|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "vrad.h"
#include "UtlVector.h"
#include "cmodel.h"
#include "BSPTreeData.h"
#include "VRAD_DispColl.h"
#include "CollisionUtils.h"
#include "lightmap.h"
#include "Radial.h"
#include "CollisionUtils.h"
#include "mathlib/bumpvects.h"
#include "UtlRBTree.h"
#include "tier0/fasttimer.h"
#include "disp_vrad.h"
class CBSPDispRayDistanceEnumerator;
//=============================================================================
//
// Displacement/Face List
//
class CBSPDispFaceListEnumerator : public ISpatialLeafEnumerator, public IBSPTreeDataEnumerator { public:
//=========================================================================
//
// Construction/Deconstruction
//
CBSPDispFaceListEnumerator() {}; virtual ~CBSPDispFaceListEnumerator() { m_DispList.Purge(); m_FaceList.Purge(); }
// ISpatialLeafEnumerator
bool EnumerateLeaf( int ndxLeaf, intp context );
// IBSPTreeDataEnumerator
bool FASTCALL EnumerateElement( int userId, intp context );
public:
CUtlVector<CVRADDispColl*> m_DispList; CUtlVector<int> m_FaceList; };
//=============================================================================
//
// RayEnumerator
//
class CBSPDispRayEnumerator : public ISpatialLeafEnumerator, public IBSPTreeDataEnumerator { public: // ISpatialLeafEnumerator
bool EnumerateLeaf( int ndxLeaf, intp context );
// IBSPTreeDataEnumerator
bool FASTCALL EnumerateElement( int userId, intp context ); };
//=============================================================================
//
// VRad Displacement Manager
//
class CVRadDispMgr : public IVRadDispMgr { public:
//=========================================================================
//
// Construction/Deconstruction
//
CVRadDispMgr(); virtual ~CVRadDispMgr();
// creation/destruction
void Init( void ); void Shutdown( void );
// "CalcPoints"
bool BuildDispSamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace ); bool BuildDispLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace ); bool BuildDispSamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace );
// patching functions
void MakePatches( void ); void SubdividePatch( int iPatch );
// pre "FinalLightFace"
void InsertSamplesDataIntoHashTable( void ); void InsertPatchSampleDataIntoHashTable( void );
// "FinalLightFace"
radial_t *BuildLuxelRadial( int ndxFace, int ndxStyle, bool bBump ); bool SampleRadial( int ndxFace, radial_t *pRadial, Vector const &vPos, int ndxLxl, LightingValue_t *pLightSample, int sampleCount, bool bPatch ); radial_t *BuildPatchRadial( int ndxFace, bool bBump );
// utility
void GetDispSurfNormal( int ndxFace, Vector &pt, Vector &ptNormal, bool bInside ); void GetDispSurfPointAndNormalFromUV( int ndxFace, Vector &pt, Vector &ptNormal, Vector2D &uv, bool bInside ); void GetDispSurf( int ndxFace, CVRADDispColl **ppDispTree );
// bsp tree functions
bool ClipRayToDisp( DispTested_t &dispTested, Ray_t const &ray ); bool ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf ); void ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf, float& dist, dface_t*& pFace, Vector2D& luxelCoord ); void ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf, float& dist, Vector *pNormal );
void StartRayTest( DispTested_t &dispTested ); void AddPolysForRayTrace( void );
// general timing -- should be moved!!
void StartTimer( const char *name ); void EndTimer( void );
//=========================================================================
//
// Enumeration Methods
//
bool DispRay_EnumerateLeaf( int ndxLeaf, intp context ); bool DispRay_EnumerateElement( int userId, intp context ); bool DispRayDistance_EnumerateElement( int userId, CBSPDispRayDistanceEnumerator* pEnum );
bool DispFaceList_EnumerateLeaf( int ndxLeaf, intp context ); bool DispFaceList_EnumerateElement( int userId, intp context );
private:
//=========================================================================
//
// BSP Tree Helpers
//
void InsertDispIntoTree( int ndxDisp ); void RemoveDispFromTree( int ndxDisp );
//=========================================================================
//
// Displacement Data Loader (from .bsp)
//
void UnserializeDisps( void ); void DispBuilderInit( CCoreDispInfo *pBuilderDisp, dface_t *pFace, int ndxFace );
//=========================================================================
//
// Sampling Helpers
//
void RadialLuxelBuild( CVRADDispColl *pDispTree, radial_t *pRadial, int ndxStyle, bool bBump ); void RadialLuxelAddSamples( int ndxFace, Vector const &luxelPt, Vector const &luxelNormal, float radius, radial_t *pRadial, int ndxRadial, bool bBump, int lightStyle );
void RadialPatchBuild( CVRADDispColl *pDispTree, radial_t *pRadial, bool bBump ); void RadialLuxelAddPatch( int ndxFace, Vector const &luxelPt, Vector const &luxelNormal, float radius, radial_t *pRadial, int ndxRadial, bool bBump, CUtlVector<CPatch*> &interestingPatches );
bool IsNeighbor( int iDispFace, int iNeighborFace, bool bCheck2ndDegreeNeighbors = false );
void GetInterestingPatchesForLuxels( int ndxFace, CUtlVector<CPatch*> &interestingPatches, float patchSampleRadius );
private:
struct DispCollTree_t { CVRADDispColl *m_pDispTree; BSPTreeDataHandle_t m_Handle; };
struct EnumContext_t { DispTested_t *m_pDispTested; Ray_t const *m_pRay; };
CUtlVector<DispCollTree_t> m_DispTrees;
IBSPTreeData *m_pBSPTreeData;
CBSPDispRayEnumerator m_EnumDispRay; CBSPDispFaceListEnumerator m_EnumDispFaceList;
int sampleCount; Vector *m_pSamplePos;
CFastTimer m_Timer; };
//-----------------------------------------------------------------------------
// Purpose: expose IVRadDispMgr to vrad
//-----------------------------------------------------------------------------
static CVRadDispMgr s_DispMgr;
IVRadDispMgr *StaticDispMgr( void ) { return &s_DispMgr; }
//=============================================================================
//
// Displacement/Face List
//
// ISpatialLeafEnumerator
bool CBSPDispFaceListEnumerator::EnumerateLeaf( int ndxLeaf, intp context ) { return s_DispMgr.DispFaceList_EnumerateLeaf( ndxLeaf, context ); }
// IBSPTreeDataEnumerator
bool FASTCALL CBSPDispFaceListEnumerator::EnumerateElement( int userId, intp context ) { return s_DispMgr.DispFaceList_EnumerateElement( userId, context ); }
//=============================================================================
//
// RayEnumerator
//
bool CBSPDispRayEnumerator::EnumerateLeaf( int ndxLeaf, intp context ) { return s_DispMgr.DispRay_EnumerateLeaf( ndxLeaf, context ); }
bool FASTCALL CBSPDispRayEnumerator::EnumerateElement( int userId, intp context ) { return s_DispMgr.DispRay_EnumerateElement( userId, context ); }
//-----------------------------------------------------------------------------
// Here's an enumerator that we use for testing against disps in a leaf...
//-----------------------------------------------------------------------------
class CBSPDispRayDistanceEnumerator : public IBSPTreeDataEnumerator { public: CBSPDispRayDistanceEnumerator() : m_Distance(1.0f), m_pSurface(0) {}
// IBSPTreeDataEnumerator
bool FASTCALL EnumerateElement( int userId, intp context ) { return s_DispMgr.DispRayDistance_EnumerateElement( userId, this ); }
float m_Distance; dface_t* m_pSurface; DispTested_t *m_pDispTested; Ray_t const *m_pRay; Vector2D m_LuxelCoord; Vector m_Normal; };
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
CVRadDispMgr::CVRadDispMgr() { m_pBSPTreeData = CreateBSPTreeData(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
CVRadDispMgr::~CVRadDispMgr() { DestroyBSPTreeData( m_pBSPTreeData ); }
//-----------------------------------------------------------------------------
// Insert a displacement into the tree for collision
//-----------------------------------------------------------------------------
void CVRadDispMgr::InsertDispIntoTree( int ndxDisp ) { DispCollTree_t &dispTree = m_DispTrees[ndxDisp]; CDispCollTree *pDispTree = dispTree.m_pDispTree;
// get the bounding box of the tree
Vector boxMin, boxMax; pDispTree->GetBounds( boxMin, boxMax );
// add the displacement to the tree so we will collide against it
dispTree.m_Handle = m_pBSPTreeData->Insert( ndxDisp, boxMin, boxMax ); }
//-----------------------------------------------------------------------------
// Remove a displacement from the tree for collision
//-----------------------------------------------------------------------------
void CVRadDispMgr::RemoveDispFromTree( int ndxDisp ) { // release the tree handle
if( m_DispTrees[ndxDisp].m_Handle != TREEDATA_INVALID_HANDLE ) { m_pBSPTreeData->Remove( m_DispTrees[ndxDisp].m_Handle ); m_DispTrees[ndxDisp].m_Handle = TREEDATA_INVALID_HANDLE; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::Init( void ) { // initialize the bsp tree
m_pBSPTreeData->Init( ToolBSPTree() );
// read in displacements that have been compiled into the bsp file
UnserializeDisps(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::Shutdown( void ) { // remove all displacements from the tree
for( int ndxDisp = m_DispTrees.Count(); ndxDisp >= 0; ndxDisp-- ) { RemoveDispFromTree( ndxDisp ); }
// shutdown the bsp tree
m_pBSPTreeData->Shutdown();
// purge the displacement collision tree list
m_DispTrees.Purge(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::DispBuilderInit( CCoreDispInfo *pBuilderDisp, dface_t *pFace, int ndxFace ) { // get the .bsp displacement
ddispinfo_t *pDisp = &g_dispinfo[pFace->dispinfo]; if( !pDisp ) return;
//
// initlialize the displacement base surface
//
CCoreDispSurface *pSurf = pBuilderDisp->GetSurface(); pSurf->SetPointCount( 4 ); pSurf->SetHandle( ndxFace ); pSurf->SetContents( pDisp->contents );
Vector pt[4]; int ndxPt; for( ndxPt = 0; ndxPt < 4; ndxPt++ ) { int eIndex = dsurfedges[pFace->firstedge+ndxPt]; if( eIndex < 0 ) { pSurf->SetPoint( ndxPt, dvertexes[dedges[-eIndex].v[1]].point ); } else { pSurf->SetPoint( ndxPt, dvertexes[dedges[eIndex].v[0]].point ); }
VectorCopy( pSurf->GetPoint(ndxPt), pt[ndxPt] ); }
//
// calculate the displacement surface normal
//
Vector vFaceNormal; pSurf->GetNormal( vFaceNormal ); for( ndxPt = 0; ndxPt < 4; ndxPt++ ) { pSurf->SetPointNormal( ndxPt, vFaceNormal ); }
// set the surface initial point info
pSurf->SetPointStart( pDisp->startPosition ); pSurf->FindSurfPointStartIndex(); pSurf->AdjustSurfPointData();
Vector vecTmp( texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][0], texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][1], texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][2] ); int nLuxelsPerWorldUnit = static_cast<int>( 1.0f / VectorLength( vecTmp ) ); Vector vecU( texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][0], texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][1], texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][2] ); Vector vecV( texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[1][0], texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[1][1], texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[1][2] ); pSurf->CalcLuxelCoords( nLuxelsPerWorldUnit, false, vecU, vecV );
pBuilderDisp->SetNeighborData( pDisp->m_EdgeNeighbors, pDisp->m_CornerNeighbors ); CDispVert *pVerts = &g_DispVerts[ pDisp->m_iDispVertStart ]; CDispTri *pTris = &g_DispTris[pDisp->m_iDispTriStart];
//
// initialize the displacement data
//
pBuilderDisp->InitDispInfo( pDisp->power, pDisp->minTess, pDisp->smoothingAngle, pVerts, pTris, 0, NULL ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::UnserializeDisps( void ) { // temporarily create the "builder" displacements
CUtlVector<CCoreDispInfo*> builderDisps; for ( int iDisp = 0; iDisp < g_dispinfo.Count(); ++iDisp ) { CCoreDispInfo *pDisp = new CCoreDispInfo; if ( !pDisp ) { builderDisps.Purge(); return; }
int nIndex = builderDisps.AddToTail(); pDisp->SetListIndex( nIndex ); builderDisps[nIndex] = pDisp; }
// Set them up as CDispUtilsHelpers.
for ( int iDisp = 0; iDisp < g_dispinfo.Count(); ++iDisp ) { builderDisps[iDisp]->SetDispUtilsHelperInfo( builderDisps.Base(), g_dispinfo.Count() ); }
//
// find all faces with displacement data and initialize
//
for( int ndxFace = 0; ndxFace < numfaces; ndxFace++ ) { dface_t *pFace = &g_pFaces[ndxFace]; if( ValidDispFace( pFace ) ) { DispBuilderInit( builderDisps[pFace->dispinfo], pFace, ndxFace ); } }
// generate the displacement surfaces
for( int iDisp = 0; iDisp < g_dispinfo.Count(); ++iDisp ) { builderDisps[iDisp]->Create(); }
// smooth edge normals
SmoothNeighboringDispSurfNormals( builderDisps.Base(), g_dispinfo.Count() );
//
// create the displacement collision tree and add it to the bsp tree
//
CVRADDispColl *pDispTrees = new CVRADDispColl[g_dispinfo.Count()]; if( !pDispTrees ) return;
m_DispTrees.AddMultipleToTail( g_dispinfo.Count() );
for( int iDisp = 0; iDisp < g_dispinfo.Count(); iDisp++ ) { pDispTrees[iDisp].Create( builderDisps[iDisp] );
m_DispTrees[iDisp].m_pDispTree = &pDispTrees[iDisp]; m_DispTrees[iDisp].m_Handle = TREEDATA_INVALID_HANDLE;
InsertDispIntoTree( iDisp ); }
// free "builder" disps
builderDisps.Purge(); }
//-----------------------------------------------------------------------------
// Purpose: create a set of patches for each displacement surface to transfer
// bounced light around with
//-----------------------------------------------------------------------------
void CVRadDispMgr::MakePatches( void ) { // Collect stats - keep track of the total displacement surface area.
float flTotalArea = 0.0f;
// Create patches for all of the displacements.
int nTreeCount = m_DispTrees.Count(); for( int iTree = 0; iTree < nTreeCount; ++iTree ) { // Get the current displacement collision tree.
CVRADDispColl *pDispTree = m_DispTrees[iTree].m_pDispTree; if( !pDispTree ) continue;
flTotalArea += pDispTree->CreateParentPatches(); }
// Print stats.
qprintf( "%i Displacements\n", nTreeCount ); qprintf( "%i Square Feet [%.2f Square Inches]\n", ( int )( flTotalArea / 144.0f ), flTotalArea ); } //-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::SubdividePatch( int iPatch ) { // Get the current patch to subdivide.
CPatch *pPatch = &g_Patches[iPatch]; if ( !pPatch ) return;
// Create children patches.
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[pPatch->faceNumber].dispinfo]; CVRADDispColl *pTree = dispTree.m_pDispTree; if( pTree ) { pTree->CreateChildPatches( iPatch, 0 ); } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::StartRayTest( DispTested_t &dispTested ) { if( m_DispTrees.Count() > 0 ) { if( dispTested.m_pTested == 0 ) { dispTested.m_pTested = new int[m_DispTrees.Count()]; memset( dispTested.m_pTested, 0, m_DispTrees.Count() * sizeof( int ) ); dispTested.m_Enum = 0; } ++dispTested.m_Enum; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::ClipRayToDisp( DispTested_t &dispTested, Ray_t const &ray ) { StartRayTest( dispTested );
EnumContext_t ctx; ctx.m_pRay = &ray; ctx.m_pDispTested = &dispTested;
// If it got through without a hit, it returns true
return !m_pBSPTreeData->EnumerateLeavesAlongRay( ray, &m_EnumDispRay, ( int )&ctx ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf ) { EnumContext_t ctx; ctx.m_pRay = &ray; ctx.m_pDispTested = &dispTested;
return !m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &m_EnumDispRay, ( int )&ctx ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf, float& dist, dface_t*& pFace, Vector2D& luxelCoord ) { CBSPDispRayDistanceEnumerator rayTestEnum; rayTestEnum.m_pRay = &ray; rayTestEnum.m_pDispTested = &dispTested;
m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &rayTestEnum, 0 );
dist = rayTestEnum.m_Distance; pFace = rayTestEnum.m_pSurface; if (pFace) { Vector2DCopy( rayTestEnum.m_LuxelCoord, luxelCoord ); } }
void CVRadDispMgr::ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf, float& dist, Vector *pNormal ) { CBSPDispRayDistanceEnumerator rayTestEnum; rayTestEnum.m_pRay = &ray; rayTestEnum.m_pDispTested = &dispTested;
m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &rayTestEnum, 0 ); dist = rayTestEnum.m_Distance; if ( rayTestEnum.m_pSurface ) { *pNormal = rayTestEnum.m_Normal; } }
void CVRadDispMgr::AddPolysForRayTrace( void ) { int nTreeCount = m_DispTrees.Count(); for( int iTree = 0; iTree < nTreeCount; ++iTree ) { // Get the current displacement collision tree.
CVRADDispColl *pDispTree = m_DispTrees[iTree].m_pDispTree;
// Add the triangles of the tree to the RT environment
pDispTree->AddPolysForRayTrace(); } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::GetDispSurfNormal( int ndxFace, Vector &pt, Vector &ptNormal, bool bInside ) { // get the displacement surface data
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo]; CVRADDispColl *pDispTree = dispTree.m_pDispTree; // find the parameterized displacement indices
Vector2D uv; pDispTree->BaseFacePlaneToDispUV( pt, uv );
if( bInside ) { if( uv[0] < 0.0f || uv[0] > 1.0f ) { Msg( "Disp UV (%f) outside bounds!\n", uv[0] ); } if( uv[1] < 0.0f || uv[1] > 1.0f ) { Msg( "Disp UV (%f) outside bounds!\n", uv[1] ); } }
if( uv[0] < 0.0f ) { uv[0] = 0.0f; } if( uv[0] > 1.0f ) { uv[0] = 1.0f; } if( uv[1] < 0.0f ) { uv[1] = 0.0f; } if( uv[1] > 1.0f ) { uv[1] = 1.0f; }
// get the normal at "pt"
pDispTree->DispUVToSurfNormal( uv, ptNormal );
// get the new "pt"
pDispTree->DispUVToSurfPoint( uv, pt, 1.0f ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::GetDispSurfPointAndNormalFromUV( int ndxFace, Vector &pt, Vector &ptNormal, Vector2D &uv, bool bInside ) { // get the displacement surface data
DispCollTree_t &dispTree = m_DispTrees[ g_pFaces[ ndxFace ].dispinfo ]; CVRADDispColl *pDispTree = dispTree.m_pDispTree;
if ( bInside ) { if ( uv[ 0 ] < 0.0f || uv[ 0 ] > 1.0f ) { Msg( "Disp UV (%f) outside bounds!\n", uv[ 0 ] ); } if ( uv[ 1 ] < 0.0f || uv[ 1 ] > 1.0f ) { Msg( "Disp UV (%f) outside bounds!\n", uv[ 1 ] ); } }
if ( uv[ 0 ] < 0.0f ) { uv[ 0 ] = 0.0f; } if ( uv[ 0 ] > 1.0f ) { uv[ 0 ] = 1.0f; } if ( uv[ 1 ] < 0.0f ) { uv[ 1 ] = 0.0f; } if ( uv[ 1 ] > 1.0f ) { uv[ 1 ] = 1.0f; }
// get the normal at "pt"
pDispTree->DispUVToSurfNormal( uv, ptNormal );
// get the new "pt"
pDispTree->DispUVToSurfPoint( uv, pt, 1.0f ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::GetDispSurf( int ndxFace, CVRADDispColl **ppDispTree ) { DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo]; *ppDispTree = dispTree.m_pDispTree; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispRay_EnumerateLeaf( int ndxLeaf, intp context ) { return m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &m_EnumDispRay, context ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispRay_EnumerateElement( int userId, intp context ) { DispCollTree_t &dispTree = m_DispTrees[userId]; EnumContext_t *pCtx = ( EnumContext_t* )context;
// don't test twice (check tested value)
if( pCtx->m_pDispTested->m_pTested[userId] == pCtx->m_pDispTested->m_Enum ) return true;
// set the tested value
pCtx->m_pDispTested->m_pTested[userId] = pCtx->m_pDispTested->m_Enum;
// false mean stop iterating -- return false if we hit! (NOTE: opposite return
// result of the collision tree's ray test, thus the !)
CBaseTrace trace; trace.fraction = 1.0f; return ( !dispTree.m_pDispTree->AABBTree_Ray( *pCtx->m_pRay, pCtx->m_pRay->InvDelta(), &trace, true ) ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispRayDistance_EnumerateElement( int userId, CBSPDispRayDistanceEnumerator* pCtx ) { DispCollTree_t &dispTree = m_DispTrees[userId];
// don't test twice (check tested value)
if( pCtx->m_pDispTested->m_pTested[userId] == pCtx->m_pDispTested->m_Enum ) return true;
// set the tested value
pCtx->m_pDispTested->m_pTested[userId] = pCtx->m_pDispTested->m_Enum;
// Test the ray, if it's closer than previous tests, use it!
RayDispOutput_t output; output.ndxVerts[0] = -1; output.ndxVerts[1] = -1; output.ndxVerts[2] = -1; output.ndxVerts[3] = -1; output.u = -1.0f; output.v = -1.0f; output.dist = FLT_MAX;
if (dispTree.m_pDispTree->AABBTree_Ray( *pCtx->m_pRay, output )) { if (output.dist < pCtx->m_Distance) { pCtx->m_Distance = output.dist; pCtx->m_pSurface = &g_pFaces[dispTree.m_pDispTree->GetParentIndex()];
// Get the luxel coordinate
ComputePointFromBarycentric( dispTree.m_pDispTree->GetLuxelCoord(output.ndxVerts[0]), dispTree.m_pDispTree->GetLuxelCoord(output.ndxVerts[1]), dispTree.m_pDispTree->GetLuxelCoord(output.ndxVerts[2]), output.u, output.v, pCtx->m_LuxelCoord );
Vector v0,v1,v2; dispTree.m_pDispTree->GetVert( output.ndxVerts[0], v0 ); dispTree.m_pDispTree->GetVert( output.ndxVerts[1], v1 ); dispTree.m_pDispTree->GetVert( output.ndxVerts[2], v2 ); Vector e0 = v1-v0; Vector e1 = v2-v0; pCtx->m_Normal = CrossProduct( e0, e1 ); VectorNormalize(pCtx->m_Normal); } }
return true; }
//-----------------------------------------------------------------------------
// Test a ray against a particular dispinfo
//-----------------------------------------------------------------------------
/*
float CVRadDispMgr::ClipRayToDisp( Ray_t const &ray, int dispinfo ) { assert( m_DispTrees.IsValidIndex(dispinfo) );
RayDispOutput_t output; if (!m_DispTrees[dispinfo].m_pDispTree->AABBTree_Ray( ray, output )) return 1.0f; return output.dist; } */
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispFaceList_EnumerateLeaf( int ndxLeaf, intp context ) { //
// add the faces found in this leaf to the face list
//
dleaf_t *pLeaf = &dleafs[ndxLeaf]; for( int ndxFace = 0; ndxFace < pLeaf->numleaffaces; ndxFace++ ) { // get the current face index
int ndxLeafFace = pLeaf->firstleafface + ndxFace;
// check to see if the face already lives in the list
int ndx; int size = m_EnumDispFaceList.m_FaceList.Count(); for( ndx = 0; ndx < size; ndx++ ) { if( m_EnumDispFaceList.m_FaceList[ndx] == ndxLeafFace ) break; }
if( ndx == size ) { int ndxList = m_EnumDispFaceList.m_FaceList.AddToTail(); m_EnumDispFaceList.m_FaceList[ndxList] = ndxLeafFace; } }
return m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &m_EnumDispFaceList, context ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispFaceList_EnumerateElement( int userId, intp context ) { DispCollTree_t &dispTree = m_DispTrees[userId]; CVRADDispColl *pDispTree = dispTree.m_pDispTree; if( !pDispTree ) return false;
// check to see if the displacement already lives in the list
int ndx; int size = m_EnumDispFaceList.m_DispList.Count(); for( ndx = 0; ndx < size; ndx++ ) { if( m_EnumDispFaceList.m_DispList[ndx] == pDispTree ) break; }
if( ndx == size ) { int ndxList = m_EnumDispFaceList.m_DispList.AddToTail(); m_EnumDispFaceList.m_DispList[ndxList] = pDispTree; }
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
inline void GetSampleLight( facelight_t *pFaceLight, int ndxStyle, bool bBumped, int ndxSample, LightingValue_t *pSampleLight ) { // SampleLight[0].Init( 20.0f, 10.0f, 10.0f );
// return;
// get sample from bumped lighting data
if( bBumped ) { for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ ) { pSampleLight[ndxBump] = pFaceLight->light[ndxStyle][ndxBump][ndxSample]; } } // just a generally lit surface
else { pSampleLight[0] = pFaceLight->light[ndxStyle][0][ndxSample]; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void AddSampleLightToRadial( Vector const &samplePos, Vector const &sampleNormal, LightingValue_t *pSampleLight, float sampleRadius2, Vector const &luxelPos, Vector const &luxelNormal, radial_t *pRadial, int ndxRadial, bool bBumped, bool bNeighborBumped ) { // check normals to see if sample contributes any light at all
float angle = sampleNormal.Dot( luxelNormal ); if ( angle < 0.15f ) return;
// calculate the light vector
Vector vSegment = samplePos - luxelPos;
// get the distance to the light
float dist = vSegment.Length(); float dist2 = dist * dist;
// Check to see if the light is within the influence.
float influence = 1.0f - ( dist2 / ( sampleRadius2 ) ); if( influence <= 0.0f ) return;
influence *= angle;
if( bBumped ) { if( bNeighborBumped ) { for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ ) { pRadial->light[ndxBump][ndxRadial].AddWeighted( pSampleLight[ndxBump], influence ); } pRadial->weight[ndxRadial] += influence; } else { influence *= 0.05f; for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ ) { pRadial->light[ndxBump][ndxRadial].AddWeighted( pSampleLight[0], influence ); } pRadial->weight[ndxRadial] += influence; } } else { pRadial->light[0][ndxRadial].AddWeighted( pSampleLight[0], influence ); pRadial->weight[ndxRadial] += influence; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::IsNeighbor( int iFace, int iNeighborFace, bool bCheck2ndDegreeNeighbors ) { if ( iFace == iNeighborFace ) return true;
faceneighbor_t *pFaceNeighbor = &faceneighbor[iFace]; for ( int iNeighbor = 0; iNeighbor < pFaceNeighbor->numneighbors; iNeighbor++ ) { if ( pFaceNeighbor->neighbor[iNeighbor] == iNeighborFace ) return true; }
if ( bCheck2ndDegreeNeighbors ) { for ( int iNeighbor = 0; iNeighbor < pFaceNeighbor->numneighbors; iNeighbor++ ) { faceneighbor_t *pFaceNeighbor2 = &faceneighbor[ pFaceNeighbor->neighbor[ iNeighbor ] ]; for ( int iNeighbor2 = 0; iNeighbor2 < pFaceNeighbor2->numneighbors; iNeighbor2++ ) { if ( pFaceNeighbor2->neighbor[ iNeighbor2 ] == iNeighborFace ) return true; } } }
return false; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialLuxelAddSamples( int ndxFace, Vector const &luxelPt, Vector const &luxelNormal, float radius, radial_t *pRadial, int ndxRadial, bool bBump, int lightStyle ) { // calculate one over the voxel size
float ooVoxelSize = 1.0f / SAMPLEHASH_VOXEL_SIZE;
//
// find voxel info
//
int voxelMin[3], voxelMax[3]; for( int axis = 0; axis < 3; axis++ ) { voxelMin[axis] = ( int )( ( luxelPt[axis] - radius ) * ooVoxelSize ); voxelMax[axis] = ( int )( ( luxelPt[axis] + radius ) * ooVoxelSize ) + 1; }
SampleData_t sampleData; for( int ndxZ = voxelMin[2]; ndxZ < voxelMax[2] + 1; ndxZ++ ) { for( int ndxY = voxelMin[1]; ndxY < voxelMax[1] + 1; ndxY++ ) { for( int ndxX = voxelMin[0]; ndxX < voxelMax[0] + 1; ndxX++ ) { sampleData.x = ndxX * 100; sampleData.y = ndxY * 10; sampleData.z = ndxZ; UtlHashHandle_t handle = g_SampleHashTable.Find( sampleData ); if( handle != g_SampleHashTable.InvalidHandle() ) { SampleData_t *pSampleData = &g_SampleHashTable.Element( handle ); int count = pSampleData->m_Samples.Count(); for( int ndx = 0; ndx < count; ndx++ ) { SampleHandle_t sampleHandle = pSampleData->m_Samples.Element( ndx ); int ndxSample = ( sampleHandle & 0x0000ffff ); int ndxFaceLight = ( ( sampleHandle >> 16 ) & 0x0000ffff );
facelight_t *pFaceLight = &facelight[ndxFaceLight]; if( pFaceLight && IsNeighbor( ndxFace, ndxFaceLight ) ) { //
// check for similar lightstyles
//
dface_t *pFace = &g_pFaces[ndxFaceLight]; if( pFace ) { int ndxNeighborStyle = -1; for( int ndxLightStyle = 0; ndxLightStyle < MAXLIGHTMAPS; ndxLightStyle++ ) { if( pFace->styles[ndxLightStyle] == lightStyle ) { ndxNeighborStyle = ndxLightStyle; break; } } if( ndxNeighborStyle == -1 ) continue; // is this surface bumped???
bool bNeighborBump = texinfo[pFace->texinfo].flags & SURF_BUMPLIGHT ? true : false; LightingValue_t sampleLight[NUM_BUMP_VECTS+1]; GetSampleLight( pFaceLight, ndxNeighborStyle, bNeighborBump, ndxSample, sampleLight ); AddSampleLightToRadial( pFaceLight->sample[ndxSample].pos, pFaceLight->sample[ndxSample].normal, sampleLight, radius*radius, luxelPt, luxelNormal, pRadial, ndxRadial, bBump, bNeighborBump ); } } } } } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialLuxelBuild( CVRADDispColl *pDispTree, radial_t *pRadial, int ndxStyle, bool bBump ) { //
// get data lighting data
//
int ndxFace = pDispTree->GetParentIndex();
dface_t *pFace = &g_pFaces[ndxFace]; facelight_t *pFaceLight = &facelight[ndxFace];
// get the influence radius
float radius2 = pDispTree->GetSampleRadius2(); float radius = ( float )sqrt( radius2 );
int radialSize = pRadial->w * pRadial->h; for( int ndxRadial = 0; ndxRadial < radialSize; ndxRadial++ ) { RadialLuxelAddSamples( ndxFace, pFaceLight->luxel[ndxRadial], pFaceLight->luxelNormals[ndxRadial], radius, pRadial, ndxRadial, bBump, pFace->styles[ndxStyle] ); } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
radial_t *CVRadDispMgr::BuildLuxelRadial( int ndxFace, int ndxStyle, bool bBump ) { // allocate the radial
radial_t *pRadial = AllocateRadial( ndxFace ); if( !pRadial ) return NULL;
//
// step 1: get the displacement surface to be lit
//
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo]; CVRADDispColl *pDispTree = dispTree.m_pDispTree; if( !pDispTree ) return NULL;
// step 2: build radial luxels
RadialLuxelBuild( pDispTree, pRadial, ndxStyle, bBump );
// step 3: return the built radial
return pRadial; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::SampleRadial( int ndxFace, radial_t *pRadial, Vector const &vPos, int ndxLxl, LightingValue_t *pLightSample, int sampleCount, bool bPatch ) { bool bGoodSample = true; for ( int count = 0; count < sampleCount; count++ ) { pLightSample[count].Zero();
if ( pRadial->weight[ndxLxl] > 0.0f ) { pLightSample[count].AddWeighted( pRadial->light[count][ndxLxl], ( 1.0f / pRadial->weight[ndxLxl] ) ); } else { // error, luxel has no samples (not for patches)
if ( !bPatch ) { // Yes, 2550 is correct!
// pLightSample[count].Init( 2550.0f, 0.0f, 2550.0f );
if( count == 0 ) bGoodSample = false; } } }
return bGoodSample; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void GetPatchLight( CPatch *pPatch, bool bBump, Vector *pPatchLight ) { VectorCopy( pPatch->totallight.light[0], pPatchLight[0] );
if( bBump ) { for( int ndxBump = 1; ndxBump < ( NUM_BUMP_VECTS + 1 ); ndxBump++ ) { VectorCopy( pPatch->totallight.light[ndxBump], pPatchLight[ndxBump] ); } } }
extern void GetBumpNormals( const float* sVect, const float* tVect, const Vector& flatNormal, const Vector& phongNormal, Vector bumpNormals[NUM_BUMP_VECTS] ); extern void PreGetBumpNormalsForDisp( texinfo_t *pTexinfo, Vector &vecU, Vector &vecV, Vector &vecNormal );
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void AddPatchLightToRadial( Vector const &patchOrigin, Vector const &patchNormal, Vector *pPatchLight, float patchRadius2, Vector const &luxelPos, Vector const &luxelNormal, radial_t *pRadial, int ndxRadial, bool bBump, bool bNeighborBump ) { // calculate the light vector
Vector vSegment = patchOrigin - luxelPos;
// get the distance to the light
float dist = vSegment.Length(); float dist2 = dist * dist;
// Check to see if the light is within the sample influence.
float influence = 1.0f - ( dist2 / ( patchRadius2 ) ); if ( influence <= 0.0f ) return;
if( bBump ) { Vector normals[NUM_BUMP_VECTS+1]; normals[0] = luxelNormal; texinfo_t *pTexinfo = &texinfo[g_pFaces[pRadial->facenum].texinfo]; Vector vecTexU, vecTexV; PreGetBumpNormalsForDisp( pTexinfo, vecTexU, vecTexV, normals[0] ); GetBumpNormals( vecTexU, vecTexV, normals[0], normals[0], &normals[1] );
if( bNeighborBump ) { float flScale = patchNormal.Dot( normals[0] ); flScale = max( 0.0f, flScale ); float flBumpInfluence = influence * flScale;
for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ ) { pRadial->light[ndxBump][ndxRadial].AddWeighted( pPatchLight[ndxBump], flBumpInfluence ); }
pRadial->weight[ndxRadial] += flBumpInfluence; } else { float flScale = patchNormal.Dot( normals[0] ); flScale = max( 0.0f, flScale ); float flBumpInfluence = influence * flScale * 0.05f;
for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ ) { pRadial->light[ndxBump][ndxRadial].AddWeighted( pPatchLight[0], flBumpInfluence ); }
pRadial->weight[ndxRadial] += flBumpInfluence; } } else { float flScale = patchNormal.Dot( luxelNormal ); flScale = max( 0.0f, flScale ); influence *= flScale; pRadial->light[0][ndxRadial].AddWeighted( pPatchLight[0], influence );
// add the weight value
pRadial->weight[ndxRadial] += influence; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialLuxelAddPatch( int ndxFace, Vector const &luxelPt, Vector const &luxelNormal, float radius, radial_t *pRadial, int ndxRadial, bool bBump, CUtlVector<CPatch*> &interestingPatches ) { #ifdef SAMPLEHASH_QUERY_ONCE
for ( int i=0; i < interestingPatches.Count(); i++ ) { CPatch *pPatch = interestingPatches[i]; bool bNeighborBump = texinfo[g_pFaces[pPatch->faceNumber].texinfo].flags & SURF_BUMPLIGHT ? true : false; Vector patchLight[NUM_BUMP_VECTS+1]; GetPatchLight( pPatch, bBump, patchLight ); AddPatchLightToRadial( pPatch->origin, pPatch->normal, patchLight, radius*radius, luxelPt, luxelNormal, pRadial, ndxRadial, bBump, bNeighborBump ); } #else
// calculate one over the voxel size
float ooVoxelSize = 1.0f / SAMPLEHASH_VOXEL_SIZE;
//
// find voxel info
//
int voxelMin[3], voxelMax[3]; for ( int axis = 0; axis < 3; axis++ ) { voxelMin[axis] = ( int )( ( luxelPt[axis] - radius ) * ooVoxelSize ); voxelMax[axis] = ( int )( ( luxelPt[axis] + radius ) * ooVoxelSize ) + 1; }
unsigned short curIterationKey = IncrementPatchIterationKey(); PatchSampleData_t patchData; for ( int ndxZ = voxelMin[2]; ndxZ < voxelMax[2] + 1; ndxZ++ ) { for ( int ndxY = voxelMin[1]; ndxY < voxelMax[1] + 1; ndxY++ ) { for ( int ndxX = voxelMin[0]; ndxX < voxelMax[0] + 1; ndxX++ ) { patchData.x = ndxX * 100; patchData.y = ndxY * 10; patchData.z = ndxZ; UtlHashHandle_t handle = g_PatchSampleHashTable.Find( patchData ); if ( handle != g_PatchSampleHashTable.InvalidHandle() ) { PatchSampleData_t *pPatchData = &g_PatchSampleHashTable.Element( handle ); int count = pPatchData->m_ndxPatches.Count(); for ( int ndx = 0; ndx < count; ndx++ ) { int ndxPatch = pPatchData->m_ndxPatches.Element( ndx ); CPatch *pPatch = &g_Patches.Element( ndxPatch ); if ( pPatch && pPatch->m_IterationKey != curIterationKey ) { pPatch->m_IterationKey = curIterationKey; if ( IsNeighbor( ndxFace, pPatch->faceNumber ) ) { bool bNeighborBump = texinfo[g_pFaces[pPatch->faceNumber].texinfo].flags & SURF_BUMPLIGHT ? true : false; Vector patchLight[NUM_BUMP_VECTS+1]; GetPatchLight( pPatch, bBump, patchLight ); AddPatchLightToRadial( pPatch->origin, pPatch->normal, patchLight, radius*radius, luxelPt, luxelNormal, pRadial, ndxRadial, bBump, bNeighborBump ); } } } } } } } #endif
}
void CVRadDispMgr::GetInterestingPatchesForLuxels( int ndxFace, CUtlVector<CPatch*> &interestingPatches, float patchSampleRadius ) { facelight_t *pFaceLight = &facelight[ndxFace];
// Get the max bounds of all voxels that these luxels touch.
Vector vLuxelMin( FLT_MAX, FLT_MAX, FLT_MAX ); Vector vLuxelMax( -FLT_MAX, -FLT_MAX, -FLT_MAX ); for ( int i=0; i < pFaceLight->numluxels; i++ ) { VectorMin( pFaceLight->luxel[i], vLuxelMin, vLuxelMin ); VectorMax( pFaceLight->luxel[i], vLuxelMax, vLuxelMax ); } int allVoxelMin[3], allVoxelMax[3]; for ( int axis = 0; axis < 3; axis++ ) { allVoxelMin[axis] = ( int )( ( vLuxelMin[axis] - patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE ); allVoxelMax[axis] = ( int )( ( vLuxelMax[axis] + patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE ) + 1; } int allVoxelSize[3] = { allVoxelMax[0] - allVoxelMin[0], allVoxelMax[1] - allVoxelMin[1], allVoxelMax[2] - allVoxelMin[2] };
// Now figure out exactly which voxels these luxels touch.
CUtlVector<unsigned char> voxelBits; voxelBits.SetSize( ((allVoxelSize[0] * allVoxelSize[1] * allVoxelSize[2]) + 7) / 8 ); memset( voxelBits.Base(), 0, voxelBits.Count() ); for ( int i=0; i < pFaceLight->numluxels; i++ ) { int voxelMin[3], voxelMax[3]; for ( int axis=0; axis < 3; axis++ ) { voxelMin[axis] = ( int )( ( pFaceLight->luxel[i][axis] - patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE ); voxelMax[axis] = ( int )( ( pFaceLight->luxel[i][axis] + patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE ) + 1; }
for ( int x=voxelMin[0]; x < voxelMax[0]; x++ ) { for ( int y=voxelMin[1]; y < voxelMax[1]; y++ ) { for ( int z=voxelMin[2]; z < voxelMax[2]; z++ ) { int iBit = (z - allVoxelMin[2])*(allVoxelSize[0]*allVoxelSize[1]) + (y-allVoxelMin[1])*allVoxelSize[0] + (x-allVoxelMin[0]); voxelBits[iBit>>3] |= (1 << (iBit & 7)); } } } } // Now get the list of patches that touch those voxels.
unsigned short curIterationKey = IncrementPatchIterationKey();
for ( int x=0; x < allVoxelSize[0]; x++ ) { for ( int y=0; y < allVoxelSize[1]; y++ ) { for ( int z=0; z < allVoxelSize[2]; z++ ) { // Make sure this voxel has any luxels that care about it.
int iBit = z*(allVoxelSize[0]*allVoxelSize[1]) + y*allVoxelSize[0] + x; unsigned char val = voxelBits[iBit>>3] & (1 << (iBit & 7)); if ( !val ) continue; PatchSampleData_t patchData; patchData.x = (x + allVoxelMin[0]) * 100; patchData.y = (y + allVoxelMin[1]) * 10; patchData.z = (z + allVoxelMin[2]); UtlHashHandle_t handle = g_PatchSampleHashTable.Find( patchData ); if ( handle != g_PatchSampleHashTable.InvalidHandle() ) { PatchSampleData_t *pPatchData = &g_PatchSampleHashTable.Element( handle ); // For all patches that touch this hash table element..
for ( int ndx = 0; ndx < pPatchData->m_ndxPatches.Count(); ndx++ ) { int ndxPatch = pPatchData->m_ndxPatches.Element( ndx ); CPatch *pPatch = &g_Patches.Element( ndxPatch ); // If we haven't touched the patch already and it's a valid neighbor, then we want to use it.
if ( pPatch && pPatch->m_IterationKey != curIterationKey ) { pPatch->m_IterationKey = curIterationKey; if ( IsNeighbor( ndxFace, pPatch->faceNumber, g_bLargeDispSampleRadius ) ) { interestingPatches.AddToTail( pPatch ); } } } } } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialPatchBuild( CVRADDispColl *pDispTree, radial_t *pRadial, bool bBump ) { //
// get data lighting data
//
int ndxFace = pDispTree->GetParentIndex(); facelight_t *pFaceLight = &facelight[ndxFace];
// get the influence radius
float radius2 = pDispTree->GetPatchSampleRadius2(); float radius = ( float )sqrt( radius2 );
CUtlVector<CPatch*> interestingPatches; #ifdef SAMPLEHASH_QUERY_ONCE
GetInterestingPatchesForLuxels( ndxFace, interestingPatches, radius ); #endif
int radialSize = pRadial->w * pRadial->h; for( int ndxRadial = 0; ndxRadial < radialSize; ndxRadial++ ) { RadialLuxelAddPatch( ndxFace, pFaceLight->luxel[ndxRadial], pFaceLight->luxelNormals[ndxRadial], radius, pRadial, ndxRadial, bBump, interestingPatches ); } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
radial_t *CVRadDispMgr::BuildPatchRadial( int ndxFace, bool bBump ) { // allocate the radial
radial_t *pRadial = AllocateRadial( ndxFace ); if( !pRadial ) return NULL;
//
// step 1: get the displacement surface to be lit
//
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo]; CVRADDispColl *pDispTree = dispTree.m_pDispTree; if( !pDispTree ) return NULL;
// step 2: build radial of patch light
RadialPatchBuild( pDispTree, pRadial, bBump );
// step 3: return the built radial
return pRadial; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool SampleInSolid( sample_t *pSample ) { int ndxLeaf = PointLeafnum( pSample->pos ); return ( dleafs[ndxLeaf].contents == CONTENTS_SOLID ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::InsertSamplesDataIntoHashTable( void ) { int totalSamples = 0; #if 0
int totalSamplesInSolid = 0; #endif
for( int ndxFace = 0; ndxFace < numfaces; ndxFace++ ) { dface_t *pFace = &g_pFaces[ndxFace]; facelight_t *pFaceLight = &facelight[ndxFace]; if( !pFace || !pFaceLight ) continue; if( texinfo[pFace->texinfo].flags & TEX_SPECIAL ) continue;
#if 0
bool bDisp = ( pFace->dispinfo != -1 ); #endif
//
// for each sample
//
for( int ndxSample = 0; ndxSample < pFaceLight->numsamples; ndxSample++ ) { sample_t *pSample = &pFaceLight->sample[ndxSample]; if( pSample ) { #if 0
if( bDisp ) { // test sample to see if the displacement samples resides in solid
if( SampleInSolid( pSample ) ) { totalSamplesInSolid++; continue; } } #endif
// create the sample handle
SampleHandle_t sampleHandle = ndxSample; sampleHandle |= ( ndxFace << 16 ); SampleData_AddSample( pSample, sampleHandle ); }
}
totalSamples += pFaceLight->numsamples; }
#if 0
// not implemented yet!!!
Msg( "%d samples in solid\n", totalSamplesInSolid ); #endif
// log the distribution
SampleData_Log(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::InsertPatchSampleDataIntoHashTable( void ) { // don't insert patch samples if we are not bouncing light
if( numbounce <= 0 ) return;
int totalPatchSamples = 0;
for( int ndxFace = 0; ndxFace < numfaces; ndxFace++ ) { dface_t *pFace = &g_pFaces[ndxFace]; facelight_t *pFaceLight = &facelight[ndxFace]; if( !pFace || !pFaceLight ) continue; if( texinfo[pFace->texinfo].flags & TEX_SPECIAL ) continue; //
// for each patch
//
CPatch *pNextPatch = NULL; if( g_FacePatches.Element( ndxFace ) != g_FacePatches.InvalidIndex() ) { for( CPatch *pPatch = &g_Patches.Element( g_FacePatches.Element( ndxFace ) ); pPatch; pPatch = pNextPatch ) { // next patch
pNextPatch = NULL; if( pPatch->ndxNext != g_Patches.InvalidIndex() ) { pNextPatch = &g_Patches.Element( pPatch->ndxNext ); } // skip patches with children
if( pPatch->child1 != g_Patches.InvalidIndex() ) continue; int ndxPatch = pPatch - g_Patches.Base(); PatchSampleData_AddSample( pPatch, ndxPatch );
totalPatchSamples++; } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::StartTimer( const char *name ) { Msg( name ); m_Timer.Start(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::EndTimer( void ) { m_Timer.End(); CCycleCount duration = m_Timer.GetDuration(); double seconds = duration.GetSeconds();
Msg( "Done<%1.4lf sec>\n", seconds ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::BuildDispSamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace ) { // get the tree assosciated with the face
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo]; CVRADDispColl *pDispTree = dispTree.m_pDispTree; if( !pDispTree ) return false;
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1; int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// calculate the steps in uv space
float stepU = 1.0f / ( float )width; float stepV = 1.0f / ( float )height; float halfStepU = stepU * 0.5f; float halfStepV = stepV * 0.5f; //
// build the winding points (used to generate world space winding and
// calculate the area of the "sample")
//
int ndxU, ndxV;
CUtlVector<sample_t> samples; samples.SetCount( SINGLEMAP ); sample_t *pSamples = samples.Base();
CUtlVector<Vector> worldPoints; worldPoints.SetCount( SINGLEMAP ); Vector *pWorldPoints = worldPoints.Base();
for( ndxV = 0; ndxV < ( height + 1 ); ndxV++ ) { for( ndxU = 0; ndxU < ( width + 1 ); ndxU++ ) { int ndx = ( ndxV * ( width + 1 ) ) + ndxU;
Vector2D uv( ndxU * stepU, ndxV * stepV ); pDispTree->DispUVToSurfPoint( uv, pWorldPoints[ndx], 0.0f ); } }
for( ndxV = 0; ndxV < height; ndxV++ ) { for( ndxU = 0; ndxU < width; ndxU++ ) { // build the winding
winding_t *pWinding = AllocWinding( 4 ); if( pWinding ) { pWinding->numpoints = 4; pWinding->p[0] = pWorldPoints[(ndxV*(width+1))+ndxU]; pWinding->p[1] = pWorldPoints[((ndxV+1)*(width+1))+ndxU]; pWinding->p[2] = pWorldPoints[((ndxV+1)*(width+1))+(ndxU+1)]; pWinding->p[3] = pWorldPoints[(ndxV*(width+1))+(ndxU+1)]; // calculate the area
float area = WindingArea( pWinding ); int ndxSample = ( ndxV * width ) + ndxU; pSamples[ndxSample].w = pWinding; pSamples[ndxSample].area = area; } else { Msg( "BuildDispSamples: WARNING - failed winding allocation\n" ); } } }
//
// build the samples points (based on s, t and sampleoffset (center of samples);
// generates world space position and normal)
//
for( ndxV = 0; ndxV < height; ndxV++ ) { for( ndxU = 0; ndxU < width; ndxU++ ) { int ndxSample = ( ndxV * width ) + ndxU; pSamples[ndxSample].s = ndxU; pSamples[ndxSample].t = ndxV; pSamples[ndxSample].coord[0] = ( ndxU * stepU ) + halfStepU; pSamples[ndxSample].coord[1] = ( ndxV * stepV ) + halfStepV; pDispTree->DispUVToSurfPoint( pSamples[ndxSample].coord, pSamples[ndxSample].pos, 1.0f ); pDispTree->DispUVToSurfNormal( pSamples[ndxSample].coord, pSamples[ndxSample].normal ); } }
//
// copy over samples
//
pFaceLight->numsamples = width * height; pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) ); if( !pFaceLight->sample ) return false;
memcpy( pFaceLight->sample, pSamples, pFaceLight->numsamples * sizeof( *pFaceLight->sample ) );
// statistics - warning?!
if( pFaceLight->numsamples == 0 ) { Msg( "BuildDispSamples: WARNING - no samples %d\n", pLightInfo->face - g_pFaces ); }
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::BuildDispLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace ) { // get the tree assosciated with the face
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo]; CVRADDispColl *pDispTree = dispTree.m_pDispTree; if( !pDispTree ) return false;
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1; int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// calcuate actual luxel points
pFaceLight->numluxels = width * height; pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) ); pFaceLight->luxelNormals = ( Vector* )calloc( pFaceLight->numluxels, sizeof( Vector ) ); if( !pFaceLight->luxel || !pFaceLight->luxelNormals ) return false;
float stepU = 1.0f / ( float )( width - 1 ); float stepV = 1.0f / ( float )( height - 1 );
for( int ndxV = 0; ndxV < height; ndxV++ ) { for( int ndxU = 0; ndxU < width; ndxU++ ) { int ndxLuxel = ( ndxV * width ) + ndxU;
Vector2D uv( ndxU * stepU, ndxV * stepV ); pDispTree->DispUVToSurfPoint( uv, pFaceLight->luxel[ndxLuxel], 1.0f ); pDispTree->DispUVToSurfNormal( uv, pFaceLight->luxelNormals[ndxLuxel] ); } }
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::BuildDispSamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace ) { // get the tree assosciated with the face
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo]; CVRADDispColl *pDispTree = dispTree.m_pDispTree; if( !pDispTree ) return false;
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1; int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// calcuate actual luxel points
pFaceLight->numsamples = width * height; pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) ); if( !pFaceLight->sample ) return false;
pFaceLight->numluxels = width * height; pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) ); pFaceLight->luxelNormals = ( Vector* )calloc( pFaceLight->numluxels, sizeof( Vector ) ); if( !pFaceLight->luxel || !pFaceLight->luxelNormals ) return false;
float stepU = 1.0f / ( float )( width - 1 ); float stepV = 1.0f / ( float )( height - 1 ); float halfStepU = stepU * 0.5f; float halfStepV = stepV * 0.5f;
for( int ndxV = 0; ndxV < height; ndxV++ ) { for( int ndxU = 0; ndxU < width; ndxU++ ) { int ndx = ( ndxV * width ) + ndxU;
pFaceLight->sample[ndx].s = ndxU; pFaceLight->sample[ndx].t = ndxV; pFaceLight->sample[ndx].coord[0] = ( ndxU * stepU ) + halfStepU; pFaceLight->sample[ndx].coord[1] = ( ndxV * stepV ) + halfStepV;
pDispTree->DispUVToSurfPoint( pFaceLight->sample[ndx].coord, pFaceLight->sample[ndx].pos, 1.0f ); pDispTree->DispUVToSurfNormal( pFaceLight->sample[ndx].coord, pFaceLight->sample[ndx].normal );
pFaceLight->luxel[ndx] = pFaceLight->sample[ndx].pos; pFaceLight->luxelNormals[ndx] = pFaceLight->sample[ndx].normal; } }
return true; }
|