|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "decal_clip.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// --------------------------------------------------------------------------- //
// Template classes for the clipper.
// --------------------------------------------------------------------------- //
class CPlane_Top { public: static inline bool Inside( CDecalVert *pVert ) {return pVert->m_ctCoords.y < 1;} static inline float Clip( CDecalVert *one, CDecalVert *two ) {return (1 - one->m_ctCoords.y) / (two->m_ctCoords.y - one->m_ctCoords.y);} };
class CPlane_Left { public: static inline bool Inside( CDecalVert *pVert ) {return pVert->m_ctCoords.x > 0;} static inline float Clip( CDecalVert *one, CDecalVert *two ) {return one->m_ctCoords.x / (one->m_ctCoords.x - two->m_ctCoords.x);} };
class CPlane_Right { public: static inline bool Inside( CDecalVert *pVert ) {return pVert->m_ctCoords.x < 1;} static inline float Clip( CDecalVert *one, CDecalVert *two ) {return (1 - one->m_ctCoords.x) / (two->m_ctCoords.x - one->m_ctCoords.x);} };
class CPlane_Bottom { public: static inline bool Inside( CDecalVert *pVert ) {return pVert->m_ctCoords.y > 0;} static inline float Clip( CDecalVert *one, CDecalVert *two ) {return one->m_ctCoords.y / (one->m_ctCoords.y - two->m_ctCoords.y);} };
// --------------------------------------------------------------------------- //
// Globals.
// --------------------------------------------------------------------------- //
CDecalVert ALIGN16 g_DecalClipVerts[MAX_DECALCLIPVERT]; static CDecalVert ALIGN16 g_DecalClipVerts2[MAX_DECALCLIPVERT];
template< class Clipper > static inline void Intersect( Clipper &clip, CDecalVert *one, CDecalVert *two, CDecalVert *out ) { float t = Clipper::Clip( one, two ); VectorLerp( one->m_vPos, two->m_vPos, t, out->m_vPos ); Vector2DLerp( one->m_cLMCoords, two->m_cLMCoords, t, out->m_cLMCoords ); Vector2DLerp( one->m_ctCoords, two->m_ctCoords, t, out->m_ctCoords ); }
template< class Clipper > static inline int SHClip( CDecalVert *pDecalClipVerts, int vertCount, CDecalVert *out, Clipper &clip ) { int j, outCount; CDecalVert *s, *p;
Assert( vertCount <= MAX_DECALCLIPVERT );
outCount = 0;
s = &pDecalClipVerts[ vertCount-1 ]; for ( j = 0; j < vertCount; j++ ) { p = &pDecalClipVerts[ j ]; if ( Clipper::Inside( p ) ) { if ( Clipper::Inside( s ) ) { *out = *p; outCount++; out++; } else { Intersect( clip, s, p, out ); out++; outCount++;
*out = *p; outCount++; out++; } } else { if ( Clipper::Inside( s ) ) { Intersect( clip, p, s, out ); out++; outCount++; } } s = p; } return outCount; }
const float DECAL_CLIP_EPSILON = 0.01f;
CDecalVert* R_DoDecalSHClip( CDecalVert *pInVerts, CDecalVert *pOutVerts, decal_t *pDecal, int nStartVerts, const Vector &vecNormal ) { if ( pOutVerts == NULL ) pOutVerts = &g_DecalClipVerts[0];
CPlane_Top top; CPlane_Left left; CPlane_Right right; CPlane_Bottom bottom;
// Clip the polygon to the decal texture space
int outCount = SHClip( pInVerts, nStartVerts, &g_DecalClipVerts2[0], top ); outCount = SHClip( &g_DecalClipVerts2[0], outCount, &g_DecalClipVerts[0], left ); outCount = SHClip( &g_DecalClipVerts[0], outCount, &g_DecalClipVerts2[0], right ); outCount = SHClip( &g_DecalClipVerts2[0], outCount, pOutVerts, bottom );
pDecal->clippedVertCount = outCount;
if ( !outCount ) return NULL;
// FIXME: This is a brutally hack workaround for the fact that we get massive decal flicker
// when looking at a decal at a glancing angle while standing right next to it.
for ( int i = 0; i < outCount; ++i ) { VectorMA( pOutVerts[i].m_vPos, OVERLAY_AVOID_FLICKER_NORMAL_OFFSET, vecNormal, pOutVerts[i].m_vPos ); } if ( outCount && pDecal->material->InMaterialPage() ) { float offset[2], scale[2]; pDecal->material->GetMaterialOffset( offset ); pDecal->material->GetMaterialScale( scale ); for ( int i = 0; i < outCount; ++i ) { pOutVerts[i].m_ctCoords.x = offset[0] + (pOutVerts[i].m_ctCoords.x * scale[0]); pOutVerts[i].m_ctCoords.y = offset[1] + (pOutVerts[i].m_ctCoords.y * scale[1]); } }
return pOutVerts; }
// Build the initial list of vertices from the surface verts into the global array, 'verts'.
void R_SetupDecalVertsForMSurface( decal_t * RESTRICT pDecal, SurfaceHandle_t surfID, Vector * RESTRICT pTextureSpaceBasis, CDecalVert * RESTRICT pVerts ) { unsigned short * RESTRICT pIndices = &host_state.worldbrush->vertindices[MSurf_FirstVertIndex( surfID )]; int count = MSurf_VertCount( surfID ); float uOffset = 0.5f - pDecal->dx; float vOffset = 0.5f - pDecal->dy;
for ( int j = 0; j < count; j++ ) { int vertIndex = pIndices[j]; pVerts[j].m_vPos = host_state.worldbrush->vertexes[vertIndex].position; // Copy model space coordinates
// garymcthack - what about m_ParentTexCoords?
pVerts[j].m_ctCoords.x = DotProduct( pVerts[j].m_vPos, pTextureSpaceBasis[0] ) + uOffset; pVerts[j].m_ctCoords.y = DotProduct( pVerts[j].m_vPos, pTextureSpaceBasis[1] ) + vOffset; pVerts[j].m_cLMCoords.Init(); } }
//-----------------------------------------------------------------------------
// compute the decal basis based on surface normal, and preferred saxis
//-----------------------------------------------------------------------------
#define SIN_45_DEGREES ( 0.70710678118654752440084436210485f )
void R_DecalComputeBasis( Vector const& surfaceNormal, Vector const* pSAxis, Vector* textureSpaceBasis ) { // s, t, textureSpaceNormal (T cross S = textureSpaceNormal(N))
// N
// \
// \
// \
// |---->S
// |
// |
// |T
// S = textureSpaceBasis[0]
// T = textureSpaceBasis[1]
// N = textureSpaceBasis[2]
// Get the surface normal.
VectorCopy( surfaceNormal, textureSpaceBasis[2] );
if (pSAxis) { // T = S cross N
CrossProduct( *pSAxis, textureSpaceBasis[2], textureSpaceBasis[1] );
// Name sure they aren't parallel or antiparallel
// In that case, fall back to the normal algorithm.
if ( DotProduct( textureSpaceBasis[1], textureSpaceBasis[1] ) > 1e-6 ) { // S = N cross T
CrossProduct( textureSpaceBasis[2], textureSpaceBasis[1], textureSpaceBasis[0] );
VectorNormalizeFast( textureSpaceBasis[0] ); VectorNormalizeFast( textureSpaceBasis[1] ); return; }
// Fall through to the standard algorithm for parallel or antiparallel
}
// floor/ceiling?
if( fabs( surfaceNormal[2] ) > SIN_45_DEGREES ) { textureSpaceBasis[0][0] = 1.0f; textureSpaceBasis[0][1] = 0.0f; textureSpaceBasis[0][2] = 0.0f;
// T = S cross N
CrossProduct( textureSpaceBasis[0], textureSpaceBasis[2], textureSpaceBasis[1] );
// S = N cross T
CrossProduct( textureSpaceBasis[2], textureSpaceBasis[1], textureSpaceBasis[0] ); } // wall
else { textureSpaceBasis[1][0] = 0.0f; textureSpaceBasis[1][1] = 0.0f; textureSpaceBasis[1][2] = -1.0f;
// S = N cross T
CrossProduct( textureSpaceBasis[2], textureSpaceBasis[1], textureSpaceBasis[0] ); // T = S cross N
CrossProduct( textureSpaceBasis[0], textureSpaceBasis[2], textureSpaceBasis[1] ); }
VectorNormalizeFast( textureSpaceBasis[0] ); VectorNormalizeFast( textureSpaceBasis[1] ); }
#define MAX_PLAYERSPRAY_SIZE 64
void R_SetupDecalTextureSpaceBasis( decal_t *pDecal, Vector &vSurfNormal, IMaterial *pMaterial, Vector textureSpaceBasis[3], float decalWorldScale[2] ) { // Compute the non-scaled decal basis
R_DecalComputeBasis( vSurfNormal, (pDecal->flags & FDECAL_USESAXIS) ? &pDecal->saxis : 0, textureSpaceBasis );
// world width of decal = ptexture->width / pDecal->scale
// world height of decal = ptexture->height / pDecal->scale
// scale is inverse, scales world space to decal u/v space [0,1]
// OPTIMIZE: Get rid of these divides
int nWidth = MAX( pMaterial->GetMappingWidth(), 1 ); int nHeight = MAX( pMaterial->GetMappingHeight(), 1 ); decalWorldScale[0] = pDecal->scale / nWidth; decalWorldScale[1] = pDecal->scale / nHeight;
if ( pDecal->flags & FDECAL_PLAYERSPRAY ) { int nWidthScale = nWidth / MAX_PLAYERSPRAY_SIZE; int nHeightScale = nHeight / MAX_PLAYERSPRAY_SIZE; float flScale = static_cast<float>( MAX( nWidthScale, nHeightScale ) ); if ( flScale > 1.0f ) { decalWorldScale[0] *= flScale; decalWorldScale[1] *= flScale; } }
VectorScale( textureSpaceBasis[0], decalWorldScale[0], textureSpaceBasis[0] ); VectorScale( textureSpaceBasis[1], decalWorldScale[1], textureSpaceBasis[1] ); }
// Figure out where the decal maps onto the surface.
void R_SetupDecalClip( CDecalVert* &pOutVerts, decal_t *pDecal, Vector &vSurfNormal, IMaterial *pMaterial, Vector textureSpaceBasis[3], float decalWorldScale[2] ) { // if ( pOutVerts == NULL )
// pOutVerts = &g_DecalClipVerts[0];
R_SetupDecalTextureSpaceBasis( pDecal, vSurfNormal, pMaterial, textureSpaceBasis, decalWorldScale );
// Generate texture coordinates for each vertex in decal s,t space
// probably should pre-generate this, store it and use it for decal-decal collisions
// as in R_DecalsIntersect()
pDecal->dx = DotProduct( pDecal->position, textureSpaceBasis[0] ); pDecal->dy = DotProduct( pDecal->position, textureSpaceBasis[1] ); }
//-----------------------------------------------------------------------------
// Generate clipped vertex list for decal pdecal projected onto polygon psurf
//-----------------------------------------------------------------------------
CDecalVert* R_DecalVertsClip( CDecalVert *pOutVerts, decal_t *pDecal, SurfaceHandle_t surfID, IMaterial *pMaterial ) { float decalWorldScale[2]; Vector textureSpaceBasis[3];
// Figure out where the decal maps onto the surface.
R_SetupDecalClip( pOutVerts, pDecal, MSurf_Plane( surfID ).normal, pMaterial, textureSpaceBasis, decalWorldScale );
// Build the initial list of vertices from the surface verts.
R_SetupDecalVertsForMSurface( pDecal, surfID, textureSpaceBasis, g_DecalClipVerts );
return R_DoDecalSHClip( g_DecalClipVerts, pOutVerts, pDecal, MSurf_VertCount( surfID ), MSurf_Plane( surfID ).normal ); }
|