|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "render_pch.h"
#include "client.h"
#include "bitmap/imageformat.h"
#include "bitmap/tgawriter.h"
#include <float.h>
#include "collisionutils.h"
#include "cl_main.h"
#include "tier0/vprof.h"
#include "debugoverlay.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Forward declarations
//-----------------------------------------------------------------------------
extern ConVar r_avglight; extern int r_surfacevisframe; extern ConVar r_unloadlightmaps; extern ConVar r_keepstyledlightmapsonly; extern bool g_bHunkAllocLightmaps;
static model_t* s_pLightVecModel = 0;
ConVar r_visualizetraces( "r_visualizetraces", "0", FCVAR_CHEAT ); ConVar r_visualizelighttraces( "r_visualizelighttraces", "0", FCVAR_CHEAT ); ConVar r_visualizelighttracesshowfulltrace( "r_visualizelighttracesshowfulltrace", "0", FCVAR_CHEAT );
//-----------------------------------------------------------------------------
// State associated with R_LightVec
//-----------------------------------------------------------------------------
struct LightVecState_t { LightVecState_t() { } Ray_t m_Ray; float m_HitFrac; float* m_pTextureS; float* m_pTextureT; float* m_pLightmapS; float* m_pLightmapT; SurfaceHandle_t m_nSkySurfID; bool m_bUseLightStyles; CUtlVector<IDispInfo *> m_LightTestDisps; };
//-----------------------------------------------------------------------------
// Globals associated with dynamic lighting
//-----------------------------------------------------------------------------
int r_dlightchanged; int r_dlightactive;
//-----------------------------------------------------------------------------
// Displacements to test against for R_LightVec
//-----------------------------------------------------------------------------
/*
================== R_AnimateLight ================== */ void R_AnimateLight (void) { INetworkStringTable *table = GetBaseLocalClient().m_pLightStyleTable;
if ( !table ) return;
// light animations
// 'm' is normal light, 'a' is no light, 'z' is double bright
int i = (int)(GetBaseLocalClient().GetTime()*10);
for (int j=0 ; j<MAX_LIGHTSTYLES ; j++) { int length; const char * lightstyle = (const char*) table->GetStringUserData( j, &length ); length--; if (!lightstyle || !lightstyle[0]) { d_lightstylevalue[j] = 256; d_lightstylenumframes[j] = 0; continue; } d_lightstylenumframes[j] = length; int k = i % length; k = lightstyle[k] - 'a'; k = k*22; if (d_lightstylevalue[j] != k) { d_lightstylevalue[j] = k; d_lightstyleframe[j] = r_framecount; } } }
/*
=============================================================================
DYNAMIC LIGHTS
============================================================================= */
// Returns true if the surface has the specified dlight already set on it for this frame.
inline bool R_IsDLightAlreadyMarked( msurfacelighting_t *pLighting, int bit ) { return (pLighting->m_nDLightFrame == r_framecount) && (pLighting->m_fDLightBits & bit); }
// Mark the surface as changed by the specified dlight (so its texture gets updated when
// it comes time to render).
inline void R_MarkSurfaceDLight( SurfaceHandle_t surfID, msurfacelighting_t *pLighting, int bit) { pLighting->m_nDLightFrame = r_framecount; pLighting->m_fDLightBits |= bit; MSurf_Flags( surfID ) |= SURFDRAW_HASDLIGHT; }
int R_TryLightMarkSurface( dlight_t *light, msurfacelighting_t *pLighting, SurfaceHandle_t surfID, int bit ) { // Make sure this light actually intersects the surface cache of the surfaces it hits
mtexinfo_t *tex;
// FIXME: No worky for brush models
// Find the perpendicular distance to the surface we're lighting
// NOTE: Allow some stuff that's slightly behind it because view models can get behind walls
// FIXME: We should figure out a better way to deal with view models
float perpDistSq = DotProduct (light->origin, MSurf_Plane( surfID ).normal) - MSurf_Plane( surfID ).dist; if (perpDistSq < DLIGHT_BEHIND_PLANE_DIST) return 0;
perpDistSq *= perpDistSq;
float flInPlaneRadiusSq = light->GetRadiusSquared() - perpDistSq; if (flInPlaneRadiusSq <= 0) return 0;
tex = MSurf_TexInfo( surfID );
Vector2D mins, maxs; mins.Init( pLighting->m_LightmapMins[0], pLighting->m_LightmapMins[1] ); maxs.Init( mins.x + pLighting->m_LightmapExtents[0], mins.y + pLighting->m_LightmapExtents[1] );
// Project light center into texture coordinates
Vector2D vecCircleCenter; vecCircleCenter.x = DotProduct (light->origin, tex->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D()) + tex->lightmapVecsLuxelsPerWorldUnits[0][3]; vecCircleCenter.y = DotProduct (light->origin, tex->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D()) + tex->lightmapVecsLuxelsPerWorldUnits[1][3];
// convert from world space to luxel space and convert to int
float flInPlaneLuxelRadius = sqrtf( flInPlaneRadiusSq * tex->luxelsPerWorldUnit * tex->luxelsPerWorldUnit );
// Does the circle intersect the square?
if ( !IsCircleIntersectingRectangle( mins, maxs, vecCircleCenter, flInPlaneLuxelRadius ) ) return 0;
// Ok, mark the surface as using this light.
R_MarkSurfaceDLight( surfID, pLighting, bit); return 1; }
int R_MarkLightsLeaf( dlight_t *light, int bit, mleaf_t *pLeaf ) { int countMarked = 0; for ( int i = 0; i < pLeaf->dispCount; i++ ) { IDispInfo *pDispInfo = MLeaf_Disaplcement( pLeaf, i );
SurfaceHandle_t parentSurfID = pDispInfo->GetParent(); if ( parentSurfID ) { // Don't redo all this work if we already hit this surface and decided it's lit by this light.
msurfacelighting_t *pLighting = SurfaceLighting( parentSurfID ); if( !R_IsDLightAlreadyMarked( pLighting, bit) ) { // Do a different test for displacement surfaces.
Vector bmin, bmax; MSurf_DispInfo( parentSurfID )->GetBoundingBox( bmin, bmax ); if ( IsBoxIntersectingSphere(bmin, bmax, light->origin, light->GetRadius()) ) { R_MarkSurfaceDLight( parentSurfID, pLighting, bit ); countMarked++; } } } }
SurfaceHandle_t *pHandle = &host_state.worldbrush->marksurfaces[pLeaf->firstmarksurface]; for ( int i = 0; i < pLeaf->nummarksurfaces; i++ ) { SurfaceHandle_t surfID = pHandle[i]; ASSERT_SURF_VALID( surfID ); // only process leaf surfaces
if ( MSurf_Flags( surfID ) & SURFDRAW_NODE ) continue;
// Don't redo all this work if we already hit this surface and decided it's lit by this light.
msurfacelighting_t *pLighting = SurfaceLighting( surfID ); if(R_IsDLightAlreadyMarked(pLighting, bit)) continue;
float dist = DotProduct( light->origin, MSurf_Plane( surfID ).normal) - MSurf_Plane( surfID ).dist; if ( dist > light->GetRadius() || dist < -light->GetRadius() ) continue;
countMarked += R_TryLightMarkSurface( light, pLighting, surfID, bit ); } return countMarked; }
/*
============= R_MarkLights ============= */ int R_MarkLights (dlight_t *light, int bit, mnode_t *node) { cplane_t *splitplane; float dist; int i; if (node->contents >= 0) { // This is a leaf, so check displacement surfaces and leaf faces
return R_MarkLightsLeaf( light, bit, (mleaf_t*)node ); } splitplane = node->plane; dist = DotProduct (light->origin, splitplane->normal) - splitplane->dist; if (dist > light->GetRadius()) { return R_MarkLights (light, bit, node->children[0]); } if (dist < -light->GetRadius()) { return R_MarkLights (light, bit, node->children[1]); } // mark the polygons
int countMarked = 0; SurfaceHandle_t surfID = SurfaceHandleFromIndex( node->firstsurface ); for (i=0 ; i<node->numsurfaces ; i++, surfID++) { // Don't redo all this work if we already hit this surface and decided it's lit by this light.
msurfacelighting_t *pLighting = SurfaceLighting( surfID ); if(R_IsDLightAlreadyMarked( pLighting, bit)) continue;
countMarked += R_TryLightMarkSurface( light, pLighting, surfID, bit ); }
countMarked += R_MarkLights( light, bit, node->children[0] ); return countMarked + R_MarkLights( light, bit, node->children[1] ); }
void R_MarkDLightsOnSurface( mnode_t* pNode ) { if (!pNode || !g_bActiveDlights) return;
dlight_t *l = cl_dlights; for (int i=0 ; i<MAX_DLIGHTS ; i++, l++) { if (l->die < GetBaseLocalClient().GetTime() || !l->IsRadiusGreaterThanZero() ) continue; if (l->flags & DLIGHT_NO_WORLD_ILLUMINATION) continue; R_MarkLights ( l, 1<<i, pNode ); } }
/*
============= R_PushDlights ============= */ void R_PushDlights (void) { R_MarkDLightsOnSurface( host_state.worldbrush->nodes ); MarkDLightsOnStaticProps(); }
//-----------------------------------------------------------------------------
// Computes s and t coords of texture at intersection pt
//-----------------------------------------------------------------------------
static void ComputeTextureCoordsAtIntersection( mtexinfo_t* pTex, Vector const& pt, float *textureS, float *textureT ) { if( pTex->material && textureS && textureT ) { *textureS = DotProduct( pt, pTex->textureVecsTexelsPerWorldUnits[0].AsVector3D() ) + pTex->textureVecsTexelsPerWorldUnits[0][3]; *textureT = DotProduct( pt, pTex->textureVecsTexelsPerWorldUnits[1].AsVector3D() ) + pTex->textureVecsTexelsPerWorldUnits[1][3]; *textureS /= pTex->material->GetMappingWidth(); *textureT /= pTex->material->GetMappingHeight(); } }
//-----------------------------------------------------------------------------
// Computes s and t coords of texture at intersection pt
//-----------------------------------------------------------------------------
static void ComputeLightmapCoordsAtIntersection( msurfacelighting_t *pLighting, float ds, float dt, float *lightmapS, float *lightmapT ) { if( lightmapS && lightmapT ) { if( pLighting->m_LightmapExtents[0] != 0 ) *lightmapS = (ds + 0.5f) / ( float )pLighting->m_LightmapExtents[0]; else *lightmapS = 0.5f;
if( pLighting->m_LightmapExtents[1] != 0 ) *lightmapT = (dt + 0.5f) / ( float )pLighting->m_LightmapExtents[1]; else *lightmapT = 0.5f; } }
//-----------------------------------------------------------------------------
// Computes the lightmap color at a particular point
//-----------------------------------------------------------------------------
static void ComputeLightmapColorFromAverage( msurfacelighting_t *pLighting, bool bUseLightStyles, Vector& c ) { int nMaxMaps = bUseLightStyles ? MAXLIGHTMAPS : 1; for (int maps = 0 ; maps < nMaxMaps && pLighting->m_nStyles[maps] != 255 ; ++maps) { float scale = LightStyleValue( pLighting->m_nStyles[maps] );
ColorRGBExp32* pAvgColor = pLighting->AvgLightColor(maps); c[0] += TexLightToLinear( pAvgColor->r, pAvgColor->exponent ) * scale; c[1] += TexLightToLinear( pAvgColor->g, pAvgColor->exponent ) * scale; c[2] += TexLightToLinear( pAvgColor->b, pAvgColor->exponent ) * scale; } }
//-----------------------------------------------------------------------------
// Computes the lightmap color at a particular point
//-----------------------------------------------------------------------------
static void ComputeLightmapColor( SurfaceHandle_t surfID, int ds, int dt, bool bUseLightStyles, Vector& c ) { msurfacelighting_t *pLighting = SurfaceLighting( surfID );
ColorRGBExp32* pLightmap = pLighting->m_pSamples; if( !pLightmap ) { static int messagecount = 0; if ( ++messagecount < 10 ) { // Stop spamming. I heard you already!!!
ConMsg( "hit surface has no samples\n" ); } return; }
if ( !g_bHunkAllocLightmaps && r_keepstyledlightmapsonly.GetBool() ) { // lightmap data is gone, can only fallback to an apporximate
ComputeLightmapColorFromAverage( pLighting, bUseLightStyles, c ); return; }
int smax = ( pLighting->m_LightmapExtents[0] ) + 1; int tmax = ( pLighting->m_LightmapExtents[1] ) + 1; int offset = smax * tmax; if ( SurfHasBumpedLightmaps( surfID ) ) { offset *= ( NUM_BUMP_VECTS + 1 ); }
pLightmap += dt * smax + ds; int nMaxMaps = bUseLightStyles ? MAXLIGHTMAPS : 1; for (int maps = 0 ; maps < nMaxMaps && pLighting->m_nStyles[maps] != 255 ; ++maps) { float scale = LightStyleValue( pLighting->m_nStyles[maps] );
c[0] += TexLightToLinear( pLightmap->r, pLightmap->exponent ) * scale; c[1] += TexLightToLinear( pLightmap->g, pLightmap->exponent ) * scale; c[2] += TexLightToLinear( pLightmap->b, pLightmap->exponent ) * scale;
// Check version 32 in source safe for some debugging crap
pLightmap += offset; } }
//-----------------------------------------------------------------------------
// Tests a particular surface
//-----------------------------------------------------------------------------
static bool FASTCALL FindIntersectionAtSurface( SurfaceHandle_t surfID, float f, Vector& c, LightVecState_t& state ) { // no lightmaps on this surface? punt...
// FIXME: should be water surface?
if (MSurf_Flags( surfID ) & SURFDRAW_NOLIGHT) return false;
// Compute the actual point
Vector pt; VectorMA( state.m_Ray.m_Start, f, state.m_Ray.m_Delta, pt );
mtexinfo_t* pTex = MSurf_TexInfo( surfID ); // See where in lightmap space our intersection point is
float s, t; s = DotProduct (pt, pTex->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D()) + pTex->lightmapVecsLuxelsPerWorldUnits[0][3]; t = DotProduct (pt, pTex->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D()) + pTex->lightmapVecsLuxelsPerWorldUnits[1][3];
// Not in the bounds of our lightmap? punt...
msurfacelighting_t *pLighting = SurfaceLighting( surfID ); if( s < pLighting->m_LightmapMins[0] || t < pLighting->m_LightmapMins[1] ) return false; // assuming a square lightmap (FIXME: which ain't always the case),
// lets see if it lies in that rectangle. If not, punt...
float ds = s - pLighting->m_LightmapMins[0]; float dt = t - pLighting->m_LightmapMins[1]; if ( !pLighting->m_LightmapExtents[0] && !pLighting->m_LightmapExtents[1] ) { worldbrushdata_t *pBrushData = host_state.worldbrush;
//
float lightMaxs[2]; lightMaxs[ 0 ] = pLighting->m_LightmapMins[0]; lightMaxs[ 1 ] = pLighting->m_LightmapMins[1]; int i; for (i=0 ; i<MSurf_VertCount( surfID ); i++) { int e = pBrushData->vertindices[MSurf_FirstVertIndex( surfID )+i]; mvertex_t *v = &pBrushData->vertexes[e]; int j; for ( j=0 ; j<2 ; j++) { float sextent, textent; sextent = DotProduct (v->position, pTex->lightmapVecsLuxelsPerWorldUnits[0].AsVector3D()) + pTex->lightmapVecsLuxelsPerWorldUnits[0][3] - pLighting->m_LightmapMins[0]; textent = DotProduct (v->position, pTex->lightmapVecsLuxelsPerWorldUnits[1].AsVector3D()) + pTex->lightmapVecsLuxelsPerWorldUnits[1][3] - pLighting->m_LightmapMins[1];
if ( sextent > lightMaxs[ 0 ] ) { lightMaxs[ 0 ] = sextent; } if ( textent > lightMaxs[ 1 ] ) { lightMaxs[ 1 ] = textent; } } } if( ds > lightMaxs[0] || dt > lightMaxs[1] ) return false; } else { if( ds > pLighting->m_LightmapExtents[0] || dt > pLighting->m_LightmapExtents[1] ) return false; }
// Store off the hit distance...
state.m_HitFrac = f;
// You heard the man!
ComputeTextureCoordsAtIntersection( pTex, pt, state.m_pTextureS, state.m_pTextureT );
#ifdef USE_CONVARS
if ( r_avglight.GetInt() ) #else
if ( 1 ) #endif
{ // This is the faster path; it looks slightly different though
ComputeLightmapColorFromAverage( pLighting, state.m_bUseLightStyles, c ); } else { // Compute lightmap coords
ComputeLightmapCoordsAtIntersection( pLighting, ds, dt, state.m_pLightmapS, state.m_pLightmapT ); // Check out the value of the lightmap at the intersection point
ComputeLightmapColor( surfID, (int)ds, (int)dt, state.m_bUseLightStyles, c ); }
return true; }
//-----------------------------------------------------------------------------
// Tests a particular node
//-----------------------------------------------------------------------------
// returns a surfID
static SurfaceHandle_t FindIntersectionSurfaceAtNode( mnode_t *node, float t, Vector& c, LightVecState_t& state ) { SurfaceHandle_t surfID = SurfaceHandleFromIndex( node->firstsurface ); for (int i=0 ; i<node->numsurfaces ; ++i, ++surfID) { // Don't immediately return when we hit sky;
// we may actually hit another surface
if (MSurf_Flags( surfID ) & SURFDRAW_SKY) { state.m_nSkySurfID = surfID; continue; }
// Don't let water surfaces affect us
if (MSurf_Flags( surfID ) & SURFDRAW_WATERSURFACE) continue;
// Check this surface to see if there's an intersection
if (FindIntersectionAtSurface( surfID, t, c, state )) { return surfID; } }
return SURFACE_HANDLE_INVALID; }
//-----------------------------------------------------------------------------
// Tests a ray against displacements
//-----------------------------------------------------------------------------
// returns surfID
static SurfaceHandle_t R_LightVecDisplacementChain( LightVecState_t& state, bool bUseLightStyles, Vector& c ) { // test the ray against displacements
SurfaceHandle_t surfID = SURFACE_HANDLE_INVALID;
for ( int i = 0; i < state.m_LightTestDisps.Count(); i++ ) { float dist; Vector2D luv, tuv; IDispInfo *pDispInfo = state.m_LightTestDisps[i]; if (pDispInfo->TestRay( state.m_Ray, 0.0f, state.m_HitFrac, dist, &luv, &tuv )) { // It hit it, and at a point closer than the previously computed
// nearest intersection point
state.m_HitFrac = dist; surfID = pDispInfo->GetParent(); ComputeLightmapColor( surfID, (int)luv.x, (int)luv.y, bUseLightStyles, c );
if (state.m_pLightmapS && state.m_pLightmapT) { ComputeLightmapCoordsAtIntersection( SurfaceLighting(surfID), (int)luv.x, (int)luv.y, state.m_pLightmapS, state.m_pLightmapT ); }
if (state.m_pTextureS && state.m_pTextureT) { *state.m_pTextureS = tuv.x; *state.m_pTextureT = tuv.y; } } }
return surfID; }
//-----------------------------------------------------------------------------
// Adds displacements in a leaf to a list to be tested against
//-----------------------------------------------------------------------------
static void AddDisplacementsInLeafToTestList( mleaf_t* pLeaf, LightVecState_t& state ) { // add displacement surfaces
for ( int i = 0; i < pLeaf->dispCount; i++ ) { // NOTE: We're not using the displacement's touched method here
// because we're just using the parent surface's visframe in the
// surface add methods below
IDispInfo *pDispInfo = MLeaf_Disaplcement( pLeaf, i ); SurfaceHandle_t parentSurfID = pDispInfo->GetParent();
// already processed this frame? Then don't do it again!
if (MSurf_VisFrame( parentSurfID ) != r_surfacevisframe) { MSurf_VisFrame( parentSurfID ) = r_surfacevisframe; state.m_LightTestDisps.AddToTail( pDispInfo ); } } }
//-----------------------------------------------------------------------------
// Tests a particular leaf
//-----------------------------------------------------------------------------
// returns surfID
static SurfaceHandle_t FASTCALL FindIntersectionSurfaceAtLeaf( mleaf_t *pLeaf, float start, float end, Vector& c, LightVecState_t& state ) { Vector pt; SurfaceHandle_t closestSurfID = SURFACE_HANDLE_INVALID;
// Adds displacements in the leaf to a list of displacements to test at the end
AddDisplacementsInLeafToTestList( pLeaf, state );
// Add non-displacement surfaces
// Since there's no BSP tree here, we gotta test *all* surfaces! (blech)
SurfaceHandle_t *pHandle = &host_state.worldbrush->marksurfaces[pLeaf->firstmarksurface]; // NOTE: Skip all marknodesurfaces, only check detail/leaf faces
for ( int i = pLeaf->nummarknodesurfaces; i < pLeaf->nummarksurfaces; i++ ) { SurfaceHandle_t surfID = pHandle[i]; ASSERT_SURF_VALID( surfID );
// Don't add surfaces that have displacement; they are handled above
// In fact, don't even set the vis frame; we need it unset for translucent
// displacement code
if ( SurfaceHasDispInfo(surfID) ) continue; Assert(!(MSurf_Flags( surfID ) & SURFDRAW_NODE));
if ( MSurf_Flags( surfID ) & (SURFDRAW_NODE|SURFDRAW_NODRAW | SURFDRAW_WATERSURFACE) ) continue;
cplane_t* pPlane = &MSurf_Plane( surfID );
// Backface cull...
if (DotProduct( pPlane->normal, state.m_Ray.m_Delta ) > 0.f) continue;
float startDotN = DotProduct( state.m_Ray.m_Start, pPlane->normal ); float deltaDotN = DotProduct( state.m_Ray.m_Delta, pPlane->normal );
float front = startDotN + start * deltaDotN - pPlane->dist; float back = startDotN + end * deltaDotN - pPlane->dist; int side = front < 0.f;
// Blow it off if it doesn't split the plane...
if ( (back < 0.f) == side ) continue;
// Don't test a surface that is farther away from the closest found intersection
float frac = front / (front-back); if (frac >= state.m_HitFrac) continue;
float mid = start * (1.0f - frac) + end * frac;
// Check this surface to see if there's an intersection
if (FindIntersectionAtSurface( surfID, mid, c, state )) { closestSurfID = surfID; } }
// Return the closest surface hit
return closestSurfID; }
//-----------------------------------------------------------------------------
// LIGHT SAMPLING
//-----------------------------------------------------------------------------
// returns surfID
SurfaceHandle_t RecursiveLightPoint (mnode_t *node, float start, float end, Vector& c, LightVecState_t& state ) { // didn't hit anything
if (node->contents >= 0) { // FIXME: Should we always do this? It could get expensive...
// Check all the faces at the leaves
return FindIntersectionSurfaceAtLeaf( (mleaf_t*)node, start, end, c, state ); } // Determine which side of the node plane our points are on
// FIXME: optimize for axial
cplane_t* plane = node->plane;
float startDotN = DotProduct( state.m_Ray.m_Start, plane->normal ); float deltaDotN = DotProduct( state.m_Ray.m_Delta, plane->normal );
float front = startDotN + start * deltaDotN - plane->dist; float back = startDotN + end * deltaDotN - plane->dist; int side = front < 0; // If they're both on the same side of the plane, don't bother to split
// just check the appropriate child
SurfaceHandle_t surfID; if ( (back < 0) == side ) { surfID = RecursiveLightPoint (node->children[side], start, end, c, state); return surfID; } // calculate mid point
float frac = front / (front-back); float mid = start * (1.0f - frac) + end * frac; // go down front side
surfID = RecursiveLightPoint (node->children[side], start, mid, c, state ); if ( IS_SURF_VALID( surfID ) ) return surfID; // hit something
// check for impact on this node
surfID = FindIntersectionSurfaceAtNode( node, mid, c, state ); if ( IS_SURF_VALID( surfID ) ) return surfID;
// go down back side
surfID = RecursiveLightPoint (node->children[!side], mid, end, c, state ); return surfID; }
//-----------------------------------------------------------------------------
// Allows us to use a different model for R_LightVec
//-----------------------------------------------------------------------------
void R_LightVecUseModel( model_t* pModel ) { s_pLightVecModel = pModel; }
//-----------------------------------------------------------------------------
// returns light in range from 0 to 1.
// lightmapS/T is in [0,1] within the space of the surface.
// returns surfID
//-----------------------------------------------------------------------------
SurfaceHandle_t R_LightVec (const Vector& start, const Vector& end, bool bUseLightStyles, Vector& c, float *textureS, float *textureT, float *lightmapS, float *lightmapT ) { VPROF_INCREMENT_COUNTER( "R_LightVec", 1 );
SurfaceHandle_t retSurfID; SurfaceHandle_t dispSurfID; // We're using the vis frame here for lightvec tests
// to make sure we test each displacement only once
++r_surfacevisframe;
LightVecState_t state; state.m_HitFrac = 1.0f; state.m_Ray.Init( start, end ); state.m_pTextureS = textureS; state.m_pTextureT = textureT; state.m_pLightmapS = lightmapS; state.m_pLightmapT = lightmapT; state.m_nSkySurfID = SURFACE_HANDLE_INVALID; state.m_bUseLightStyles = bUseLightStyles;
c[0] = c[1] = c[2] = 0.0f;
model_t* model = s_pLightVecModel ? s_pLightVecModel : host_state.worldmodel; retSurfID = RecursiveLightPoint(&model->brush.pShared->nodes[model->brush.firstnode], 0.0f, 1.0f, c, state );
// While doing recursive light point, we built a list of all
// displacement surfaces which we need to test, so let's test them
dispSurfID = R_LightVecDisplacementChain( state, bUseLightStyles, c );
if( r_visualizelighttraces.GetBool() ) { if( r_visualizelighttracesshowfulltrace.GetBool() ) { CDebugOverlay::AddLineOverlay( start, end, 0, 255, 0, 255, true, -1.0f ); } else { CDebugOverlay::AddLineOverlay( start, start + ( end - start ) * state.m_HitFrac, 0, 255, 0, 255, true, -1.0f ); } }
if ( IS_SURF_VALID( dispSurfID ) ) retSurfID = dispSurfID;
// ConMsg( "R_LightVec: %f %f %f\n", c[0], c[1], c[2] );
// If we didn't hit anything else, but we hit a sky surface at
// some point along the ray cast, return the sky id.
if ( ( retSurfID == SURFACE_HANDLE_INVALID ) && ( state.m_nSkySurfID != SURFACE_HANDLE_INVALID ) ) return state.m_nSkySurfID;
return retSurfID; }
// returns light in range from 0 to 1.
colorVec R_LightPoint (Vector& p) { SurfaceHandle_t surfID; Vector end; colorVec c; Vector color; end[0] = p[0]; end[1] = p[1]; end[2] = p[2] - 2048;
surfID = R_LightVec( p, end, true, color );
if( IS_SURF_VALID( surfID ) ) { c.r = LinearToScreenGamma( color[0] ) * 255; c.g = LinearToScreenGamma( color[1] ) * 255; c.b = LinearToScreenGamma( color[2] ) * 255; c.a = 1; } else { c.r = c.g = c.b = c.a = 0; } return c; }
|