_PARTITION );
#ifndef CLIENT_DLL
Assert( m_pOuter->entindex() != 0 );
// Don't bother with deleted things
if ( !m_pOuter->edict() ) return;
if ( GetPartitionHandle() == PARTITION_INVALID_HANDLE ) { CreatePartitionHandle(); UpdateServerPartitionMask(); } #else
if ( GetPartitionHandle() == PARTITION_INVALID_HANDLE ) return; #endif
// We don't need to bother if it's not a trigger or solid
if ( IsSolid() || IsSolidFlagSet( FSOLID_TRIGGER ) || m_pOuter->IsEFlagSet( EFL_USE_PARTITION_WHEN_NOT_SOLID ) ) { // Bloat a little bit...
if ( BoundingRadius() != 0.0f ) { Vector vecSurroundMins, vecSurroundMaxs; ASSERT_COORD( m_vecSurroundingMins ); ASSERT_COORD( m_vecSurroundingMaxs ); WorldSpaceSurroundingBounds( &vecSurroundMins, &vecSurroundMaxs ); ASSERT_COORD( m_vecSurroundingMins ); ASSERT_COORD( m_vecSurroundingMaxs ); vecSurroundMins -= Vector( 1, 1, 1 ); vecSurroundMaxs += Vector( 1, 1, 1 ); ::partition->ElementMoved( GetPartitionHandle(), vecSurroundMins, vecSurroundMaxs ); } else { ::partition->ElementMoved( GetPartitionHandle(), GetCollisionOrigin_Inline(), GetCollisionOrigin_Inline() ); } } } }
|