|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Revision: $
// $NoKeywords: $
//
// This file contains code to allow us to associate client data with bsp leaves.
//
//=============================================================================//
#include "vrad.h"
#include "Bsplib.h"
#include "GameBSPFile.h"
#include "UtlBuffer.h"
#include "UtlVector.h"
#include "CModel.h"
#include "studio.h"
#include "pacifier.h"
#include "vraddetailprops.h"
#include "mathlib/halton.h"
#include "messbuf.h"
#include "byteswap.h"
bool LoadStudioModel( char const* pModelName, CUtlBuffer& buf );
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
extern float SoftenCosineTerm( float flDot ); extern float CalculateAmbientOcclusion( Vector *pPosition, Vector *pNormal );
//-----------------------------------------------------------------------------
// Purpose: Writes a glview text file containing the collision surface in question
// Input : *pCollide -
// *pFilename -
//-----------------------------------------------------------------------------
void DumpRayToGlView( Ray_t const& ray, float dist, Vector* pColor, const char *pFilename ) { Vector dir = ray.m_Delta; float len = VectorNormalize(dir); if (len < 1e-3) return;
Vector up( 0, 0, 1 ); Vector crossDir; if (fabs(DotProduct(up, dir)) - 1.0f < -1e-3 ) { CrossProduct( dir, up, crossDir ); VectorNormalize(crossDir); } else { up.Init( 0, 1, 0 ); CrossProduct( dir, up, crossDir ); VectorNormalize(crossDir); }
Vector end; Vector start1, start2; VectorMA( ray.m_Start, dist, ray.m_Delta, end ); VectorMA( ray.m_Start, -2, crossDir, start1 ); VectorMA( ray.m_Start, 2, crossDir, start2 );
FileHandle_t fp = g_pFileSystem->Open( pFilename, "a" ); int vert = 0; CmdLib_FPrintf( fp, "3\n" ); CmdLib_FPrintf( fp, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", start1.x, start1.y, start1.z, pColor->x, pColor->y, pColor->z ); vert++; CmdLib_FPrintf( fp, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", start2.x, start2.y, start2.z, pColor->x, pColor->y, pColor->z ); vert++; CmdLib_FPrintf( fp, "%6.3f %6.3f %6.3f %.2f %.2f %.2f\n", end.x, end.y, end.z, pColor->x, pColor->y, pColor->z ); vert++; g_pFileSystem->Close( fp ); }
//-----------------------------------------------------------------------------
// This puppy is used to construct the game lumps
//-----------------------------------------------------------------------------
static CUtlVector<DetailPropLightstylesLump_t> s_DetailPropLightStyleLumpLDR; static CUtlVector<DetailPropLightstylesLump_t> s_DetailPropLightStyleLumpHDR; static CUtlVector<DetailPropLightstylesLump_t> *s_pDetailPropLightStyleLump = &s_DetailPropLightStyleLumpLDR;
//-----------------------------------------------------------------------------
// An amount to add to each model to get to the model center
//-----------------------------------------------------------------------------
CUtlVector<Vector> g_ModelCenterOffset; CUtlVector<Vector> g_SpriteCenterOffset;
void VRadDetailProps_SetHDRMode( bool bHDR ) { if( bHDR ) { s_pDetailPropLightStyleLump = &s_DetailPropLightStyleLumpHDR; } else { s_pDetailPropLightStyleLump = &s_DetailPropLightStyleLumpLDR; } }
//-----------------------------------------------------------------------------
// Finds ambient sky lights
//-----------------------------------------------------------------------------
static directlight_t* FindAmbientSkyLight() { static directlight_t *s_pCachedSkylight = NULL;
// Don't keep searching for the same light.
if ( !s_pCachedSkylight ) { // find any ambient lights
directlight_t* dl; for (dl = activelights; dl != 0; dl = dl->next) { if (dl->light.type == emit_skyambient) { s_pCachedSkylight = dl; break; } } }
return s_pCachedSkylight; }
//-----------------------------------------------------------------------------
// Compute world center of a prop
//-----------------------------------------------------------------------------
static void ComputeWorldCenter( DetailObjectLump_t& prop, Vector& center, Vector& normal ) { // Transform the offset into world space
Vector forward, right; AngleVectors( prop.m_Angles, &forward, &right, &normal ); VectorCopy( prop.m_Origin, center );
// FIXME: Take orientation into account?
switch (prop.m_Type ) { case DETAIL_PROP_TYPE_MODEL: VectorMA( center, g_ModelCenterOffset[prop.m_DetailModel].x, forward, center ); VectorMA( center, -g_ModelCenterOffset[prop.m_DetailModel].y, right, center ); VectorMA( center, g_ModelCenterOffset[prop.m_DetailModel].z, normal, center ); break;
case DETAIL_PROP_TYPE_SPRITE: Vector vecOffset; VectorMultiply( g_SpriteCenterOffset[prop.m_DetailModel], prop.m_flScale, vecOffset ); VectorMA( center, vecOffset.x, forward, center ); VectorMA( center, -vecOffset.y, right, center ); VectorMA( center, vecOffset.z, normal, center ); break; } }
//-----------------------------------------------------------------------------
// Computes max direct lighting for a single detal prop
//-----------------------------------------------------------------------------
static void ComputeMaxDirectLighting( DetailObjectLump_t& prop, Vector* maxcolor, int iThread ) { // The max direct lighting must be along the direction to one
// of the static lights....
Vector origin, normal; ComputeWorldCenter( prop, origin, normal );
if ( !origin.IsValid() || !normal.IsValid() ) { static bool s_Warned = false; if ( !s_Warned ) { Warning("WARNING: Bogus detail props encountered!\n" ); s_Warned = true; }
// fill with debug color
for ( int i = 0; i < MAX_LIGHTSTYLES; ++i) { maxcolor[i].Init(1,0,0); } return; }
int cluster = ClusterFromPoint(origin);
Vector delta; CUtlVector< directlight_t* > lights; CUtlVector< Vector > directions;
directlight_t* dl; for (dl = activelights; dl != 0; dl = dl->next) { // skyambient doesn't affect dlights..
if (dl->light.type == emit_skyambient) continue;
// is this lights cluster visible?
if ( PVSCheck( dl->pvs, cluster ) ) { lights.AddToTail(dl); VectorSubtract( dl->light.origin, origin, delta ); VectorNormalize( delta ); directions.AddToTail( delta ); } }
// Find the max illumination
int i; for ( i = 0; i < MAX_LIGHTSTYLES; ++i) { maxcolor[i].Init(0,0,0); }
// NOTE: See version 10 for a method where we choose a normal based on whichever
// one produces the maximum possible illumination. This appeared to work better on
// e3_town, so I'm trying it now; hopefully it'll be good for all cases.
int j; for ( j = 0; j < lights.Count(); ++j) { dl = lights[j];
SSE_sampleLightOutput_t out; FourVectors origin4; FourVectors normal4; origin4.DuplicateVector( origin ); normal4.DuplicateVector( normal );
GatherSampleLightSSE ( out, dl, -1, origin4, &normal4, 1, iThread, GATHERLFLAGS_STATICPROP ); VectorMA( maxcolor[dl->light.style], out.m_flFalloff.m128_f32[0] * out.m_flDot[0].m128_f32[0], dl->light.intensity, maxcolor[dl->light.style] ); } }
//-----------------------------------------------------------------------------
// Computes the ambient term from a particular surface
//-----------------------------------------------------------------------------
static void ComputeAmbientFromSurface( dface_t* pFace, directlight_t* pSkylight, Vector& radcolor ) { texinfo_t* pTex = &texinfo[pFace->texinfo]; if (pTex) { // If we hit the sky, use the sky ambient
if (pTex->flags & SURF_SKY) { if (pSkylight) { // add in sky ambient
VectorDivide( pSkylight->light.intensity, 255.0f, radcolor ); } } else { VectorMultiply( radcolor, dtexdata[pTex->texdata].reflectivity, radcolor ); } } }
//-----------------------------------------------------------------------------
// Computes the lightmap color at a particular point
//-----------------------------------------------------------------------------
static void ComputeLightmapColorFromAverage( dface_t* pFace, directlight_t* pSkylight, float scale, Vector pColor[MAX_LIGHTSTYLES] ) { texinfo_t* pTex = &texinfo[pFace->texinfo]; if (pTex->flags & SURF_SKY) { if (pSkylight) { // add in sky ambient
Vector amb = pSkylight->light.intensity / 255.0f; pColor[0] += amb * scale; } return; }
for (int maps = 0 ; maps < MAXLIGHTMAPS && pFace->styles[maps] != 255 ; ++maps) { ColorRGBExp32* pAvgColor = dface_AvgLightColor( pFace, maps );
// this code expects values from [0..1] not [0..255]
Vector color; color[0] = TexLightToLinear( pAvgColor->r, pAvgColor->exponent ); color[1] = TexLightToLinear( pAvgColor->g, pAvgColor->exponent ); color[2] = TexLightToLinear( pAvgColor->b, pAvgColor->exponent );
ComputeAmbientFromSurface( pFace, pSkylight, color );
int style = pFace->styles[maps]; pColor[style] += color * scale; } }
//-----------------------------------------------------------------------------
// Returns true if the surface has bumped lightmaps
//-----------------------------------------------------------------------------
static bool SurfHasBumpedLightmaps( dface_t *pSurf ) { bool hasBumpmap = false; if( ( texinfo[pSurf->texinfo].flags & SURF_BUMPLIGHT ) && ( !( texinfo[pSurf->texinfo].flags & SURF_NOLIGHT ) ) ) { hasBumpmap = true; } return hasBumpmap; }
//-----------------------------------------------------------------------------
// Computes the lightmap color at a particular point
//-----------------------------------------------------------------------------
static void ComputeLightmapColorPointSample( dface_t* pFace, directlight_t* pSkylight, Vector2D const& luv, float scale, Vector pColor[MAX_LIGHTSTYLES] ) { // face unaffected by light
if (pFace->lightofs == -1 ) return;
int smax = ( pFace->m_LightmapTextureSizeInLuxels[0] ) + 1; int tmax = ( pFace->m_LightmapTextureSizeInLuxels[1] ) + 1;
// luv is in the space of the accumulated lightmap page; we need to convert
// it to be in the space of the surface
int ds = clamp( (int)luv.x, 0, smax-1 ); int dt = clamp( (int)luv.y, 0, tmax-1 );
int offset = smax * tmax; if ( SurfHasBumpedLightmaps( pFace ) ) offset *= ( NUM_BUMP_VECTS + 1 );
ColorRGBExp32* pLightmap = (ColorRGBExp32*)&pdlightdata->Base()[pFace->lightofs]; pLightmap += dt * smax + ds; for (int maps = 0 ; maps < MAXLIGHTMAPS && pFace->styles[maps] != 255 ; ++maps) { int style = pFace->styles[maps];
Vector color; color[0] = TexLightToLinear( pLightmap->r, pLightmap->exponent ); color[1] = TexLightToLinear( pLightmap->g, pLightmap->exponent ); color[2] = TexLightToLinear( pLightmap->b, pLightmap->exponent );
ComputeAmbientFromSurface( pFace, pSkylight, color ); pColor[style] += color * scale;
pLightmap += offset; } }
//-----------------------------------------------------------------------------
// Tests a particular node
//-----------------------------------------------------------------------------
class CLightSurface : public IBSPNodeEnumerator { public: CLightSurface(int iThread) : m_pSurface(0), m_HitFrac(1.0f), m_bHasLuxel(false), m_iThread(iThread) {}
// call back with a node and a context
bool EnumerateNode( int node, Ray_t const& ray, float f, intp context ) { dface_t* pSkySurface = 0;
// Compute the actual point
Vector pt; VectorMA( ray.m_Start, f, ray.m_Delta, pt );
dnode_t* pNode = &dnodes[node]; dface_t* pFace = &g_pFaces[pNode->firstface]; for (int i=0 ; i < pNode->numfaces ; ++i, ++pFace) { // Don't take into account faces that are int a leaf
if ( !pFace->onNode ) continue;
// Don't test displacement faces
if ( pFace->dispinfo != -1 ) continue;
texinfo_t* pTex = &texinfo[pFace->texinfo];
// Don't immediately return when we hit sky;
// we may actually hit another surface
if (pTex->flags & SURF_SKY) { if (TestPointAgainstSkySurface( pt, pFace )) { pSkySurface = pFace; }
continue; }
if (TestPointAgainstSurface( pt, pFace, pTex )) { m_HitFrac = f; m_pSurface = pFace; m_bHasLuxel = true; return false; } }
// if we hit a sky surface, return it
m_pSurface = pSkySurface; return (m_pSurface == 0); }
// call back with a leaf and a context
virtual bool EnumerateLeaf( int leaf, Ray_t const& ray, float start, float end, intp context ) { bool hit = false; dleaf_t* pLeaf = &dleafs[leaf]; for (int i=0 ; i < pLeaf->numleaffaces ; ++i) { Assert( pLeaf->firstleafface + i < numleaffaces ); Assert( dleaffaces[pLeaf->firstleafface + i] < numfaces ); dface_t* pFace = &g_pFaces[dleaffaces[pLeaf->firstleafface + i]];
// Don't test displacement faces; we need to check another list
if ( pFace->dispinfo != -1 ) continue;
// Don't take into account faces that are on a node
if ( pFace->onNode ) continue;
// Find intersection point against detail brushes
texinfo_t* pTex = &texinfo[pFace->texinfo];
dplane_t* pPlane = &dplanes[pFace->planenum];
// Backface cull...
if (DotProduct( pPlane->normal, ray.m_Delta ) > 0) continue;
float startDotN = DotProduct( ray.m_Start, pPlane->normal ); float deltaDotN = DotProduct( ray.m_Delta, pPlane->normal );
float front = startDotN + start * deltaDotN - pPlane->dist; float back = startDotN + end * deltaDotN - pPlane->dist; int side = front < 0;
// Blow it off if it doesn't split the plane...
if ( (back < 0) == side ) continue;
// Don't test a surface that is farther away from the closest found intersection
float f = front / (front-back); float mid = start * (1.0f - f) + end * f; if (mid >= m_HitFrac) continue;
Vector pt; VectorMA( ray.m_Start, mid, ray.m_Delta, pt );
if (TestPointAgainstSurface( pt, pFace, pTex )) { m_HitFrac = mid; m_pSurface = pFace; hit = true; m_bHasLuxel = true; } }
// Now try to clip against all displacements in the leaf
float dist; Vector2D luxelCoord; dface_t *pDispFace; StaticDispMgr()->ClipRayToDispInLeaf( s_DispTested[m_iThread], ray, leaf, dist, pDispFace, luxelCoord ); if (dist < m_HitFrac) { m_HitFrac = dist; m_pSurface = pDispFace; Vector2DCopy( luxelCoord, m_LuxelCoord ); hit = true; m_bHasLuxel = true; } return !hit; }
bool FindIntersection( Ray_t const& ray ) { StaticDispMgr()->StartRayTest( s_DispTested[m_iThread] ); return !EnumerateNodesAlongRay( ray, this, 0 ); }
private: bool TestPointAgainstSurface( Vector const& pt, dface_t* pFace, texinfo_t* pTex ) { // no lightmaps on this surface? punt...
// FIXME: should be water surface?
if (pTex->flags & SURF_NOLIGHT) return false; // See where in lightmap space our intersection point is
float s, t; s = DotProduct (pt.Base(), pTex->lightmapVecsLuxelsPerWorldUnits[0]) + pTex->lightmapVecsLuxelsPerWorldUnits[0][3]; t = DotProduct (pt.Base(), pTex->lightmapVecsLuxelsPerWorldUnits[1]) + pTex->lightmapVecsLuxelsPerWorldUnits[1][3];
// Not in the bounds of our lightmap? punt...
if( s < pFace->m_LightmapTextureMinsInLuxels[0] || t < pFace->m_LightmapTextureMinsInLuxels[1] ) return false; // assuming a square lightmap (FIXME: which ain't always the case),
// lets see if it lies in that rectangle. If not, punt...
float ds = s - pFace->m_LightmapTextureMinsInLuxels[0]; float dt = t - pFace->m_LightmapTextureMinsInLuxels[1]; if( ds > pFace->m_LightmapTextureSizeInLuxels[0] || dt > pFace->m_LightmapTextureSizeInLuxels[1] ) return false;
m_LuxelCoord.x = ds; m_LuxelCoord.y = dt;
return true; }
bool TestPointAgainstSkySurface( Vector const &pt, dface_t *pFace ) { // Create sky face winding.
winding_t *pWinding = WindingFromFace( pFace, Vector( 0.0f, 0.0f, 0.0f ) );
// Test point in winding. (Since it is at the node, it is in the plane.)
bool bRet = PointInWinding( pt, pWinding );
FreeWinding( pWinding );
return bRet; }
public: int m_iThread; dface_t* m_pSurface; float m_HitFrac; Vector2D m_LuxelCoord; bool m_bHasLuxel; };
bool CastRayInLeaf( int iThread, const Vector &start, const Vector &end, int leafIndex, float *pFraction, Vector *pNormal ) { pFraction[0] = 1.0f;
Ray_t ray; ray.Init( start, end, vec3_origin, vec3_origin ); CBaseTrace trace; if ( TraceLeafBrushes( leafIndex, start, end, trace ) != 1.0f ) { pFraction[0] = trace.fraction; *pNormal = trace.plane.normal; } else { Assert(!trace.startsolid && !trace.allsolid); } StaticDispMgr()->StartRayTest( s_DispTested[iThread] ); // Now try to clip against all displacements in the leaf
float dist; Vector normal; StaticDispMgr()->ClipRayToDispInLeaf( s_DispTested[iThread], ray, leafIndex, dist, &normal ); if ( dist < pFraction[0] ) { pFraction[0] = dist; *pNormal = normal; } return pFraction[0] != 1.0f ? true : false; }
//-----------------------------------------------------------------------------
// Computes ambient lighting along a specified ray.
// Ray represents a cone, tanTheta is the tan of the inner cone angle
//-----------------------------------------------------------------------------
void CalcRayAmbientLighting( int iThread, const Vector &vStart, const Vector &vEnd, float tanTheta, Vector color[MAX_LIGHTSTYLES] ) { Ray_t ray; ray.Init( vStart, vEnd, vec3_origin, vec3_origin );
directlight_t *pSkyLight = FindAmbientSkyLight();
CLightSurface surfEnum(iThread); if (!surfEnum.FindIntersection( ray )) return;
// compute the approximate radius of a circle centered around the intersection point
float dist = ray.m_Delta.Length() * tanTheta * surfEnum.m_HitFrac;
// until 20" we use the point sample, then blend in the average until we're covering 40"
// This is attempting to model the ray as a cone - in the ideal case we'd simply sample all
// luxels in the intersection of the cone with the surface. Since we don't have surface
// neighbor information computed we'll just approximate that sampling with a blend between
// a point sample and the face average.
// This yields results that are similar in that aliasing is reduced at distance while
// point samples provide accuracy for intersections with near geometry
float scaleAvg = RemapValClamped( dist, 20, 40, 0.0f, 1.0f );
if ( !surfEnum.m_bHasLuxel ) { // don't have luxel UV, so just use average sample
scaleAvg = 1.0; } float scaleSample = 1.0f - scaleAvg;
if (scaleAvg != 0) { ComputeLightmapColorFromAverage( surfEnum.m_pSurface, pSkyLight, scaleAvg, color ); } if (scaleSample != 0) { ComputeLightmapColorPointSample( surfEnum.m_pSurface, pSkyLight, surfEnum.m_LuxelCoord, scaleSample, color ); } }
//-----------------------------------------------------------------------------
// Compute ambient lighting component at specified position.
//-----------------------------------------------------------------------------
static void ComputeAmbientLightingAtPoint( int iThread, const Vector &origin, Vector radcolor[NUMVERTEXNORMALS], Vector color[MAX_LIGHTSTYLES] ) { // NOTE: I'm not dealing with shadow-casting static props here
// This is for speed, although we can add it if it turns out to
// be important
// sample world by casting N rays distributed across a sphere
Vector upend;
int j; for ( j = 0; j < MAX_LIGHTSTYLES; ++j) { color[j].Init( 0,0,0 ); }
float tanTheta = tan(VERTEXNORMAL_CONE_INNER_ANGLE); for (int i = 0; i < NUMVERTEXNORMALS; i++) { VectorMA( origin, COORD_EXTENT * 1.74, g_anorms[i], upend );
// Now that we've got a ray, see what surface we've hit
CalcRayAmbientLighting( iThread, origin, upend, tanTheta, color );
// DumpRayToGlView( ray, surfEnum.m_HitFrac, &color[0], "test.out" );
}
for ( j = 0; j < MAX_LIGHTSTYLES; ++j) { VectorMultiply( color[j], 255.0f / (float)NUMVERTEXNORMALS, color[j] ); } }
//-----------------------------------------------------------------------------
//
// Trace a ray from position. in the specified direction to determine a positive
// hit for indirect lighting.
//
// Fire ray out from start, with end as start + direction*MAX_TRACE_LENGTH
// If hit then fire ray back to start to see if it hits a back facing surface that would natually block the incoming light ray
// If still okay then test explicitly against light blockers, test only in the hit to start direction
// Update surfEnum and return true if a valid intersection for indirect light.
//
//-----------------------------------------------------------------------------
bool TraceIndirectLightingSample( Vector &position, Vector &direction, CLightSurface &surfEnum, int iThread, bool force_fast ) { Ray_t ray;
// trace to determine surface
Vector vEnd, vStart; VectorScale( direction, MAX_TRACE_LENGTH, vEnd ); VectorAdd( position, vEnd, vEnd );
if ( force_fast ) { vStart = position; } else { // offset ray start position to compensate for ray leakage due to coincident surfaces (we are seeing some ray tests leak in some situations - e.g. prop vertex lies on ground plane)
VectorScale( direction, -EQUAL_EPSILON, vStart ); VectorAdd( position, vStart, vStart ); } ray.Init( vStart, vEnd, vec3_origin, vec3_origin ); if ( !surfEnum.FindIntersection( ray ) ) return false;
// Now test explicitly against light blockers (surfaces don't exist in the bsp nodes we're checking here, and this feels a safer change than updating indirect lighting for static props to use the slower rte path for all rays)
// test from hitfrac back to start only
VectorScale( direction, MAX_TRACE_LENGTH * surfEnum.m_HitFrac, vEnd ); VectorAdd( position, vEnd, vEnd ); FourVectors rayStart, rayEnd, rayDirection; fltx4 fractionVisible = Four_Ones; rayStart.DuplicateVector( vStart ); rayEnd.DuplicateVector( vEnd );
// rayDirection.DuplicateVector( direction );
// TestLine_LightBlockers( rayStart, rayEnd, &fractionVisible );
rayDirection.DuplicateVector( -direction ); TestLine_LightBlockers( rayEnd, rayStart, &fractionVisible );
if ( fractionVisible.m128_f32[0] < 1.0f ) { // ray hit blocker
return false; }
return true; }
//-----------------------------------------------------------------------------
// Trace hemispherical rays from a vertex, accumulating indirect
// sources at each ray termination.
//
// force_fast = false currently implies 'new/improved' static prop lighting is to be used.
//-----------------------------------------------------------------------------
void ComputeIndirectLightingAtPoint( Vector &position, Vector &normal, Vector &outColor, int iThread, bool force_fast, bool bIgnoreNormals, int nStaticPropToSkip ) { outColor.Zero(); int nSamples = NUMVERTEXNORMALS; if ( do_fast || force_fast ) nSamples /= 4; else nSamples *= g_flStaticPropSampleScale;
float totalDot = 0; DirectionalSampler_t sampler; for (int j = 0; j < nSamples; j++) { Vector samplingNormal = sampler.NextValue(); float dot;
if ( bIgnoreNormals ) dot = (0.7071/2); else dot = DotProduct( normal, samplingNormal );
if ( dot <= EQUAL_EPSILON ) { // reject angles behind our plane
continue; }
totalDot += dot; // trace static prop indirect
Vector staticPropIndirectColor( 0.0f, 0.0f, 0.0f ); float flStaticPropHitDist = FLT_MAX; if ( g_bStaticPropBounce ) { FourRays myrays; myrays.origin.DuplicateVector( position ); myrays.direction.DuplicateVector( samplingNormal ); RayTracingResult rt_result; g_RtEnv_RadiosityPatches.Trace4Rays( myrays, ReplicateX4( 10.0f ), ReplicateX4( MAX_TRACE_LENGTH ), &rt_result ); if ( rt_result.HitIds[ 0 ] != -1 ) { const TriIntersectData_t &intersectData = g_RtEnv_RadiosityPatches.OptimizedTriangleList[ rt_result.HitIds[ 0 ] ].m_Data.m_IntersectData; int nId = intersectData.m_nTriangleID; if ( nId & TRACE_ID_PATCH ) { int nPatchId = nId & ~TRACE_ID_PATCH; CPatch &patch = g_Patches[ nPatchId ]; if ( patch.staticPropIdx != nStaticPropToSkip ) { staticPropIndirectColor = dot * ( patch.totallight.light[ 0 ] + patch.directlight ) * patch.reflectivity; flStaticPropHitDist = SubFloat( rt_result.HitDistance, 0 ); } } } }
// important to put the constructor here to init m_hitfrac, etc
CLightSurface surfEnum( iThread );
// trace to determine surface
if ( !TraceIndirectLightingSample( position, samplingNormal, surfEnum, iThread, force_fast ) || flStaticPropHitDist < surfEnum.m_HitFrac * MAX_TRACE_LENGTH ) { VectorAdd( outColor, staticPropIndirectColor, outColor ); // we may have hit a static prop patch
continue; }
// get color from surface lightmap
texinfo_t* pTex = &texinfo[surfEnum.m_pSurface->texinfo]; if ( !pTex || pTex->flags & SURF_SKY ) { // ignore contribution from sky
// sky ambient already accounted for during direct pass
continue; }
if ( surfEnum.m_pSurface->styles[0] == 255 || surfEnum.m_pSurface->lightofs < 0 ) { // no light affects this face
continue; }
Vector lightmapColor; if ( !surfEnum.m_bHasLuxel ) { ColorRGBExp32* pAvgLightmapColor = dface_AvgLightColor( surfEnum.m_pSurface, 0 ); ColorRGBExp32ToVector( *pAvgLightmapColor, lightmapColor ); } else { // get color from displacement
int smax = ( surfEnum.m_pSurface->m_LightmapTextureSizeInLuxels[0] ) + 1; int tmax = ( surfEnum.m_pSurface->m_LightmapTextureSizeInLuxels[1] ) + 1;
// luxelcoord is in the space of the accumulated lightmap page; we need to convert
// it to be in the space of the surface
int ds = clamp( (int)surfEnum.m_LuxelCoord.x, 0, smax-1 ); int dt = clamp( (int)surfEnum.m_LuxelCoord.y, 0, tmax-1 );
ColorRGBExp32* pLightmap = (ColorRGBExp32*)&(*pdlightdata)[surfEnum.m_pSurface->lightofs]; pLightmap += dt * smax + ds; ColorRGBExp32ToVector( *pLightmap, lightmapColor ); }
if ( force_fast ) { VectorMultiply( lightmapColor, dtexdata[pTex->texdata].reflectivity, lightmapColor ); } else { // Include dot falloff on accumulating irradiance here
// have tried using inv sqr falloff from TF2 changes to vrad (CL#2394791 & 2395471), but the result is very sensitive to the scale factor that is used (too dark or too bright otherwise)
// this seems to give the most natural looking result (static props matching brushes)
VectorMultiply( lightmapColor, dot * dtexdata[pTex->texdata].reflectivity, lightmapColor ); } VectorAdd( outColor, lightmapColor, outColor ); }
if ( totalDot ) { VectorScale( outColor, 1.0f / totalDot, outColor ); } }
void ComputeIndirectLightingAtPoint( Vector &position, Vector *normals, Vector *outColors, int numNormals, int iThread, bool force_fast, bool bIgnoreNormals, int nStaticPropToSkip ) { const Vector vZero(0.0f, 0.0f, 0.0f);
if ( numNormals != ( NUM_BUMP_VECTS + 1 ) ) { for ( int k = 0; k < numNormals; ++k ) { ComputeIndirectLightingAtPoint( position, normals[k], outColors[k], iThread, force_fast, bIgnoreNormals, nStaticPropToSkip ); } return; }
// optimize/unroll for num_bump_vects = 3
outColors[0].Zero(); outColors[1].Zero(); outColors[2].Zero(); outColors[3].Zero();
int nSamples = NUMVERTEXNORMALS; if ( do_fast || force_fast ) nSamples /= 4; else nSamples *= g_flStaticPropSampleScale;
float totalDot[4] = {0.0f, 0.0f, 0.0f, 0.0f}; DirectionalSampler_t sampler; for ( int j = 0; j < nSamples; j++ ) { Vector samplingNormal = sampler.NextValue(); float dot[4];
if ( bIgnoreNormals ) { dot[0] = dot[1] = dot[2] = dot[3] = (0.7071 / 2); } else { samplingNormal.NormalizeInPlace(); dot[0] = DotProduct( normals[0], samplingNormal ); dot[1] = DotProduct( normals[1], samplingNormal ); dot[2] = DotProduct( normals[2], samplingNormal ); dot[3] = DotProduct( normals[3], samplingNormal ); }
bool bDoRayTrace = false; bool bIncLighting[4] = {false, false, false, false};
if ( dot[0] > EQUAL_EPSILON ) { dot[0] = SoftenCosineTerm( dot[0] ); totalDot[0] += dot[0]; bDoRayTrace = true; bIncLighting[0] = true; } else { dot[0] = 0.0f; }
if ( dot[1] > EQUAL_EPSILON ) { dot[1] = SoftenCosineTerm( dot[1] ); totalDot[1] += dot[1]; bDoRayTrace = true; bIncLighting[1] = true; } else { dot[1] = 0.0f; }
if ( dot[2] > EQUAL_EPSILON ) { dot[2] = SoftenCosineTerm( dot[2] ); totalDot[2] += dot[2]; bDoRayTrace = true; bIncLighting[2] = true; } else { dot[2] = 0.0f; }
if ( dot[3] > EQUAL_EPSILON ) { dot[3] = SoftenCosineTerm( dot[3] ); totalDot[3] += dot[3]; bDoRayTrace = true; bIncLighting[3] = true; } else { dot[3] = 0.0f; }
// important to skip
if ( dot[0] <= EQUAL_EPSILON ) { continue; }
if ( bDoRayTrace ) { Vector staticPropIndirectColor( 0.0f, 0.0f, 0.0f ); float flStaticPropHitDist = FLT_MAX; if ( g_bStaticPropBounce ) { FourRays myrays; myrays.origin.DuplicateVector( position ); myrays.direction.DuplicateVector( samplingNormal ); RayTracingResult rt_result; g_RtEnv_RadiosityPatches.Trace4Rays( myrays, ReplicateX4( 10.0f ), ReplicateX4( MAX_TRACE_LENGTH ), &rt_result ); if ( rt_result.HitIds[ 0 ] != -1 ) { const TriIntersectData_t &intersectData = g_RtEnv_RadiosityPatches.OptimizedTriangleList[ rt_result.HitIds[ 0 ] ].m_Data.m_IntersectData; int nId = intersectData.m_nTriangleID; if ( nId & TRACE_ID_PATCH ) { int nPatchId = nId & ~TRACE_ID_PATCH; CPatch &patch = g_Patches[ nPatchId ]; if ( patch.staticPropIdx != nStaticPropToSkip ) { staticPropIndirectColor = ( patch.totallight.light[ 0 ] + patch.directlight ) * patch.reflectivity; flStaticPropHitDist = SubFloat( rt_result.HitDistance, 0 ); } } } }
// important to put the constructor here to init m_hitfrac, etc
CLightSurface surfEnum( iThread );
// trace to determine surface
if ( !TraceIndirectLightingSample( position, samplingNormal, surfEnum, iThread, force_fast ) || flStaticPropHitDist < surfEnum.m_HitFrac * MAX_TRACE_LENGTH ) { // The dot values are 0 if bIncLighting is false so we don't actually need to branch here.
VectorAdd( outColors[ 0 ], dot[ 0 ] * staticPropIndirectColor, outColors[ 0 ] ); // we may have hit a static prop patch
VectorAdd( outColors[ 1 ], dot[ 1 ] * staticPropIndirectColor, outColors[ 1 ] ); VectorAdd( outColors[ 2 ], dot[ 2 ] * staticPropIndirectColor, outColors[ 2 ] ); VectorAdd( outColors[ 3 ], dot[ 3 ] * staticPropIndirectColor, outColors[ 3 ] ); continue; }
// get color from surface lightmap
texinfo_t* pTex = &texinfo[surfEnum.m_pSurface->texinfo]; if ( !pTex || pTex->flags & SURF_SKY ) { // ignore contribution from sky
// sky ambient already accounted for during direct pass
continue; }
if ( surfEnum.m_pSurface->styles[0] == 255 || surfEnum.m_pSurface->lightofs < 0 ) { // no light affects this face
continue; }
Vector lightmapColor; Vector lightmapColors[4]; if ( !surfEnum.m_bHasLuxel ) { ColorRGBExp32* pAvgLightmapColor = dface_AvgLightColor( surfEnum.m_pSurface, 0 ); ColorRGBExp32ToVector( *pAvgLightmapColor, lightmapColor ); } else { // get color from displacement
int smax = (surfEnum.m_pSurface->m_LightmapTextureSizeInLuxels[0]) + 1; int tmax = (surfEnum.m_pSurface->m_LightmapTextureSizeInLuxels[1]) + 1;
// luxelcoord is in the space of the accumulated lightmap page; we need to convert
// it to be in the space of the surface
int ds = clamp( (int)surfEnum.m_LuxelCoord.x, 0, smax - 1 ); int dt = clamp( (int)surfEnum.m_LuxelCoord.y, 0, tmax - 1 );
ColorRGBExp32* pLightmap = (ColorRGBExp32*)&(*pdlightdata)[surfEnum.m_pSurface->lightofs]; pLightmap += dt * smax + ds; ColorRGBExp32ToVector( *pLightmap, lightmapColor ); }
lightmapColor.Max( vZero );
if ( force_fast ) { VectorMultiply( lightmapColor, dtexdata[pTex->texdata].reflectivity, lightmapColors[0] );
if ( bIncLighting[0] ) { VectorAdd( outColors[0], lightmapColors[0], outColors[0] ); } if ( bIncLighting[1] ) { VectorAdd( outColors[1], lightmapColors[0], outColors[1] ); } if ( bIncLighting[2] ) { VectorAdd( outColors[2], lightmapColors[0], outColors[2] ); } if ( bIncLighting[3] ) { VectorAdd( outColors[3], lightmapColors[0], outColors[3] ); } } else { // Include dot falloff on accumulating irradiance here
// have tried using inv sqr falloff from TF2 changes to vrad (CL#2394791 & 2395471), but the result is very sensitive to the scale factor that is used (too dark or too bright otherwise)
// this seems to give the most natural looking result (static props matching brushes)
if ( bIncLighting[0] ) { VectorMultiply( lightmapColor, dot[0] * dtexdata[pTex->texdata].reflectivity, lightmapColors[0] ); VectorAdd( outColors[0], lightmapColors[0], outColors[0] ); } if ( bIncLighting[1] ) { VectorMultiply( lightmapColor, dot[1] * dtexdata[pTex->texdata].reflectivity, lightmapColors[1] ); VectorAdd( outColors[1], lightmapColors[1], outColors[1] ); } if ( bIncLighting[2] ) { VectorMultiply( lightmapColor, dot[2] * dtexdata[pTex->texdata].reflectivity, lightmapColors[2] ); VectorAdd( outColors[2], lightmapColors[2], outColors[2] ); } if ( bIncLighting[3] ) { VectorMultiply( lightmapColor, dot[3] * dtexdata[pTex->texdata].reflectivity, lightmapColors[3] ); VectorAdd( outColors[3], lightmapColors[3], outColors[3] ); } } } }
if ( totalDot[0] ) { VectorScale( outColors[0], 1.0f / totalDot[0], outColors[0] ); } if ( totalDot[1] ) { VectorScale( outColors[1], 1.0f / totalDot[1], outColors[1] ); } if ( totalDot[2] ) { VectorScale( outColors[2], 1.0f / totalDot[2], outColors[2] ); } if ( totalDot[3] ) { VectorScale( outColors[3], 1.0f / totalDot[3], outColors[3] ); } }
static void ComputeAmbientLighting( int iThread, DetailObjectLump_t& prop, Vector color[MAX_LIGHTSTYLES] ) { Vector origin, normal; ComputeWorldCenter( prop, origin, normal );
if ( !origin.IsValid() || !normal.IsValid() ) { static bool s_Warned = false; if ( !s_Warned ) { Warning("WARNING: Bogus detail props encountered!\n" ); s_Warned = true; }
// fill with debug color
for ( int i = 0; i < MAX_LIGHTSTYLES; ++i) { color[i].Init(1,0,0); } return; }
Vector radcolor[NUMVERTEXNORMALS]; ComputeAmbientLightingAtPoint( iThread, origin, radcolor, color ); }
//-----------------------------------------------------------------------------
// Computes lighting for a single detal prop
//-----------------------------------------------------------------------------
static void ComputeLighting( DetailObjectLump_t& prop, int iThread ) { // We're going to take the maximum of the ambient lighting and
// the strongest directional light. This works because we're assuming
// the props will have built-in faked lighting.
Vector directColor[MAX_LIGHTSTYLES]; Vector ambColor[MAX_LIGHTSTYLES];
// Get the max influence of all direct lights
ComputeMaxDirectLighting( prop, directColor, iThread );
// Get the ambient lighting + lightstyles
ComputeAmbientLighting( iThread, prop, ambColor );
// Base lighting
Vector totalColor; VectorAdd( directColor[0], ambColor[0], totalColor ); VectorToColorRGBExp32( totalColor, prop.m_Lighting );
bool hasLightstyles = false; prop.m_LightStyleCount = 0; // lightstyles
for (int i = 1; i < MAX_LIGHTSTYLES; ++i ) { VectorAdd( directColor[i], ambColor[i], totalColor ); totalColor *= 0.5f;
if ((totalColor[0] != 0.0f) || (totalColor[1] != 0.0f) || (totalColor[2] != 0.0f) ) { if (!hasLightstyles) { prop.m_LightStyles = s_pDetailPropLightStyleLump->Count(); hasLightstyles = true; }
int j = s_pDetailPropLightStyleLump->AddToTail(); VectorToColorRGBExp32( totalColor, (*s_pDetailPropLightStyleLump)[j].m_Lighting ); (*s_pDetailPropLightStyleLump)[j].m_Style = i; ++prop.m_LightStyleCount; } } }
//-----------------------------------------------------------------------------
// Unserialization
//-----------------------------------------------------------------------------
static void UnserializeModelDict( CUtlBuffer& buf ) { // Get origin offset for each model...
int count = buf.GetInt(); while ( --count >= 0 ) { DetailObjectDictLump_t lump; buf.Get( &lump, sizeof(DetailObjectDictLump_t) ); int i = g_ModelCenterOffset.AddToTail();
CUtlBuffer mdlbuf; if (LoadStudioModel( lump.m_Name, mdlbuf )) { studiohdr_t* pHdr = (studiohdr_t*)mdlbuf.Base(); VectorAdd( pHdr->hull_min, pHdr->hull_max, g_ModelCenterOffset[i] ); g_ModelCenterOffset[i] *= 0.5f; } else { g_ModelCenterOffset[i].Init(0,0,0); } } }
static void UnserializeSpriteDict( CUtlBuffer& buf ) { // Get origin offset for each model...
int count = buf.GetInt(); while ( --count >= 0 ) { DetailSpriteDictLump_t lump; buf.Get( &lump, sizeof(DetailSpriteDictLump_t) ); // For these sprites, x goes out the front, y right, z up
int i = g_SpriteCenterOffset.AddToTail(); g_SpriteCenterOffset[i].x = 0.0f; g_SpriteCenterOffset[i].y = lump.m_LR.x + lump.m_UL.x; g_SpriteCenterOffset[i].z = lump.m_LR.y + lump.m_UL.y; g_SpriteCenterOffset[i] *= 0.5f; } }
//-----------------------------------------------------------------------------
// Unserializes the detail props
//-----------------------------------------------------------------------------
static int UnserializeDetailProps( DetailObjectLump_t*& pProps ) { GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle( GAMELUMP_DETAIL_PROPS );
if (g_GameLumps.GetGameLumpVersion(handle) != GAMELUMP_DETAIL_PROPS_VERSION) return 0;
// Unserialize
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), g_GameLumps.GameLumpSize( handle ), CUtlBuffer::READ_ONLY );
UnserializeModelDict( buf ); UnserializeSpriteDict( buf );
// Now we're pointing to the detail prop data
// This actually works because the scope of the game lump data
// is global and the buf was just pointing to it.
int count = buf.GetInt(); if (count) { pProps = (DetailObjectLump_t*)buf.PeekGet(); } else { pProps = 0; } return count; }
//-----------------------------------------------------------------------------
// Writes the detail lighting lump
//-----------------------------------------------------------------------------
static void WriteDetailLightingLump( int lumpID, int lumpVersion, CUtlVector<DetailPropLightstylesLump_t> &lumpData ) { GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle(lumpID); if (handle != g_GameLumps.InvalidGameLump()) g_GameLumps.DestroyGameLump(handle); int lightsize = lumpData.Count() * sizeof(DetailPropLightstylesLump_t); int lumpsize = lightsize + sizeof(int);
handle = g_GameLumps.CreateGameLump( lumpID, lumpsize, 0, lumpVersion );
// Serialize the data
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), lumpsize ); buf.PutInt( lumpData.Count() ); if (lightsize) buf.Put( lumpData.Base(), lightsize ); }
static void WriteDetailLightingLumps( void ) { WriteDetailLightingLump( GAMELUMP_DETAIL_PROP_LIGHTING, GAMELUMP_DETAIL_PROP_LIGHTING_VERSION, s_DetailPropLightStyleLumpLDR ); WriteDetailLightingLump( GAMELUMP_DETAIL_PROP_LIGHTING_HDR, GAMELUMP_DETAIL_PROP_LIGHTING_HDR_VERSION, s_DetailPropLightStyleLumpHDR ); }
// need to do this so that if we are building HDR data, the LDR data is intact, and vice versa.s
void UnserializeDetailPropLighting( int lumpID, int lumpVersion, CUtlVector<DetailPropLightstylesLump_t> &lumpData ) { GameLumpHandle_t handle = g_GameLumps.GetGameLumpHandle( lumpID );
if( handle == g_GameLumps.InvalidGameLump() ) { return; }
if (g_GameLumps.GetGameLumpVersion(handle) != lumpVersion) return;
// Unserialize
CUtlBuffer buf( g_GameLumps.GetGameLump(handle), g_GameLumps.GameLumpSize( handle ), CUtlBuffer::READ_ONLY );
int count = buf.GetInt(); if( !count ) { return; } lumpData.SetCount( count ); int lightsize = lumpData.Count() * sizeof(DetailPropLightstylesLump_t); buf.Get( lumpData.Base(), lightsize ); }
DetailObjectLump_t *g_pMPIDetailProps = NULL;
void VMPI_ProcessDetailPropWU( int iThread, int iWorkUnit, MessageBuffer *pBuf ) { CUtlVector<DetailPropLightstylesLump_t> *pDetailPropLump = s_pDetailPropLightStyleLump;
DetailObjectLump_t& prop = g_pMPIDetailProps[iWorkUnit]; ComputeLighting( prop, iThread );
// Send the results back...
pBuf->write( &prop.m_Lighting, sizeof( prop.m_Lighting ) ); pBuf->write( &prop.m_LightStyleCount, sizeof( prop.m_LightStyleCount ) ); pBuf->write( &prop.m_LightStyles, sizeof( prop.m_LightStyles ) ); for ( int i=0; i < prop.m_LightStyleCount; i++ ) { DetailPropLightstylesLump_t *l = &pDetailPropLump->Element( i + prop.m_LightStyles ); pBuf->write( &l->m_Lighting, sizeof( l->m_Lighting ) ); pBuf->write( &l->m_Style, sizeof( l->m_Style ) ); } }
void VMPI_ReceiveDetailPropWU( int iWorkUnit, MessageBuffer *pBuf, int iWorker ) { CUtlVector<DetailPropLightstylesLump_t> *pDetailPropLump = s_pDetailPropLightStyleLump;
DetailObjectLump_t& prop = g_pMPIDetailProps[iWorkUnit];
pBuf->read( &prop.m_Lighting, sizeof( prop.m_Lighting ) ); pBuf->read( &prop.m_LightStyleCount, sizeof( prop.m_LightStyleCount ) ); pBuf->read( &prop.m_LightStyles, sizeof( prop.m_LightStyles ) ); pDetailPropLump->EnsureCount( prop.m_LightStyles + prop.m_LightStyleCount ); for ( int i=0; i < prop.m_LightStyleCount; i++ ) { DetailPropLightstylesLump_t *l = &pDetailPropLump->Element( i + prop.m_LightStyles ); pBuf->read( &l->m_Lighting, sizeof( l->m_Lighting ) ); pBuf->read( &l->m_Style, sizeof( l->m_Style ) ); } } //-----------------------------------------------------------------------------
// Computes lighting for the detail props
//-----------------------------------------------------------------------------
void ComputeDetailPropLighting( int iThread ) { // illuminate them all
DetailObjectLump_t* pProps; int count = UnserializeDetailProps( pProps ); if (!count) return;
// unserialize the lump that we aren't computing.
if( g_bHDR ) { UnserializeDetailPropLighting( GAMELUMP_DETAIL_PROP_LIGHTING, GAMELUMP_DETAIL_PROP_LIGHTING_VERSION, s_DetailPropLightStyleLumpLDR ); } else { UnserializeDetailPropLighting( GAMELUMP_DETAIL_PROP_LIGHTING_HDR, GAMELUMP_DETAIL_PROP_LIGHTING_HDR_VERSION, s_DetailPropLightStyleLumpHDR ); }
StartPacifier("Computing detail prop lighting : ");
for (int i = 0; i < count; ++i) { UpdatePacifier( (float)i / (float)count ); ComputeLighting( pProps[i], iThread ); }
// Write detail prop lightstyle lump...
WriteDetailLightingLumps(); EndPacifier( true ); }
|