|
|
//===== Copyright (c) 1996-2008, Valve Corporation, All rights reserved. ======//
//
// Purpose: Support for mapping from a quad mesh to Bicubic Patches, as a means
// of rendering approximate Catmull-Clark subdivision surfaces
//
//===========================================================================//
#include "studio.h"
#include "studiorendercontext.h"
#include "materialsystem/imaterialsystem.h"
#include "materialsystem/imaterial.h"
#include "materialsystem/imaterialvar.h"
#include "materialsystem/itexture.h"
#include "materialsystem/imesh.h"
#include "mathlib/mathlib.h"
#include "studiorender.h"
#include "optimize.h"
#include "tier1/convar.h"
#include "tier1/keyvalues.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define R_STUDIOSUBD
#include "r_studiosubd_patches.h"
#ifdef _DEBUG
// Temporary debug arrays
extern CUtlVector<Vector4D> g_DebugCornerPositions; extern CUtlVector<Vector4D> g_DebugEdgePositions; extern CUtlVector<Vector4D> g_DebugInteriorPositions; #endif
//
// Check out CL# 584588 for an SSE-ized version of the older versions of these
// routines, which came from an older MS doc, by way of the DX10 SDK
//
static void R_TransformVert( const Vector *pSrcPos, matrix3x4_t *pSkinMat, Vector4DAligned &pos ) { VPROF_BUDGET( "R_TransformVert", _T("SubD Rendering") );
// NOTE: Could add SSE stuff here, if we knew what SSE stuff could make it faster
pos.x = pSrcPos->x * (*pSkinMat)[0][0] + pSrcPos->y * (*pSkinMat)[0][1] + pSrcPos->z * (*pSkinMat)[0][2] + (*pSkinMat)[0][3]; pos.y = pSrcPos->x * (*pSkinMat)[1][0] + pSrcPos->y * (*pSkinMat)[1][1] + pSrcPos->z * (*pSkinMat)[1][2] + (*pSkinMat)[1][3]; pos.z = pSrcPos->x * (*pSkinMat)[2][0] + pSrcPos->y * (*pSkinMat)[2][1] + pSrcPos->z * (*pSkinMat)[2][2] + (*pSkinMat)[2][3]; pos.w = 1.0f; }
// This function is duplicate code ****
static matrix3x4_t *ComputeSkinMatrixSSE( mstudioboneweight_t &boneweights, matrix3x4_t *pPoseToWorld, matrix3x4_t &scratchMatrix ) { VPROF_BUDGET( "ComputeSkinMatrixSSE", _T("SubD Rendering") );
// NOTE: pPoseToWorld, being cache aligned, doesn't need explicit initialization
#if defined( _WIN32 ) && !defined( WIN64 ) && !defined( _X360 )
switch( boneweights.numbones ) { default: case 1: return &pPoseToWorld[boneweights.bone[0]];
case 2: { matrix3x4_t &boneMat0 = pPoseToWorld[boneweights.bone[0]]; matrix3x4_t &boneMat1 = pPoseToWorld[boneweights.bone[1]]; float *pWeights = boneweights.weight;
_asm { mov eax, DWORD PTR [pWeights] movss xmm6, dword ptr[eax] ; boneweights.weight[0] movss xmm7, dword ptr[eax + 4] ; boneweights.weight[1]
mov eax, DWORD PTR [boneMat0] mov ecx, DWORD PTR [boneMat1] mov edi, DWORD PTR [scratchMatrix]
// Fill xmm6, and 7 with all the bone weights
shufps xmm6, xmm6, 0 shufps xmm7, xmm7, 0
// Load up all rows of the three matrices
movaps xmm0, XMMWORD PTR [eax] movaps xmm1, XMMWORD PTR [ecx] movaps xmm2, XMMWORD PTR [eax + 16] movaps xmm3, XMMWORD PTR [ecx + 16] movaps xmm4, XMMWORD PTR [eax + 32] movaps xmm5, XMMWORD PTR [ecx + 32]
// Multiply the rows by the weights
mulps xmm0, xmm6 mulps xmm1, xmm7 mulps xmm2, xmm6 mulps xmm3, xmm7 mulps xmm4, xmm6 mulps xmm5, xmm7
addps xmm0, xmm1 addps xmm2, xmm3 addps xmm4, xmm5
movaps XMMWORD PTR [edi], xmm0 movaps XMMWORD PTR [edi + 16], xmm2 movaps XMMWORD PTR [edi + 32], xmm4 } } return &scratchMatrix;
case 3: { matrix3x4_t &boneMat0 = pPoseToWorld[boneweights.bone[0]]; matrix3x4_t &boneMat1 = pPoseToWorld[boneweights.bone[1]]; matrix3x4_t &boneMat2 = pPoseToWorld[boneweights.bone[2]]; float *pWeights = boneweights.weight;
_asm { mov eax, DWORD PTR [pWeights] movss xmm5, dword ptr[eax] ; boneweights.weight[0] movss xmm6, dword ptr[eax + 4] ; boneweights.weight[1] movss xmm7, dword ptr[eax + 8] ; boneweights.weight[2]
mov eax, DWORD PTR [boneMat0] mov ecx, DWORD PTR [boneMat1] mov edx, DWORD PTR [boneMat2] mov edi, DWORD PTR [scratchMatrix]
// Fill xmm5, 6, and 7 with all the bone weights
shufps xmm5, xmm5, 0 shufps xmm6, xmm6, 0 shufps xmm7, xmm7, 0
// Load up the first row of the three matrices
movaps xmm0, XMMWORD PTR [eax] movaps xmm1, XMMWORD PTR [ecx] movaps xmm2, XMMWORD PTR [edx]
// Multiply the rows by the weights
mulps xmm0, xmm5 mulps xmm1, xmm6 mulps xmm2, xmm7
addps xmm0, xmm1 addps xmm0, xmm2 movaps XMMWORD PTR [edi], xmm0
// Load up the second row of the three matrices
movaps xmm0, XMMWORD PTR [eax + 16] movaps xmm1, XMMWORD PTR [ecx + 16] movaps xmm2, XMMWORD PTR [edx + 16]
// Multiply the rows by the weights
mulps xmm0, xmm5 mulps xmm1, xmm6 mulps xmm2, xmm7
addps xmm0, xmm1 addps xmm0, xmm2 movaps XMMWORD PTR [edi + 16], xmm0
// Load up the third row of the three matrices
movaps xmm0, XMMWORD PTR [eax + 32] movaps xmm1, XMMWORD PTR [ecx + 32] movaps xmm2, XMMWORD PTR [edx + 32]
// Multiply the rows by the weights
mulps xmm0, xmm5 mulps xmm1, xmm6 mulps xmm2, xmm7
addps xmm0, xmm1 addps xmm0, xmm2 movaps XMMWORD PTR [edi + 32], xmm0 } } return &scratchMatrix;
case 4: { matrix3x4_t &boneMat0 = pPoseToWorld[boneweights.bone[0]]; matrix3x4_t &boneMat1 = pPoseToWorld[boneweights.bone[1]]; matrix3x4_t &boneMat2 = pPoseToWorld[boneweights.bone[2]]; matrix3x4_t &boneMat3 = pPoseToWorld[boneweights.bone[3]]; float *pWeights = boneweights.weight;
_asm { mov eax, DWORD PTR [pWeights] movss xmm4, dword ptr[eax] ; boneweights.weight[0] movss xmm5, dword ptr[eax + 4] ; boneweights.weight[1] movss xmm6, dword ptr[eax + 8] ; boneweights.weight[2] movss xmm7, dword ptr[eax + 12] ; boneweights.weight[3]
mov eax, DWORD PTR [boneMat0] mov ecx, DWORD PTR [boneMat1] mov edx, DWORD PTR [boneMat2] mov esi, DWORD PTR [boneMat3] mov edi, DWORD PTR [scratchMatrix]
// Fill xmm5, 6, and 7 with all the bone weights
shufps xmm4, xmm4, 0 shufps xmm5, xmm5, 0 shufps xmm6, xmm6, 0 shufps xmm7, xmm7, 0
// Load up the first row of the four matrices
movaps xmm0, XMMWORD PTR [eax] movaps xmm1, XMMWORD PTR [ecx] movaps xmm2, XMMWORD PTR [edx] movaps xmm3, XMMWORD PTR [esi]
// Multiply the rows by the weights
mulps xmm0, xmm4 mulps xmm1, xmm5 mulps xmm2, xmm6 mulps xmm3, xmm7
addps xmm0, xmm1 addps xmm2, xmm3 addps xmm0, xmm2 movaps XMMWORD PTR [edi], xmm0
// Load up the second row of the three matrices
movaps xmm0, XMMWORD PTR [eax + 16] movaps xmm1, XMMWORD PTR [ecx + 16] movaps xmm2, XMMWORD PTR [edx + 16] movaps xmm3, XMMWORD PTR [esi + 16]
// Multiply the rows by the weights
mulps xmm0, xmm4 mulps xmm1, xmm5 mulps xmm2, xmm6 mulps xmm3, xmm7
addps xmm0, xmm1 addps xmm2, xmm3 addps xmm0, xmm2 movaps XMMWORD PTR [edi + 16], xmm0
// Load up the third row of the three matrices
movaps xmm0, XMMWORD PTR [eax + 32] movaps xmm1, XMMWORD PTR [ecx + 32] movaps xmm2, XMMWORD PTR [edx + 32] movaps xmm3, XMMWORD PTR [esi + 32]
// Multiply the rows by the weights
mulps xmm0, xmm4 mulps xmm1, xmm5 mulps xmm2, xmm6 mulps xmm3, xmm7
addps xmm0, xmm1 addps xmm2, xmm3 addps xmm0, xmm2 movaps XMMWORD PTR [edi + 32], xmm0 } } return &scratchMatrix; } #else
#ifndef LINUX
#pragma message( "ComputeSkinMatrixSSE C implementation only" )
#endif
extern matrix3x4_t *ComputeSkinMatrix( mstudioboneweight_t &boneweights, matrix3x4_t *pPoseToWorld, matrix3x4_t &scratchMatrix ); return ComputeSkinMatrix( boneweights, pPoseToWorld, scratchMatrix ); #endif
Assert( 0 ); return NULL; }
#ifdef _DEBUG
static ConVar mat_tess_dump( "mat_tess_dump", "0", FCVAR_CHEAT ); #endif
void CStudioRender::SkinSubDCage( mstudiovertex_t *pVertices, int nNumVertices, matrix3x4_t *pPoseToWorld, CCachedRenderData &vertexCache, unsigned short* pGroupToMesh, fltx4 *vOutput, bool bDoFlex ) { VPROF_BUDGET( "CStudioRender::SkinSubDCage", _T("SubD Rendering") );
Vector *pSrcPos; ALIGN16 matrix3x4_t *pSkinMat, temp ALIGN16_POST;
Assert( nNumVertices > 0 );
for ( int j=0; j < nNumVertices; ++j ) { mstudiovertex_t &vert = pVertices[pGroupToMesh[j]];
pSkinMat = ComputeSkinMatrixSSE( vert.m_BoneWeights, pPoseToWorld, temp );
if ( bDoFlex && vertexCache.IsVertexFlexed( pGroupToMesh[j] ) ) { CachedPosNormTan_t* pFlexedVertex = vertexCache.GetFlexVertex( pGroupToMesh[j] ); pSrcPos = &pFlexedVertex->m_Position.AsVector3D();
// Copy strange signed, 0..3 wrinkle tangent-flip encoding over to tangent.w
pFlexedVertex->m_TangentS.w = pFlexedVertex->m_Position.w; } else // non-flexed case
{ pSrcPos = &vert.m_vecPosition; }
// Transform into world space
Vector4DAligned vTemp; R_TransformVert( pSrcPos, pSkinMat, *(Vector4DAligned*)&vTemp ); vOutput[j] = LoadAlignedSIMD( (float *) &vTemp ); } }
inline unsigned short *InitializeTopologyIndexStruct( TopologyIndexStruct &quad, unsigned short *topologyIndex ) { quad.vtx1RingSize = topologyIndex; topologyIndex += 4; quad.vtx1RingCenterQuadOffset = topologyIndex; topologyIndex += 4; quad.valences = topologyIndex; topologyIndex += 4; quad.minOneRingOffset = topologyIndex; topologyIndex += 4; quad.bndVtx = topologyIndex; topologyIndex += 4; quad.bndEdge = topologyIndex; topologyIndex += 4; quad.cornerVtx = topologyIndex; topologyIndex += 4; quad.loopGapAngle = topologyIndex; topologyIndex += 4; quad.nbCornerVtx = topologyIndex; topologyIndex += 4; quad.edgeBias = topologyIndex; topologyIndex += 8; quad.vUV0 = topologyIndex; topologyIndex += 4; quad.vUV1 = topologyIndex; topologyIndex += 4; quad.vUV2 = topologyIndex; topologyIndex += 4; quad.vUV3 = topologyIndex; topologyIndex += 4; quad.oneRing = topologyIndex; topologyIndex += quad.vtx1RingSize[0]+quad.vtx1RingSize[1]+quad.vtx1RingSize[2]+quad.vtx1RingSize[3];
return topologyIndex; }
static ConVar mat_tessellation_update_buffers( "mat_tessellation_update_buffers", "1", FCVAR_CHEAT ); static ConVar mat_tessellation_cornertangents( "mat_tessellation_cornertangents", "1", FCVAR_CHEAT ); static ConVar mat_tessellation_accgeometrytangents( "mat_tessellation_accgeometrytangents", "0", FCVAR_CHEAT );
#ifdef _DEBUG
bool NotQuiteEqual( Vector4D &vA, Vector4D &vB ) { float flEpsilon = 0.05f; Vector4D vDelta = vA - vB; float flDist = sqrt( vDelta.x * vDelta.x + vDelta.y * vDelta.y + vDelta.z * vDelta.z ); bool bSameVector = ( vA.x == vB.x ) && ( vA.y == vB.y ) && ( vA.z == vB.z );
return ( flDist < flEpsilon ) && !bSameVector; }
void DumpDebugPositions() {
for ( int i=0; i< g_DebugCornerPositions.Count(); i++ ) { bool bCrack = false; for ( int j=0; j< g_DebugCornerPositions.Count(); j++ ) { if ( NotQuiteEqual( g_DebugCornerPositions[i], g_DebugCornerPositions[j] ) ) { bCrack = true; Assert(0); } }
DevMsg( "%s C - %.15f, %.15f, %.15f\n", bCrack ? "*** " : " ", g_DebugCornerPositions[i].x, g_DebugCornerPositions[i].y, g_DebugCornerPositions[i].z ); }
for ( int i=0; i< g_DebugEdgePositions.Count(); i++ ) { bool bCrack = false; for ( int j=0; j< g_DebugEdgePositions.Count(); j++ ) { if ( NotQuiteEqual( g_DebugEdgePositions[i], g_DebugEdgePositions[j] ) ) { bCrack = true; } }
DevMsg( "%s E - %.15f, %.15f, %.15f\n", bCrack ? "*** " : " ", g_DebugEdgePositions[i].x, g_DebugEdgePositions[i].y, g_DebugEdgePositions[i].z ); }
for ( int i=0; i< g_DebugInteriorPositions.Count(); i++ ) { bool bCrack = false; for ( int j=0; j< g_DebugInteriorPositions.Count(); j++ ) { if ( NotQuiteEqual( g_DebugInteriorPositions[i], g_DebugInteriorPositions[j] ) ) { bCrack = true; } }
DevMsg( "%s I - %.15f, %.15f, %.15f\n", bCrack ? "*** " : " ", g_DebugInteriorPositions[i].x, g_DebugInteriorPositions[i].y, g_DebugInteriorPositions[i].z ); } }
#endif // _DEBUG
void GenerateWorldSpacePatches( float *pSubDBuff, int nNumPatches, unsigned short *pTopologyIndices, fltx4 *pWSVertices, bool bRegularPatch ) { VPROF_BUDGET( "CStudioRender::GenerateWorldSpacePatches", _T("SubD Rendering") );
TopologyIndexStruct quad; unsigned short *nextPatchIndices = InitializeTopologyIndexStruct( quad, pTopologyIndices );
set_ShowACCGeometryTangents(mat_tessellation_accgeometrytangents.GetBool()); set_UseCornerTangents(mat_tessellation_cornertangents.GetBool());
ALIGN16 Vector4D Geo[16] ALIGN16_POST; ALIGN16 Vector4D TanU[12] ALIGN16_POST; ALIGN16 Vector4D TanV[12] ALIGN16_POST;
#ifdef _DEBUG
if ( mat_tess_dump.GetBool() ) { // Debug Arrays
g_DebugCornerPositions.EnsureCapacity( nNumPatches * 4 ); g_DebugEdgePositions.EnsureCapacity( nNumPatches * 8 ); g_DebugInteriorPositions.EnsureCapacity( nNumPatches * 4 );
// Empty the arrays this time around
g_DebugCornerPositions.RemoveAll(); g_DebugEdgePositions.RemoveAll(); g_DebugInteriorPositions.RemoveAll(); } #endif
for( int p = 0; p < nNumPatches; p++ ) { #if defined( USE_OPT )
ComputeACCAllPatches( pWSVertices, &quad, Geo, TanU, TanV, bRegularPatch ); #else
ComputeACCGeometryPatch( pWSVertices, &quad, Geo ); ComputeACCTangentPatches( pWSVertices, &quad, Geo, TanU, TanV ); #endif
for ( int i=0; i < 16; i++ ) { pSubDBuff[ i * 3 + 0 ] = Geo[i].x; pSubDBuff[ i * 3 + 1 ] = Geo[i].y; pSubDBuff[ i * 3 + 2 ] = Geo[i].z;
}
for ( int i=0; i<12; i++ ) { pSubDBuff[ i * 3 + 0 + 48 ] = TanU[ i ].x; pSubDBuff[ i * 3 + 1 + 48 ] = TanU[ i ].y; pSubDBuff[ i * 3 + 2 + 48 ] = TanU[ i ].z; }
for ( int i=0; i<12; i++ ) { pSubDBuff[ i * 3 + 0 + 84 ] = TanV[ i ].x; pSubDBuff[ i * 3 + 1 + 84 ] = TanV[ i ].y; pSubDBuff[ i * 3 + 2 + 84 ] = TanV[ i ].z; }
pSubDBuff += 120; // 30 * sizeof( float )
nextPatchIndices = InitializeTopologyIndexStruct( quad, nextPatchIndices ); }
#ifdef _DEBUG
if ( mat_tess_dump.GetBool() ) { // These should be a particular size
Assert( g_DebugCornerPositions.Count() == ( nNumPatches * 4 ) ); Assert( g_DebugEdgePositions.Count() == ( nNumPatches * 8 ) ); Assert( g_DebugInteriorPositions.Count() == ( nNumPatches * 4 ) );
DumpDebugPositions(); mat_tess_dump.SetValue( 0 ); // Turn back off
} #endif
}
//-----------------------------------------------------------------------------------
// Top level function for mapping a quad mesh to an array of Bicubic Bezier patches
//-----------------------------------------------------------------------------------
void CStudioRender::GenerateBicubicPatches( mstudiomesh_t* pmesh, studiomeshgroup_t* pGroup, bool bDoFlex ) { #if defined( LINUX )
Assert(0); #else
VPROF_BUDGET( "CStudioRender::GenerateBicubicPatches", _T("SubD Rendering") );
FillTables(); // This only does work the first time through
Assert( pmesh ); Assert( pGroup );
const mstudio_meshvertexdata_t *vertData = pmesh->GetVertexData( m_pStudioHdr ); Assert( vertData );
mstudiovertex_t *pVertices = vertData->Vertex( 0 );
m_vSkinnedSubDVertices.SetCount( pGroup->m_NumVertices );
// First, apply software flexing and skinning to the vertices
SkinSubDCage( pVertices, pGroup->m_NumVertices, m_PoseToWorld, m_VertexCache, pGroup->m_pGroupIndexToMeshIndex, m_vSkinnedSubDVertices.Base(), bDoFlex );
// Early out
if ( mat_tessellation_update_buffers.GetBool() == false ) return;
// Lock the subd buffers
int nNumPatches = 0; for ( int s=0; s<pGroup->m_NumStrips; ++s ) { nNumPatches += pGroup->m_pUniqueFaces[s]; }
CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); float *pSubDBuff = pRenderContext->LockSubDBuffer( nNumPatches );
// Now we are in world space, we can map to array of Bicubic patches
int totalIndices = 0; float *pCurrentPtr = pSubDBuff; for ( int s=0; s<pGroup->m_NumStrips; ++s ) { OptimizedModel::StripHeader_t *pStrip = &pGroup->m_pStripData[s]; int StripFaces = pGroup->m_pUniqueFaces[s];
GenerateWorldSpacePatches( pCurrentPtr, StripFaces, &pGroup->m_pTopologyIndices[totalIndices], m_vSkinnedSubDVertices.Base(), ( pStrip->flags & OptimizedModel::STRIP_IS_QUADLIST_REG ) != 0 );
totalIndices += pStrip->numTopologyIndices; pCurrentPtr += StripFaces * 120; }
// Unlock subd buffers
pRenderContext->UnlockSubDBuffer( );
#endif // !LINUX
}
// Transform Tangent vector
static void R_TransformTangent( const Vector4D *pSrcTangentS, matrix3x4_t *pSkinMat, Vector4DAligned &tangentS ) { VPROF_BUDGET( "R_TransformTangent", _T("SubD Rendering") );
tangentS.x = pSrcTangentS->x * (*pSkinMat)[0][0] + pSrcTangentS->y * (*pSkinMat)[0][1] + pSrcTangentS->z * (*pSkinMat)[0][2]; tangentS.y = pSrcTangentS->x * (*pSkinMat)[1][0] + pSrcTangentS->y * (*pSkinMat)[1][1] + pSrcTangentS->z * (*pSkinMat)[1][2]; tangentS.z = pSrcTangentS->x * (*pSkinMat)[2][0] + pSrcTangentS->y * (*pSkinMat)[2][1] + pSrcTangentS->z * (*pSkinMat)[2][2]; tangentS.w = pSrcTangentS->w; }
// Transforms per-vertex tangent vector, copies texture coordinates etc into dynamic VB
void CStudioRender::SoftwareProcessQuadMesh( mstudiomesh_t* pmesh, CMeshBuilder& meshBuilder, int numFaces, unsigned short* pGroupToMesh, unsigned short *pTopologyIndices, bool bTangentSpace, bool bDoFlex ) { VPROF_BUDGET( "CStudioRender::SoftwareProcessQuadMesh", _T("SubD Rendering") );
Vector4D *pStudioTangentS = NULL;
ALIGN16 QuadTessVertex_t quadVertex ALIGN16_POST;
// QuadTessVertex_t currently has the following map:
// +-----------------------------------+
// | tanX | tanY | tanZ | sBWrnk | <- Tangent in .xyz, Binormal sign flip bit plus wrinkle in .w
// +-----------------------------------+
// | tcU0 | tcV0 | tcU1 | tcV1 | <- Interior TC, Parametric V Edge TC
// +-----------------------------------+
// | tcU2 | tcV2 | tcU3 | tcV3 | <- Parametric U Edge TC, Corner TC
// +-----------------------------------+
quadVertex.m_vTangent.Init( 1.0f, 0.0f, 0.0f, 1.0f );
ALIGN16 matrix3x4_t *pSkinMat, matTemp ALIGN16_POST;
Assert( numFaces > 0 );
const mstudio_meshvertexdata_t *pVertData = pmesh->GetVertexData( m_pStudioHdr ); Assert( pVertData ); if ( !pVertData ) return;
mstudiovertex_t *pVertices = pVertData->Vertex( 0 );
if ( bTangentSpace ) { pStudioTangentS = pVertData->TangentS( 0 ); }
TopologyIndexStruct quad; unsigned short *nextPatchIndices = InitializeTopologyIndexStruct( quad, pTopologyIndices );
for ( int i=0; i < numFaces; ++i ) // Run over faces
{ int patchCorner = 0;
#if 0
Vector4D debugTangent[4]; for ( int j=0; j < 4; ++j ) { int idx = quad.oneRing[patchCorner]; memcpy( &debugTangent[j], &pStudioTangentS[idx], sizeof( Vector4D ) ); patchCorner += quad.vtx1RingSize[j]; }
// These should be the same sign for a given patch.
// If they're not, that's bad
Assert( ( debugTangent[0].w == debugTangent[1].w ) && ( debugTangent[1].w == debugTangent[2].w ) && ( debugTangent[2].w == debugTangent[3].w ) );
patchCorner = 0; #endif
for ( int j=0; j < 4; ++j ) // Four verts per face
{ int idx = quad.oneRing[patchCorner]; mstudiovertex_t &vert = pVertices[idx];
if ( bTangentSpace ) { pSkinMat = ComputeSkinMatrixSSE( vert.m_BoneWeights, m_PoseToWorld, matTemp );
if ( bDoFlex && m_VertexCache.IsVertexFlexed( idx ) ) { CachedPosNormTan_t* pFlexedVertex = m_VertexCache.GetFlexVertex( idx ); R_TransformTangent( &(pFlexedVertex->m_TangentS), pSkinMat, *(Vector4DAligned*)&quadVertex.m_vTangent ); } else // non-flexed case
{ R_TransformTangent( &pStudioTangentS[idx], pSkinMat, *(Vector4DAligned*)&quadVertex.m_vTangent ); quadVertex.m_vTangent.w *= 2; // non-flexed vertex should have wrinkle of -2 or +2
} }
// Store 4 texcoords per quad corner
quadVertex.m_vUV01.x = pVertices[ quad.vUV0[j] ].m_vecTexCoord.x; quadVertex.m_vUV01.y = pVertices[ quad.vUV0[j] ].m_vecTexCoord.y; quadVertex.m_vUV01.z = pVertices[ quad.vUV1[j] ].m_vecTexCoord.x; quadVertex.m_vUV01.w = pVertices[ quad.vUV1[j] ].m_vecTexCoord.y; quadVertex.m_vUV23.x = pVertices[ quad.vUV2[j] ].m_vecTexCoord.x; quadVertex.m_vUV23.y = pVertices[ quad.vUV2[j] ].m_vecTexCoord.y; quadVertex.m_vUV23.z = pVertices[ quad.vUV3[j] ].m_vecTexCoord.x; quadVertex.m_vUV23.w = pVertices[ quad.vUV3[j] ].m_vecTexCoord.y;
meshBuilder.FastQuadVertexSSE( quadVertex );
patchCorner += quad.vtx1RingSize[j]; }
nextPatchIndices = InitializeTopologyIndexStruct( quad, nextPatchIndices ); }
meshBuilder.FastAdvanceNVertices( numFaces * 4 ); }
|