|
|
//===== Copyright 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Queued Loading of map resources. !!!!Specifically!!! designed for the map loading process.
//
// Not designed for application startup or gameplay time. Layered on top of async i/o.
// Queued loading is allowed during the map load process until full connection only,
// but can complete the remaining low priority jobs during the game render.
// The normal loading path can run in units of seconds if it does not have to do I/O,
// which is why this system runs first and gets all the data in memory unhindered
// by dependency blocking. The I/O delivery process achieves its speed by having all the I/O
// requests at once, performing the I/O, and handing the actual consumption
// of the I/O buffer to another available core/thread (via job pool) for computation work.
// The I/O (should be all unbuffered) is then only throttled by physical transfer rates.
//
// The Load process is broken into three phases. The first phase build up I/O requests.
// The second phase fulfills only the high priority I/O requests. This gets the critical
// data in memory, that has to be there for the normal load path to query, or the renderer
// to run (i.e. models and shaders). The third phase is the normal load process.
// The low priority jobs run concurrently with the normal load process. Low priority jobs
// are those that have been specially built such that the game or loading can operate unblocked
// without the actual data (i.e. d3d texture bits).
//
// Phase 1: The reslist is parsed into seperate lists based on handled extensions. Each list
// call its own loader which in turn generates its own dictionaries and I/O requests through
// "AddJob". A single reslist entry could cause a laoder to request multiple jobs. ( i.e. models )
// A loader marks its jobs as high or low priority.
// Phase 2: The I/O requests are sorted (which achieves seek offset order) and
// async i/o commences. Phase 2 does not end until all the high priority jobs
// are complete. This ensures critical data is resident.
// Phase 3: The !!!NORMAL!!! loading path can commence. The legacy loading path then
// is not expected to do I/O (it can, but that's a hole in the reslist), as all of the data
// that it queries, should be resident.
//
// Late added jobs are non-optimal (should have been in reslist), warned, but handled.
//
//===========================================================================//
#include "basefilesystem.h"
#include "tier0/vprof.h"
#include "tier0/tslist.h"
#include "tier1/utlbuffer.h"
#include "tier1/convar.h"
#include "tier1/keyvalues.h"
#include "tier1/utllinkedlist.h"
#include "tier1/utlstring.h"
#include "tier1/utlsortvector.h"
#include "tier1/utldict.h"
#include "basefilesystem.h"
#include "tier0/icommandline.h"
#include "vstdlib/jobthread.h"
#include "filesystem/IQueuedLoader.h"
#include "tier2/tier2.h"
#include "characterset.h"
#include "tier1/lzmaDecoder.h"
#if !defined( _X360 )
#include "xbox/xboxstubs.h"
#endif
#ifdef _PS3
#include "tls_ps3.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define PRIORITY_HIGH 1
#define PRIORITY_NORMAL 0
#define PRIORITY_LOW -1
// main thread has reason to block and wait for thread pool to finish jobs
#define MAIN_THREAD_YIELD_TIME 20
// discrete stages in the preload process to tick the progress bar
#define PROGRESS_START 0.10f
#define PROGRESS_GOTRESLIST 0.12f
#define PROGRESS_PARSEDRESLIST 0.15f
#define PROGRESS_CREATEDRESOURCES 0.20f
#define PROGRESS_PREPURGE 0.22f
#define PROGRESS_FILESORT 0.23f
#define PROGRESS_IO 0.25f
#define PROGRESS_END 0.999f // up to 1.0
struct FileJob_t { FileJob_t() { Q_memset( this, 0, sizeof( FileJob_t ) ); }
FileNameHandle_t m_hFilename; QueuedLoaderCallback_t m_pCallback; FSAsyncControl_t m_hAsyncControl; void *m_pContext; void *m_pContext2; void *m_pTargetData; int m_nBytesToRead; unsigned int m_nStartOffset; LoaderPriority_t m_Priority;
unsigned int m_SubmitTime; unsigned int m_FinishTime; int m_SubmitTag; int m_nActualBytesRead; LoaderError_t m_LoaderError; unsigned int m_ThreadId;
unsigned int m_bFinished : 1; unsigned int m_bFreeTargetAfterIO : 1; unsigned int m_bFileExists : 1; unsigned int m_bClaimed : 1; unsigned int m_bLateQueued : 1; unsigned int m_bAnonymousDecode : 1; };
// dummy stubbed progress interface
class CDummyProgress : public ILoaderProgress { void BeginProgress() {} void UpdateProgress( float progress, bool bForce = false ) {} void PauseNonInteractiveProgress( bool bPause ) {} void EndProgress() {} }; static CDummyProgress s_DummyProgress;
class CQueuedLoader : public CTier2AppSystem< IQueuedLoader > { typedef CTier2AppSystem< IQueuedLoader > BaseClass;
public: CQueuedLoader(); virtual ~CQueuedLoader();
// Inherited from IAppSystem
virtual InitReturnVal_t Init(); virtual void Shutdown();
// IQueuedLoader
virtual void InstallLoader( ResourcePreload_t type, IResourcePreload *pLoader ); virtual void InstallProgress( ILoaderProgress *pProgress ); // Set bOptimizeReload if you want appropriate data (such as static prop lighting)
// to persist - rather than being purged and reloaded - when going from map A to map A.
virtual bool BeginMapLoading( const char *pMapName, bool bLoadForHDR, bool bOptimizeMapReload, void (*pfnBeginMapLoadingCallback)( int nStage ) ); virtual void EndMapLoading( bool bAbort ); virtual bool AddJob( const LoaderJob_t *pLoaderJob ); virtual void AddMapResource( const char *pFilename ); virtual bool ClaimAnonymousJob( const char *pFilename, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 ); virtual bool ClaimAnonymousJob( const char *pFilename, void **pData, int *pDataSize, LoaderError_t *pError ); virtual bool IsMapLoading() const; virtual bool IsSameMapLoading() const; virtual bool IsFinished() const; virtual bool IsBatching() const; virtual int GetSpewDetail() const;
char *GetFilename( const FileNameHandle_t hFilename, char *pBuff, int nBuffSize ); FileNameHandle_t FindFilename( const char *pFilename ); void SpewInfo(); unsigned int GetStartTime();
// submit any queued jobs to the async loader, called by main or async thread to get more work
void SubmitPendingJobs();
void PurgeAll( ResourcePreload_t *pDontPurgeList = NULL, int nPurgeListSize = 0 ); #ifdef _PS3
// hack to prevent PS/3 deadlock on queued loader render mutex when quitting during loading a map
// PLEASE REMOVE THIS (AND THE MUTEX) AFTER WE SHIP
virtual uint UnlockProgressBarMutex() { uint nCount = m_nRendererMutexProgressBarUnlockCount; for( uint i = 0; i < nCount ; ++i ) { m_sRendererMutex.Unlock(); } return nCount; } virtual void LockProgressBarMutex( uint nLockCount ) { for( uint i = 0; i < nLockCount ; ++i ) { m_sRendererMutex.Lock(); } } #endif
private:
class CFileJobsLessFunc { public: int GetLayoutOrderForFilename( const char *pFilename ); bool Less( FileJob_t* const &pFileJobLHS, FileJob_t* const &pFileJobRHS, void *pCtx ); };
class CResourceNameLessFunc { public: bool Less( const FileNameHandle_t &hFilenameLHS, const FileNameHandle_t &hFilenameRHS, void *pCtx ); }; typedef CUtlSortVector< FileNameHandle_t, CResourceNameLessFunc > ResourceList_t;
ILoaderProgress * GetProgress() { return m_pProgress; };
static void BuildResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime ); static void BuildMaterialResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime );
void PurgeQueue(); void CleanQueue(); void SubmitBatchedJobsAndWait(); void ParseResourceList( CUtlBuffer &resourceList ); void GetJobRequests(); void PurgeUnreferencedResources(); void AddResourceToTable( const char *pFilename ); void GetDVDLayout();
bool m_bStarted; bool m_bActive; bool m_bBatching; bool m_bCanBatch; bool m_bLoadForHDR; bool m_bDoProgress; bool m_bSameMap; int m_nSubmitCount; unsigned int m_StartTime; unsigned int m_EndTime; char m_szMapNameToCompareSame[MAX_PATH];
CUtlFilenameSymbolTable m_Filenames; CTSList< FileJob_t* > m_PendingJobs; CTSList< FileJob_t* > m_BatchedJobs; CUtlLinkedList< FileJob_t* > m_SubmittedJobs; CUtlDict< FileJob_t*, int > m_AnonymousJobs; CUtlSymbolTable m_AdditionalResources;
CUtlSortVector< FileNameHandle_t, CResourceNameLessFunc > m_ResourceNames[RESOURCEPRELOAD_COUNT]; CUtlSortVector< FileNameHandle_t, CResourceNameLessFunc > m_ExcludeResourceNames;
IResourcePreload *m_pLoaders[RESOURCEPRELOAD_COUNT]; float m_LoaderTimes[RESOURCEPRELOAD_COUNT]; ILoaderProgress *m_pProgress; CThreadFastMutex m_Mutex; #if defined( _PS3 )
// PLEASE REMOVE THIS MUTEX AFTER WE SHIP, IT IS NOT NEEDED. But leaving it here because it's too close to ship date.
static CThreadFastMutex m_sRendererMutex; // this is the counter of locks we lock the renderer mutex for the ProgressBar call
// it's used to unlock the mutex when going into Host_Error state to prevent deadlocks (it's a hack)
static CInterlockedInt m_nRendererMutexProgressBarUnlockCount; #endif
};
#if defined( _PS3 )
CThreadFastMutex CQueuedLoader::m_sRendererMutex; CInterlockedInt CQueuedLoader::m_nRendererMutexProgressBarUnlockCount; class CInterlockedIntAutoIncrementer { protected: CInterlockedInt &m_refInt; public: CInterlockedIntAutoIncrementer(CInterlockedInt &refInt): m_refInt( refInt ){ m_refInt ++; } ~CInterlockedIntAutoIncrementer(){ m_refInt --;} }; #endif
static CQueuedLoader g_QueuedLoader; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CQueuedLoader, IQueuedLoader, QUEUEDLOADER_INTERFACE_VERSION, g_QueuedLoader );
class CResourcePreloadAnonymous : public IResourcePreload { virtual void PrepareForCreate( bool bSameMap ) {}
virtual bool CreateResource( const char *pName ) { // create an anonymous job to get the data in memory, claimed during load, or auto-freed
LoaderJob_t loaderJob; loaderJob.m_pFilename = pName; loaderJob.m_pPathID = "GAME"; loaderJob.m_Priority = LOADERPRIORITY_DURINGPRELOAD; g_QueuedLoader.AddJob( &loaderJob ); return true; }
virtual void PurgeUnreferencedResources() {} virtual void OnEndMapLoading( bool bAbort ) {} virtual void PurgeAll() {} #if defined( _PS3 )
virtual bool RequiresRendererLock() { return true; } // do we know that anonymous resource loads won't hit the renderer?
#endif // _PS3
}; static CResourcePreloadAnonymous s_ResourcePreloadAnonymous;
const char *g_ResourceLoaderNames[RESOURCEPRELOAD_COUNT] = { "???", // RESOURCEPRELOAD_UNKNOWN
"Sounds", // RESOURCEPRELOAD_SOUND
"Materials", // RESOURCEPRELOAD_MATERIAL
"Models", // RESOURCEPRELOAD_MODEL
"Cubemaps", // RESOURCEPRELOAD_CUBEMAP
"PropLighting", // RESOURCEPRELOAD_STATICPROPLIGHTING
"Anonymous", // RESOURCEPRELOAD_ANONYMOUS
};
static CInterlockedInt g_nActiveJobs; static CInterlockedInt g_nQueuedJobs; static CInterlockedInt g_nHighPriorityJobs; // tracks jobs that must finish during preload
static CInterlockedInt g_nJobsToFinishBeforePlay; // tracks jobs that must finish before gameplay
static CInterlockedInt g_nIOMemory; // tracks I/O data from async delivery until consumed
static CInterlockedInt g_nAnonymousIOMemory; // tracks anonymous I/O data from async delivery until consumed
static CInterlockedInt g_SuspendIO; // used to throttle the I/O
static int g_nIOMemoryPeak; static int g_nAnonymousIOMemoryPeak; static int g_nHighIOSuspensionMark; static int g_nLowIOSuspensionMark; static CInterlockedInt g_nForceSuspendIO; static CUtlVector< CUtlString > g_DVDLayout;
ConVar loader_spew_info( "loader_spew_info", "0", 0, "0:Off, 1:Timing, 2:Completions, 3:Late Completions, 4:Creations/Purges, -1:All" ); ConVar loader_throttle_io( "loader_throttle_io", "1" );
// debugging only state to defer all non high priority jobs until the very end of loading
// essentially making the EndMapLoading() do a bunch of work to stress the loading bar
ConVar loader_defer_non_critical_jobs( "loader_defer_non_critical_jobs", "0" );
CON_COMMAND( loader_dump_table, "" ) { g_QueuedLoader.SpewInfo(); }
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CQueuedLoader::CQueuedLoader() { m_bStarted = false; m_bActive = false; m_bSameMap = false; m_szMapNameToCompareSame[0] = '\0';
m_pProgress = &s_DummyProgress; V_memset( m_pLoaders, 0, sizeof( m_pLoaders ) );
// set resource dictionaries sort context
m_ExcludeResourceNames.SetLessContext( (void *)RESOURCEPRELOAD_UNKNOWN ); for ( intp i = 0; i < RESOURCEPRELOAD_COUNT; i++ ) { m_ResourceNames[i].SetLessContext( (void *)i ); }
InstallLoader( RESOURCEPRELOAD_ANONYMOUS, &s_ResourcePreloadAnonymous ); }
//-----------------------------------------------------------------------------
// Destructor
//-----------------------------------------------------------------------------
CQueuedLoader::~CQueuedLoader() { }
//-----------------------------------------------------------------------------
// Computation job to build out objects
//-----------------------------------------------------------------------------
void CQueuedLoader::BuildResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime ) { float t0 = Plat_FloatTime();
Assert( pLoader ); if ( pLoader ) { pLoader->PrepareForCreate( g_QueuedLoader.IsSameMapLoading() );
pList->RedoSort();
for ( int i = 0; i < pList->Count(); i++ ) { char szFilename[MAX_PATH]; g_QueuedLoader.GetFilename( pList->Element( i ), szFilename, sizeof( szFilename ) ); if ( szFilename[0] ) { if ( g_QueuedLoader.GetSpewDetail() & LOADER_DETAIL_CREATIONS ) { Msg( "QueuedLoader: Creating: %s\n", szFilename ); }
bool bResourceCreated = false; #if defined( _PS3 )
// PSGL does not allow us to update its memory from two threads simultaneously,
// even for unrelated textures, so we need to throttle these down to one at a time
if( pLoader->RequiresRendererLock() ) { AUTO_LOCK_FM( m_sRendererMutex ); bResourceCreated = pLoader->CreateResource( szFilename ); } else #endif
{ bResourceCreated = pLoader->CreateResource( szFilename ); }
if ( !bResourceCreated ) { Warning( "QueuedLoader: Failed to create resource %s\n", szFilename ); } } } }
// finished with list
pList->Purge();
*pBuildTime = Plat_FloatTime() - t0; }
//-----------------------------------------------------------------------------
// Computation job to build out material objects
//-----------------------------------------------------------------------------
void CQueuedLoader::BuildMaterialResources( IResourcePreload *pLoader, ResourceList_t *pList, float *pBuildTime ) { float t0 = Plat_FloatTime();
char szLastFilename[MAX_PATH]; szLastFilename[0] = '\0';
// ensure cubemaps are first
pList->RedoSort();
// run a clean operation to cull the non-patched env_cubemap materials, which are not built directly
for ( int i = 0; i < pList->Count(); i++ ) { char szFilename[MAX_PATH]; char *pFilename = g_QueuedLoader.GetFilename( pList->Element( i ), szFilename, sizeof( szFilename ) ); if ( !V_stristr( pFilename, "maps\\" ) ) { // list is sorted, first non-cubemap marks end of relevant list
break; }
// skip past maps/mapname/
pFilename += 5; pFilename = strchr( pFilename, '\\' ) + 1; // back up until end of material name is found, need to strip off _%d_%d_%d.vmt
char *pEndFilename = V_stristr( pFilename, ".vmt" ); if ( !pEndFilename ) { pEndFilename = pFilename + strlen( pFilename ); } int numUnderscores = 3; while ( pEndFilename != pFilename && numUnderscores > 0 ) { pEndFilename--; if ( pEndFilename[0] == '_' ) { numUnderscores--; } } if ( numUnderscores == 0 ) { *pEndFilename = '\0'; if ( !V_strcmp( szLastFilename, pFilename ) ) { // same cubemap material base already processed, skip it
continue; } V_strncpy( szLastFilename, pFilename, sizeof( szLastFilename ) );
strcat( pFilename, ".vmt" ); FileNameHandle_t hFilename = g_QueuedLoader.FindFilename( pFilename ); if ( hFilename ) { pList->Remove( hFilename ); } } }
// process clean list
BuildResources( pLoader, pList, pBuildTime );
*pBuildTime = Plat_FloatTime() - t0; }
//-----------------------------------------------------------------------------
// Called by multiple worker threads. Throttle the I/O to ensure too many
// buffers don't flood the work queue. Anonymous I/O is allowed to grow unbounded.
//-----------------------------------------------------------------------------
void AdjustAsyncIOSpeed() { // throttle back the I/O to keep the pending buffers from exhausting memory
if ( g_SuspendIO == 0 ) { if ( ( g_nForceSuspendIO == 1 || g_nIOMemory >= g_nHighIOSuspensionMark ) && g_nActiveJobs != 0 ) { // protect against another worker thread
if ( g_SuspendIO.AssignIf( 0, 1 ) ) { if ( g_QueuedLoader.GetSpewDetail() ) { Msg( "QueuedLoader: Suspending I/O at %.2f MB\n", (float)g_nIOMemory / ( 1024.0f * 1024.0f ) ); } g_pFullFileSystem->AsyncSuspend(); } } } else if ( g_SuspendIO == 1 ) { if ( g_nForceSuspendIO != 1 && g_nIOMemory <= g_nLowIOSuspensionMark ) { // protect against another worker thread
if ( g_SuspendIO.AssignIf( 1, 0 ) ) { if ( g_QueuedLoader.GetSpewDetail() ) { Msg( "QueuedLoader: Resuming I/O at %.2f MB\n", (float)g_nIOMemory / ( 1024.0f * 1024.0f ) ); } g_pFullFileSystem->AsyncResume(); } } } }
//-----------------------------------------------------------------------------
// Computation job to do work after IO, runs callback
//-----------------------------------------------------------------------------
void IOComputationJob( FileJob_t *pFileJob, void *pData, int nSize, LoaderError_t loaderError ) { int spewDetail = g_QueuedLoader.GetSpewDetail(); if ( spewDetail & ( LOADER_DETAIL_COMPLETIONS|LOADER_DETAIL_LATECOMPLETIONS ) ) { const char *pLateString = ""; if ( !g_QueuedLoader.IsMapLoading() ) { // completed outside of load process
pLateString = "(Late) "; } if ( ( spewDetail & LOADER_DETAIL_COMPLETIONS ) || ( ( spewDetail & LOADER_DETAIL_LATECOMPLETIONS ) && pLateString[0] ) ) { char szFilename[MAX_PATH]; g_QueuedLoader.GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ); Msg( "QueuedLoader: Computation:%8.8llx, Size:%7d %s%s\n", (unsigned long long)ThreadGetCurrentId(), nSize, pLateString, szFilename ); } }
if ( loaderError != LOADERERROR_NONE && pFileJob->m_bFileExists ) { char szFilename[MAX_PATH]; g_QueuedLoader.GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ); Warning( "QueuedLoader:: I/O Error on %s\n", szFilename ); }
pFileJob->m_nActualBytesRead = nSize; pFileJob->m_LoaderError = loaderError;
if ( !pFileJob->m_pCallback ) { // absent callback means resource loader want this system to delay buffer until ready for it
if ( !pFileJob->m_pTargetData ) { if ( pFileJob->m_bAnonymousDecode ) { // caller want us to decode
// the actual inflated memory is not tracked, it should be
CLZMA lzma; if ( lzma.IsCompressed( (unsigned char *)pData ) ) { int originalSize = lzma.GetActualSize( (unsigned char *)pData ); unsigned char *pDecodedData = (unsigned char *)g_pFullFileSystem->AllocOptimalReadBuffer( FILESYSTEM_INVALID_HANDLE, originalSize, 0 ); lzma.Uncompress( (unsigned char *)pData, pDecodedData );
// release the i/o buffer
g_pFullFileSystem->FreeOptimalReadBuffer( pData ); g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead;
// now own the decoded data as if it was the i/o buffer
pData = pDecodedData; pFileJob->m_nActualBytesRead = originalSize; g_nAnonymousIOMemory += originalSize; } }
// track it for later, unclaimed buffers will get freed
pFileJob->m_pTargetData = pData; } } else { // regardless of error, call job callback so caller can do cleanup of their context
pFileJob->m_pCallback( pFileJob->m_pContext, pFileJob->m_pContext2, pData, nSize, loaderError ); if ( pFileJob->m_bFreeTargetAfterIO && pData ) { // free our data only
g_pFullFileSystem->FreeOptimalReadBuffer( pData ); }
// memory has been consumed
g_nIOMemory -= nSize; }
// mark as completed
pFileJob->m_bFinished = true; pFileJob->m_FinishTime = Plat_MSTime(); pFileJob->m_ThreadId = ThreadGetCurrentId();
if ( pFileJob->m_Priority == LOADERPRIORITY_DURINGPRELOAD ) { g_nHighPriorityJobs--; } else if ( pFileJob->m_Priority == LOADERPRIORITY_BEFOREPLAY ) { g_nJobsToFinishBeforePlay--; }
g_nQueuedJobs--;
if ( g_nQueuedJobs == 0 && ( spewDetail & LOADER_DETAIL_TIMING ) ) { Warning( "QueuedLoader: Finished I/O of all queued jobs! at: %u\n", Plat_MSTime() - g_QueuedLoader.GetStartTime() ); }
if ( ( g_nForceSuspendIO == -1 ) && g_nJobsToFinishBeforePlay && ( g_nHighPriorityJobs == 0 ) ) { // can only suspend when there are no high priority jobs
// these cannot be delayed, they must finish unhindered, otherwise we would spin lock
if ( g_nForceSuspendIO.AssignIf( -1, 1 ) ) { Warning( "QueuedLoader: Force Suspending I/O at: %u\n", Plat_MSTime() - g_QueuedLoader.GetStartTime() ); } }
AdjustAsyncIOSpeed(); }
//-----------------------------------------------------------------------------
// Computation job to do work after anonymous job was asynchronously claimed, runs callback.
//-----------------------------------------------------------------------------
void FinishAnonymousJob( FileJob_t *pFileJob, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 ) { // regardless of error, call job callback so caller can do cleanup of their context
pCallback( pContext, pContext2, pFileJob->m_pTargetData, pFileJob->m_nActualBytesRead, pFileJob->m_LoaderError ); if ( pFileJob->m_bFreeTargetAfterIO && pFileJob->m_pTargetData ) { // free our data only
g_pFullFileSystem->FreeOptimalReadBuffer( pFileJob->m_pTargetData ); pFileJob->m_pTargetData = NULL; }
pFileJob->m_bClaimed = true;
// memory has been consumed
g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead; }
//-----------------------------------------------------------------------------
// Callback from I/O job thread. Purposely lightweight as possible to keep i/o from stalling.
//-----------------------------------------------------------------------------
void IOAsyncCallback( const FileAsyncRequest_t &asyncRequest, int numReadBytes, FSAsyncStatus_t asyncStatus ) { FileJob_t *pFileJob = (FileJob_t *)asyncRequest.pContext;
// interpret the async error
LoaderError_t loaderError; switch ( asyncStatus ) { case FSASYNC_OK: loaderError = LOADERERROR_NONE; break; case FSASYNC_ERR_FILEOPEN: loaderError = LOADERERROR_FILEOPEN; break; default: loaderError = LOADERERROR_READING; }
// track how much i/o data is in flight, consumption will decrement
if ( !pFileJob->m_pCallback ) { // anonymous io memory is tracked seperatley
g_nAnonymousIOMemory += numReadBytes; if ( g_nAnonymousIOMemory > g_nAnonymousIOMemoryPeak ) { g_nAnonymousIOMemoryPeak = g_nAnonymousIOMemory; } } else { g_nIOMemory += numReadBytes; if ( g_nIOMemory > g_nIOMemoryPeak ) { g_nIOMemoryPeak = g_nIOMemory; } }
// have data or error, do callback as a computation job
g_pThreadPool->QueueCall( IOComputationJob, pFileJob, asyncRequest.pData, numReadBytes, loaderError )->Release(); // don't let the i/o starve, possibly get some more work from the pending queue
g_QueuedLoader.SubmitPendingJobs();
// possibly goes to zero atomically, AFTER submission
// prevents contention between main thread
--g_nActiveJobs; }
//-----------------------------------------------------------------------------
// Public method to filename dictionary
//-----------------------------------------------------------------------------
char *CQueuedLoader::GetFilename( const FileNameHandle_t hFilename, char *pBuff, int nBuffSize ) { m_Filenames.String( hFilename, pBuff, nBuffSize ); return pBuff; }
//-----------------------------------------------------------------------------
// Public method to filename dictionary
//-----------------------------------------------------------------------------
FileNameHandle_t CQueuedLoader::FindFilename( const char *pFilename ) { return m_Filenames.FindFileName( pFilename ); }
//-----------------------------------------------------------------------------
// Sort function for resource names.
//-----------------------------------------------------------------------------
bool CQueuedLoader::CResourceNameLessFunc::Less( const FileNameHandle_t &hFilenameLHS, const FileNameHandle_t &hFilenameRHS, void *pCtx ) { switch ( (intp)pCtx ) { case RESOURCEPRELOAD_MATERIAL: { // Cubemap materials are expected to be at top of list
char szNameLHS[MAX_PATH]; char szNameRHS[MAX_PATH];
const char *pNameLHS = g_QueuedLoader.GetFilename( hFilenameLHS, szNameLHS, sizeof( szNameLHS ) ); const char *pNameRHS = g_QueuedLoader.GetFilename( hFilenameRHS, szNameRHS, sizeof( szNameRHS ) );
bool bIsCubemapLHS = V_stristr( pNameLHS, "maps\\" ) != NULL; bool bIsCubemapRHS = V_stristr( pNameRHS, "maps\\" ) != NULL; if ( bIsCubemapLHS != bIsCubemapRHS ) { return ( bIsCubemapLHS == true && bIsCubemapRHS == false ); } return ( V_stricmp( pNameLHS, pNameRHS ) < 0 ); } break;
default: // sort not really needed, just use numeric handles
return ( hFilenameLHS < hFilenameRHS ); } }
//-----------------------------------------------------------------------------
// The layout order of zips is assumed to match the search path order. The zip
// at the head of the search path should be the closest to the outer (faster)
// edge progressing to the tail of the search path whose zips should be
// towards the inner (slower) edge. The validity and necessity of this is really
// specific to the actual game's data distribution in the zips. For now,
// good enough.
//-----------------------------------------------------------------------------
void CQueuedLoader::GetDVDLayout() { g_DVDLayout.Purge();
char searchPaths[32*MAX_PATH]; g_pFullFileSystem->GetSearchPath( NULL, true, searchPaths, sizeof( searchPaths ) );
for ( char *pPath = strtok( searchPaths, ";" ); pPath; pPath = strtok( NULL, ";" ) ) { if ( V_stristr( pPath, ".zip" ) || V_stristr( pPath, ".bsp" ) ) { // only want zip paths
g_DVDLayout.AddToTail( pPath ); } } }
//-----------------------------------------------------------------------------
// Resolve filenames to expected disc layout order. Files within the same zip will
// resolve to the same numeric order and be alpha sub sorted, same as zip constructed.
// Files that are from different zips should sort to match the relative placement
// of the zips on the disc image.
//-----------------------------------------------------------------------------
int CQueuedLoader::CFileJobsLessFunc::GetLayoutOrderForFilename( const char *pFilename ) { for ( int i = 0; i < g_DVDLayout.Count(); i++ ) { if ( V_stristr( pFilename, g_DVDLayout[i].String() ) ) { return i; } }
return INT_MAX; }
//-----------------------------------------------------------------------------
bool CQueuedLoader::CFileJobsLessFunc::Less( FileJob_t* const &pFileJobLHS, FileJob_t* const &pFileJobRHS, void *pCtx ) { static int nCalls = 0;
nCalls++; // 60,000 times loading background map for l4d.
if ( ( nCalls % 200 ) == 0 ) { static float flLastUpdateTime = -1.0f; float flTime = Plat_FloatTime();
if ( flTime - flLastUpdateTime > .06f ) { flLastUpdateTime = flTime; float t = ( ( float )nCalls ) * ( 1.0f / 1000000.0f ); g_QueuedLoader.GetProgress()->UpdateProgress( PROGRESS_FILESORT + t * ( PROGRESS_IO - PROGRESS_FILESORT ) ); } }
if ( pFileJobLHS->m_Priority != pFileJobRHS->m_Priority ) { // higher priorities sort to top
return ( pFileJobLHS->m_Priority > pFileJobRHS->m_Priority ); }
if ( pFileJobLHS->m_hFilename == pFileJobRHS->m_hFilename ) { // same file (zip), sort by offset
return pFileJobLHS->m_nStartOffset < pFileJobRHS->m_nStartOffset; }
char szFilenameLHS[MAX_PATH]; char szFilenameRHS[MAX_PATH]; g_QueuedLoader.GetFilename( pFileJobLHS->m_hFilename, szFilenameLHS, sizeof( szFilenameLHS ) ); g_QueuedLoader.GetFilename( pFileJobRHS->m_hFilename, szFilenameRHS, sizeof( szFilenameRHS ) );
// resolve filename to match disk layout of zips
int layoutLHS = GetLayoutOrderForFilename( szFilenameLHS ); int layoutRHS = GetLayoutOrderForFilename( szFilenameRHS ); if ( layoutLHS != layoutRHS ) { return layoutLHS < layoutRHS; }
return CaselessStringLessThan( szFilenameLHS, szFilenameRHS ); }
//-----------------------------------------------------------------------------
// Dump the queue contents to the file system.
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitPendingJobs() { // prevents contention between I/O and main thread attempting to submit
if ( ThreadInMainThread() && g_nActiveJobs != 0 ) { // main thread can only kick start work if the I/O is idle
// once the I/O is kicked off, the I/O thread is responsible for continual draining
return; } else if ( !ThreadInMainThread() && g_nActiveJobs != 1 ) { // I/O thread requests more work, but will only fall through and get some when it expects to go idle
// I/O thread still has jobs and doesn't need any more yet
return; }
CTSList<FileJob_t *>::Node_t *pNode = m_PendingJobs.Detach(); if ( !pNode ) { return; }
// used by spew to indicate submission blocks
m_nSubmitCount++;
// sort entries
CUtlSortVector< FileJob_t*, CFileJobsLessFunc > sortedFiles( 0, 128 ); while ( pNode ) { FileJob_t *pFileJob = pNode->elem;
sortedFiles.InsertNoSort( pFileJob );
CTSList<FileJob_t *>::Node_t *pNext = (CTSList<FileJob_t *>::Node_t*)pNode->Next; delete pNode; pNode = pNext; } sortedFiles.RedoSort();
FileAsyncRequest_t asyncRequest; asyncRequest.pfnCallback = IOAsyncCallback;
char szFilename[MAX_PATH]; for ( int i = 0; i<sortedFiles.Count(); i++ ) { FileJob_t *pFileJob = sortedFiles[i]; pFileJob->m_SubmitTag = m_nSubmitCount; pFileJob->m_SubmitTime = Plat_MSTime();
m_SubmittedJobs.AddToTail( pFileJob );
// build an async request
if ( pFileJob->m_Priority == LOADERPRIORITY_DURINGPRELOAD ) { // must finish during preload
asyncRequest.priority = PRIORITY_HIGH; g_nHighPriorityJobs++; } else if ( pFileJob->m_Priority == LOADERPRIORITY_BEFOREPLAY ) { // must finish before gameplay
asyncRequest.priority = PRIORITY_NORMAL; g_nJobsToFinishBeforePlay++; } else { // can finish during gameplay, normal priority
asyncRequest.priority = PRIORITY_NORMAL; } // async will allocate unless caller provided a target
// loader always takes ownership of buffer
asyncRequest.pData = pFileJob->m_pTargetData; asyncRequest.flags = pFileJob->m_pTargetData ? 0 : FSASYNC_FLAGS_ALLOCNOFREE; asyncRequest.nOffset = pFileJob->m_nStartOffset; asyncRequest.nBytes = pFileJob->m_nBytesToRead; asyncRequest.pszFilename = GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ); asyncRequest.pContext = (void *)pFileJob;
while( g_SuspendIO ) { ThreadSleep( MAIN_THREAD_YIELD_TIME ); }
if ( pFileJob->m_bFileExists ) { // start the valid async request
g_nActiveJobs++; g_pFullFileSystem->AsyncRead( asyncRequest, &pFileJob->m_hAsyncControl ); } else { // prevent dragging the i/o system down for known failures
// still need to do callback so subsystems can do the right thing based on file absence
g_pThreadPool->QueueCall( IOComputationJob, pFileJob, pFileJob->m_pTargetData, 0, LOADERERROR_FILEOPEN )->Release(); } } }
//-----------------------------------------------------------------------------
// Add to queue
//-----------------------------------------------------------------------------
bool CQueuedLoader::AddJob( const LoaderJob_t *pLoaderJob ) { if ( !m_bActive ) { return false; }
Assert( pLoaderJob && pLoaderJob->m_pFilename ); bool bLateQueued = false; if ( m_bCanBatch && !m_bBatching ) { // should have been part of pre-load batch
DevWarning( "QueuedLoader: Late Queued Job: %s\n", pLoaderJob->m_pFilename ); bLateQueued = true; }
// anonymous jobs lack callbacks and are heavily restricted to ensure their stability
// the caller is expected to claim these before load ends (which auto-purges them)
if ( !pLoaderJob->m_pCallback && pLoaderJob->m_Priority == LOADERPRIORITY_ANYTIME ) { Assert( 0 ); DevWarning( "QueuedLoader: Ignoring Anonymous Job: %s\n", pLoaderJob->m_pFilename ); return false; }
FileNameHandle_t hFilename = m_Filenames.FindFileName( pLoaderJob->m_pFilename ); if ( hFilename && m_ExcludeResourceNames.Find( hFilename ) != m_ExcludeResourceNames.InvalidIndex() ) { // marked as excluded, ignoring
return false; }
MEM_ALLOC_CREDIT();
// all bsp based files get forced to a higher priority in order to achieve a clustered sort
// the bsp files are not going to be anywhere near the zips, thus we don't want head thrashing
bool bFileIsFromBSP; bool bExists = false;
char *pFullPath; char szFullPath[MAX_PATH]; if ( V_IsAbsolutePath( pLoaderJob->m_pFilename ) ) { // an absolute path is trusted, take as is
pFullPath = (char *)pLoaderJob->m_pFilename; bFileIsFromBSP = V_stristr( pFullPath, ".bsp" ) != NULL; bExists = true; } else { // must resolve now, all submitted paths must be absolute for proper sort which achieves seek linearization
// a resolved absolute file ensures its existence
PathTypeFilter_t pathFilter = FILTER_NONE; if ( IsX360() ) { if ( V_stristr( pLoaderJob->m_pFilename, ".bsp" ) || V_stristr( pLoaderJob->m_pFilename, ".ain" ) ) { // only the bsp/ain are allowed to be external
pathFilter = FILTER_CULLPACK; } else { // all files are expected to be in zip
pathFilter = FILTER_CULLNONPACK; } }
PathTypeQuery_t pathType; g_pFullFileSystem->RelativePathToFullPath( pLoaderJob->m_pFilename, pLoaderJob->m_pPathID, szFullPath, sizeof( szFullPath ), pathFilter, &pathType ); bExists = V_IsAbsolutePath( szFullPath ); pFullPath = szFullPath; bFileIsFromBSP = ( (pathType & PATH_IS_MAPPACKFILE) != 0 ); }
// create a file job
FileJob_t *pFileJob = new FileJob_t;
pFileJob->m_hFilename = m_Filenames.FindOrAddFileName( pFullPath ); pFileJob->m_bFileExists = bExists; pFileJob->m_pCallback = pLoaderJob->m_pCallback; pFileJob->m_pContext = pLoaderJob->m_pContext; pFileJob->m_pContext2 = pLoaderJob->m_pContext2; pFileJob->m_pTargetData = pLoaderJob->m_pTargetData; pFileJob->m_nBytesToRead = pLoaderJob->m_nBytesToRead; pFileJob->m_nStartOffset = pLoaderJob->m_nStartOffset; pFileJob->m_Priority = bFileIsFromBSP ? LOADERPRIORITY_DURINGPRELOAD : pLoaderJob->m_Priority; pFileJob->m_bLateQueued = bLateQueued; pFileJob->m_bAnonymousDecode = pLoaderJob->m_bAnonymousDecode;
if ( pLoaderJob->m_pTargetData ) { // never free caller's buffer, if they provide, they have to free it
pFileJob->m_bFreeTargetAfterIO = false; } else { // caller can take over ownership, otherwise it gets freed after I/O
pFileJob->m_bFreeTargetAfterIO = ( pLoaderJob->m_bPersistTargetData == false ); }
if ( !pLoaderJob->m_pCallback ) { // track anonymous jobs
AUTO_LOCK_FM( m_Mutex ); char szFixedName[MAX_PATH]; V_strncpy( szFixedName, pLoaderJob->m_pFilename, sizeof( szFixedName ) ); V_FixSlashes( szFixedName ); m_AnonymousJobs.Insert( szFixedName, pFileJob ); }
g_nQueuedJobs++;
if ( m_bBatching ) { m_BatchedJobs.PushItem( pFileJob ); } else { m_PendingJobs.PushItem( pFileJob ); SubmitPendingJobs(); }
return true; }
//-----------------------------------------------------------------------------
// Allows an external system to append to a map's reslist. The next map load
// will append these specified files. Unhandled resources will just get
// quietly discarded. An external system could use this to patch a hole
// or prevent a purge.
//-----------------------------------------------------------------------------
void CQueuedLoader::AddMapResource( const char *pFilename ) { if ( !pFilename || !pFilename[0] ) { // pointless
return; } // normalize the provided name as a filename
char szFilename[MAX_PATH]; V_strncpy( szFilename, pFilename, sizeof( szFilename ) ); V_FixSlashes( szFilename ); V_strlower( szFilename );
if ( m_AdditionalResources.Find( szFilename ) != UTL_INVAL_SYMBOL ) { // already added
return; }
m_AdditionalResources.AddString( szFilename ); }
//-----------------------------------------------------------------------------
// Asynchronous claim for an anonymous job.
// This allows loaders with deep dependencies to get their data in flight, and then claim it
// when the they are in a state to consume it.
//-----------------------------------------------------------------------------
bool CQueuedLoader::ClaimAnonymousJob( const char *pFilename, QueuedLoaderCallback_t pCallback, void *pContext, void *pContext2 ) { Assert( ThreadInMainThread() ); Assert( pFilename && pCallback && !m_bBatching );
char szFixedName[MAX_PATH]; V_strncpy( szFixedName, pFilename, sizeof( szFixedName ) ); V_FixSlashes( szFixedName ); pFilename = szFixedName;
int iIndex = m_AnonymousJobs.Find( pFilename ); if ( iIndex == m_AnonymousJobs.InvalidIndex() ) { // unknown
DevWarning( "QueuedLoader: Anonymous Job '%s' not found\n", pFilename ); return false; }
// caller is claiming
FileJob_t *pFileJob = m_AnonymousJobs[iIndex]; if ( !pFileJob->m_bFinished ) { // unfinished shouldn't happen and caller can't have it
// anonymous jobs and their claims are very restrictive in such a way to provide stability
// this dead job will get auto-cleaned at end of map loading
Assert( 0 ); return false; }
m_AnonymousJobs.RemoveAt( iIndex ); CJob *pClaimedAnonymousJob = g_pThreadPool->QueueCall( FinishAnonymousJob, pFileJob, pCallback, pContext, pContext2 ); if ( IsPS3() ) { // PS3 static prop lighting (legacy async IO still in flight catching
// non reslist-lighting buffers) is writing data into raw pointers
// to RSX memory which have been acquired before material system
// switches to multithreaded mode. During switch to multithreaded
// mode RSX moves its memory so pointers become invalid and thus
// all IO must be finished and callbacks fired before
// Host_AllowQueuedMaterialSystem
pClaimedAnonymousJob->WaitForFinishAndRelease(); } else { pClaimedAnonymousJob->Release(); }
return true; }
//-----------------------------------------------------------------------------
// Synchronous claim for an anonymous job. This allows loaders
// with deep dependencies to get their data in flight, and then claim it
// when the they are in a state to consume it.
//-----------------------------------------------------------------------------
bool CQueuedLoader::ClaimAnonymousJob( const char *pFilename, void **pData, int *pDataSize, LoaderError_t *pError ) { Assert( ThreadInMainThread() ); Assert( pFilename && !m_bBatching );
char szFixedName[MAX_PATH]; V_strncpy( szFixedName, pFilename, sizeof( szFixedName ) ); V_FixSlashes( szFixedName ); pFilename = szFixedName;
int iIndex = m_AnonymousJobs.Find( pFilename ); if ( iIndex == m_AnonymousJobs.InvalidIndex() ) { // unknown
DevWarning( "QueuedLoader: Anonymous Job '%s' not found\n", pFilename ); return false; }
// caller is claiming
FileJob_t *pFileJob = m_AnonymousJobs[iIndex]; if ( !pFileJob->m_bFinished ) { // unfinished shouldn't happen and caller can't have it
// anonymous jobs and their claims are very restrictive in such a way to provide stability
// this dead job will get auto-cleaned at end of map loading
Assert( 0 ); return false; }
pFileJob->m_bClaimed = true;
m_AnonymousJobs.RemoveAt( iIndex );
*pData = pFileJob->m_pTargetData; *pDataSize = pFileJob->m_LoaderError == LOADERERROR_NONE ? pFileJob->m_nActualBytesRead : 0; if ( pError ) { *pError = pFileJob->m_LoaderError; } // caller owns the data, regardless of how the job was setup
pFileJob->m_pTargetData = NULL;
// memory has been consumed
g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead;
return true; }
//-----------------------------------------------------------------------------
// End of batching. High priority jobs are guaranteed completed before function returns.
//-----------------------------------------------------------------------------
void CQueuedLoader::SubmitBatchedJobsAndWait() { // end of batching
m_bBatching = false;
CTSList<FileJob_t *>::Node_t *pNode = m_BatchedJobs.Detach(); if ( !pNode ) { return; }
// must wait for any initial i/o to finish
// i/o thread must stop in order to submit all the batched jobs atomically
// and get an accurate accounting of high priority jobs
while ( g_nActiveJobs != 0 ) { g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME ); }
// dump batched jobs to pending jobs
while ( pNode ) { FileJob_t *pFileJob = pNode->elem;
m_PendingJobs.PushItem( pFileJob );
CTSList<FileJob_t *>::Node_t *pNext = (CTSList<FileJob_t *>::Node_t*)pNode->Next; delete pNode; pNode = pNext; }
SubmitPendingJobs();
if ( GetSpewDetail() ) { Msg( "QueuedLoader: High Priority Jobs: %d\n", ( int ) g_nHighPriorityJobs ); } if ( loader_defer_non_critical_jobs.GetBool() ) { // allow to trigger at next available oppportunity
g_nForceSuspendIO = -1; }
// finish only the high priority jobs
// high priority jobs are expected to be complete at the conclusion of batching
int total = g_nHighPriorityJobs; while ( g_nHighPriorityJobs != 0 ) { float t = (float)( total - g_nHighPriorityJobs ) / (float)total; m_pProgress->UpdateProgress( PROGRESS_IO + t * ( PROGRESS_END - PROGRESS_IO ) );
// yield some time
g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME ); } }
//-----------------------------------------------------------------------------
// Clean queue of stale entries. Active entries are skipped.
//-----------------------------------------------------------------------------
void CQueuedLoader::CleanQueue() { for ( int i = 0; i<RESOURCEPRELOAD_COUNT; i++ ) { m_ResourceNames[i].Purge(); }
m_ExcludeResourceNames.Purge(); m_BatchedJobs.Purge();
int iIndex = m_SubmittedJobs.Head(); while ( iIndex != m_SubmittedJobs.InvalidIndex() ) { int iNext = m_SubmittedJobs.Next( iIndex );
FileJob_t *pFileJob = m_SubmittedJobs[iIndex]; if ( pFileJob->m_bFinished ) { // job is complete, safe to free
m_SubmittedJobs.Free( iIndex ); g_pFullFileSystem->AsyncRelease( pFileJob->m_hAsyncControl ); delete pFileJob; } iIndex = iNext; }
m_Filenames.RemoveAll(); }
//-----------------------------------------------------------------------------
// Abandon queue
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeQueue() { }
//-----------------------------------------------------------------------------
// Spew info abut queued load
//-----------------------------------------------------------------------------
void CQueuedLoader::SpewInfo() { Msg( "Queued Loader:\n\n" );
int totalClaimed = 0; int totalUnclaimed = 0;
if ( IsFinished() ) { // can only access submitted jobs safely when io thread complete
int lastPriority = -1; int lastLateState = -1; int iIndex = m_SubmittedJobs.Head(); while ( iIndex != m_SubmittedJobs.InvalidIndex() ) { FileJob_t *pFileJob = m_SubmittedJobs[iIndex];
int asyncDuration = -1; if ( pFileJob->m_FinishTime ) { asyncDuration = pFileJob->m_FinishTime - pFileJob->m_SubmitTime; } if ( pFileJob->m_bLateQueued != lastLateState ) { if ( pFileJob->m_bLateQueued ) { Warning( "---- LATE QUEUED JOBS ----\n" ); } lastLateState = pFileJob->m_bLateQueued; } if ( !pFileJob->m_bLateQueued && pFileJob->m_Priority != lastPriority ) { switch ( pFileJob->m_Priority ) { case LOADERPRIORITY_DURINGPRELOAD: Msg( "---- FINISH DURING PRELOAD ( HIGH PRIORITY )----\n" ); break; case LOADERPRIORITY_BEFOREPLAY: Msg( "---- FINISH BEFORE GAMEPLAY ( NORMAL PRIORITY )----\n" ); break; case LOADERPRIORITY_ANYTIME: Msg( "---- FINISH ANYTIME ( NORMAL PRIORITY )----\n" ); break; } lastPriority = pFileJob->m_Priority; }
char szAnonymousString[MAX_PATH]; const char *pAnonymousStatus = ""; if ( !pFileJob->m_pCallback ) { V_snprintf( szAnonymousString, sizeof( szAnonymousString ), "(%s) ", pFileJob->m_bClaimed ? "Claimed" : "Unclaimed" ); pAnonymousStatus = szAnonymousString; if ( pFileJob->m_bClaimed ) { totalClaimed += pFileJob->m_nActualBytesRead; } else { totalUnclaimed += pFileJob->m_nActualBytesRead; } }
char szFilename[MAX_PATH]; char szMessage[1024]; V_snprintf( szMessage, sizeof( szMessage ), "Submit:%5dms AsyncDuration:%5dms Tag:%d Thread:%8.8x Size:%7d %s%s", pFileJob->m_SubmitTime - m_StartTime, asyncDuration, pFileJob->m_SubmitTag, pFileJob->m_ThreadId, pFileJob->m_nActualBytesRead, pAnonymousStatus, GetFilename( pFileJob->m_hFilename, szFilename, sizeof( szFilename ) ) );
if ( pFileJob->m_bLateQueued ) { Warning( "%s\n", szMessage ); } else { Msg( "%s\n", szMessage ); }
iIndex = m_SubmittedJobs.Next( iIndex ); }
Msg( "%d Total Jobs\n", m_SubmittedJobs.Count() ); }
Msg( "\nExcludes:\n" ); for ( int i = 0; i < m_ExcludeResourceNames.Count(); i++ ) { char szFilename[MAX_PATH] = ""; GetFilename( m_ExcludeResourceNames[i], szFilename, sizeof( szFilename ) ); Msg( "%s\n", szFilename ); }
Msg( "\nLayout Order:\n" ); for ( int i = 0; i < g_DVDLayout.Count(); i++ ) { Msg( "%s\n", g_DVDLayout[i].String() ); }
Msg( "\n" ); Msg( "%d Queued Jobs\n", ( int ) g_nQueuedJobs ); Msg( "%d Active Jobs\n", ( int ) g_nActiveJobs ); Msg( "Peak IO Memory: %.2f MB\n", (float)g_nIOMemoryPeak / ( 1024.0f * 1024.0f ) ); Msg( "Peak Anonymous IO Memory: %.2f MB\n", (float)g_nAnonymousIOMemoryPeak / ( 1024.0f * 1024.0f ) ); Msg( " Total Anonymous Claimed: %d\n", totalClaimed ); Msg( " Total Anonymous Unclaimed: %d\n", totalUnclaimed ); if ( m_EndTime ) { Msg( "Queuing Duration: %dms\n", m_EndTime - m_StartTime ); } }
//-----------------------------------------------------------------------------
// Initialization
//-----------------------------------------------------------------------------
InitReturnVal_t CQueuedLoader::Init() { InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) { return nRetVal; }
return INIT_OK; }
//-----------------------------------------------------------------------------
// Shutdown
//-----------------------------------------------------------------------------
void CQueuedLoader::Shutdown() { BaseClass::Shutdown(); }
//-----------------------------------------------------------------------------
// Install a type specific interface from managing system.
//-----------------------------------------------------------------------------
void CQueuedLoader::InstallLoader( ResourcePreload_t type, IResourcePreload *pLoader ) { m_pLoaders[type] = pLoader; }
void CQueuedLoader::InstallProgress( ILoaderProgress *pProgress ) { m_pProgress = pProgress; }
//-----------------------------------------------------------------------------
// Invoke the loader systems to purge dead resources
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeUnreferencedResources() { ResourcePreload_t purgeOrder[RESOURCEPRELOAD_COUNT]; // the purge operations require a specific order (models and cubemaps before materials)
int numPurges = 0; purgeOrder[numPurges++] = RESOURCEPRELOAD_SOUND; purgeOrder[numPurges++] = RESOURCEPRELOAD_STATICPROPLIGHTING; purgeOrder[numPurges++] = RESOURCEPRELOAD_MODEL; purgeOrder[numPurges++] = RESOURCEPRELOAD_CUBEMAP; purgeOrder[numPurges++] = RESOURCEPRELOAD_MATERIAL; // 'gpubufferallocator' must be LAST so that it can reclaim released physical memory
purgeOrder[numPurges++] = RESOURCEPRELOAD_GPUBUFFERALLOCATOR; // iterate according to order
for ( int i = 0; i < numPurges; i++ ) { ResourcePreload_t loader = purgeOrder[i]; if ( m_pLoaders[loader] ) { m_pLoaders[loader]->PurgeUnreferencedResources(); } }
m_pProgress->UpdateProgress( PROGRESS_PREPURGE ); }
//-----------------------------------------------------------------------------
// Invoke the loader systems to purge all resources, if possible.
// NOT meant to be used when transitioning to the same map.
// This trips expensive resource eviction.
//-----------------------------------------------------------------------------
void CQueuedLoader::PurgeAll( ResourcePreload_t *pDontPurgeList, int nPurgeListSize ) { ResourcePreload_t purgeOrder[RESOURCEPRELOAD_COUNT];
// default purge all
unsigned int bPurgeMask = 0xFFFFFFFF;
// caller can narrow purge and inhibit specific resources
if ( pDontPurgeList && nPurgeListSize > 0 ) { for ( int i = 0; i < nPurgeListSize; i++ ) { bPurgeMask &= ~( 1 << pDontPurgeList[i] ); } }
// the purge operations require a specific order (models and cubemaps before materials)
int numPurges = 0; if ( bPurgeMask & ( 1 << RESOURCEPRELOAD_SOUND ) ) { purgeOrder[numPurges++] = RESOURCEPRELOAD_SOUND; } if ( bPurgeMask & ( 1 << RESOURCEPRELOAD_STATICPROPLIGHTING ) ) { purgeOrder[numPurges++] = RESOURCEPRELOAD_STATICPROPLIGHTING; } if ( bPurgeMask & ( 1 << RESOURCEPRELOAD_MODEL ) ) { purgeOrder[numPurges++] = RESOURCEPRELOAD_MODEL; } if ( bPurgeMask & ( 1 << RESOURCEPRELOAD_CUBEMAP ) ) { purgeOrder[numPurges++] = RESOURCEPRELOAD_CUBEMAP; } if ( bPurgeMask & ( 1 << RESOURCEPRELOAD_MATERIAL ) ) { purgeOrder[numPurges++] = RESOURCEPRELOAD_MATERIAL; } // 'gpubufferallocator' must be LAST so that it can reclaim released physical memory
if ( bPurgeMask & ( 1 << RESOURCEPRELOAD_GPUBUFFERALLOCATOR ) ) { purgeOrder[numPurges++] = RESOURCEPRELOAD_GPUBUFFERALLOCATOR; }
// iterate according to order
for ( int i = 0; i < numPurges; i++ ) { ResourcePreload_t loader = purgeOrder[i]; if ( m_pLoaders[loader] ) { m_pLoaders[loader]->PurgeAll(); } }
// any purge means that we can no longer supply the "same map" loading hint
// hopefully the caller does not invoke a PurgeAll() when transitioning to the same map
*m_szMapNameToCompareSame = '\0'; }
//-----------------------------------------------------------------------------
// Invoke the loader systems to request i/o jobs, which are batched.
//-----------------------------------------------------------------------------
void CQueuedLoader::GetJobRequests() { COM_TimestampedLog( "CQueuedLoader::GetJobRequests - Start" );
// causes the batch queue to fill with i/o requests
m_bCanBatch = true; m_bBatching = true;
float t0, flLastUpdateT; t0 = Plat_FloatTime(); CJob *jobs[5];
// cubemap textures must be first to install correctly before their cubemap materials are built (and precache the cubmeap textures)
// cannot be overlapped, must run serially
BuildResources( m_pLoaders[RESOURCEPRELOAD_CUBEMAP], &m_ResourceNames[RESOURCEPRELOAD_CUBEMAP], &m_LoaderTimes[RESOURCEPRELOAD_CUBEMAP] );
// Overlapping these is not critical in any way, total time is currently < 2 seconds.
// These operations flood calls (AddJob) back into the queued loader (which has to mutex its lists),
// so in fact it's slightly slower to queue these at this stage. As these routines age they may become more heavyweight.
jobs[0] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_SOUND], &m_ResourceNames[RESOURCEPRELOAD_SOUND], &m_LoaderTimes[RESOURCEPRELOAD_SOUND] ); jobs[1] = g_pThreadPool->QueueCall( BuildMaterialResources, m_pLoaders[RESOURCEPRELOAD_MATERIAL], &m_ResourceNames[RESOURCEPRELOAD_MATERIAL], &m_LoaderTimes[RESOURCEPRELOAD_MATERIAL] ); jobs[2] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_ResourceNames[RESOURCEPRELOAD_STATICPROPLIGHTING], &m_LoaderTimes[RESOURCEPRELOAD_STATICPROPLIGHTING] ); jobs[3] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_MODEL], &m_ResourceNames[RESOURCEPRELOAD_MODEL], &m_LoaderTimes[RESOURCEPRELOAD_MODEL] ); jobs[4] = g_pThreadPool->QueueCall( BuildResources, m_pLoaders[RESOURCEPRELOAD_ANONYMOUS], &m_ResourceNames[RESOURCEPRELOAD_ANONYMOUS], &m_LoaderTimes[RESOURCEPRELOAD_ANONYMOUS] );
// all jobs must finish
flLastUpdateT = -1000.0f; // Update as if this takes 2 seconds
float flDelta = ( PROGRESS_CREATEDRESOURCES - PROGRESS_PARSEDRESLIST ) * 0.03 / 2.0f; float flProgress = PROGRESS_PARSEDRESLIST; while( true ) { bool bIsDone = true; for ( int i=0; i<ARRAYSIZE( jobs ); i++ ) { if ( !jobs[i]->IsFinished() ) { bIsDone = false; break; } } if ( bIsDone ) break;
// Can't sleep; that will allow this thread to be used by the thread pool
float newt = Plat_FloatTime(); if ( newt - flLastUpdateT > .03 ) { #if defined( _PS3 )
AUTO_LOCK_FM( m_sRendererMutex ); CInterlockedIntAutoIncrementer autoIncrementRendererMutex( m_nRendererMutexProgressBarUnlockCount ); #endif
m_pProgress->UpdateProgress( flProgress ); flProgress = clamp( flProgress + flDelta, PROGRESS_PARSEDRESLIST, PROGRESS_CREATEDRESOURCES );
// Necessary to take into account any waits for vsync
flLastUpdateT = Plat_FloatTime(); } }
for ( int i=0; i<ARRAYSIZE( jobs ); i++ ) { jobs[i]->Release(); }
if ( g_QueuedLoader.GetSpewDetail() & LOADER_DETAIL_TIMING ) { for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i<RESOURCEPRELOAD_COUNT; i++ ) { Msg( "QueuedLoader: %s Creating: %.2f seconds\n", g_ResourceLoaderNames[i], m_LoaderTimes[i] ); } Msg( "QueuedLoader: Total Creating: %.2f seconds\n", Plat_FloatTime() - t0 ); }
m_pProgress->UpdateProgress( PROGRESS_CREATEDRESOURCES );
COM_TimestampedLog( "CQueuedLoader::GetJobRequests - End" ); }
void CQueuedLoader::AddResourceToTable( const char *pFilename ) { const char *pExt = V_GetFileExtension( pFilename ); if ( !pExt ) { // unknown
// all resources are identified by their extension
return; }
if ( pFilename[0] == '*' ) { // this is a job exclusion, add to exclusion list
FileNameHandle_t hFilename = m_Filenames.FindOrAddFileName( pFilename + 1 ); m_ExcludeResourceNames.InsertNoSort( hFilename ); return; }
const char *pTypeDir = NULL; const char *pName = pFilename; ResourcePreload_t type = RESOURCEPRELOAD_UNKNOWN;
if ( !V_stricmp( pExt, "wav" ) ) { type = RESOURCEPRELOAD_SOUND; pTypeDir = "sound\\"; } else if ( !V_stricmp( pExt, "vmt" ) ) { type = RESOURCEPRELOAD_MATERIAL; pTypeDir = "materials\\"; } else if ( !V_stricmp( pExt, "vtf" ) ) { if ( V_stristr( pFilename, "maps\\" ) ) { // only want cubemap textures
if ( !m_bLoadForHDR && V_stristr( pFilename, ".hdr." ) ) { return; } else if ( m_bLoadForHDR && !V_stristr( pFilename, ".hdr." ) ) { return; } type = RESOURCEPRELOAD_CUBEMAP; pTypeDir = "materials\\"; } else { return; } } else if ( !V_stricmp( pExt, "mdl" ) ) { type = RESOURCEPRELOAD_MODEL; pTypeDir = "models\\"; } else if ( !V_stricmp( pExt, "vhv" ) ) { // want static props only
pName = V_stristr( pFilename, "sp_" ); if ( !pName ) { return; }
if ( !m_bLoadForHDR && V_stristr( pFilename, "_hdr_" ) ) { return; } else if ( m_bLoadForHDR && !V_stristr( pFilename, "_hdr_" ) ) { return; } type = RESOURCEPRELOAD_STATICPROPLIGHTING; } else { // unknown, ignored
return; }
if ( pTypeDir ) { // want object name only
// skip past game/type directory prefixing
const char *pDir = V_stristr( pName, pTypeDir ); if ( pDir ) { pName = pDir + strlen( pTypeDir ); } }
FileNameHandle_t hFilename = m_Filenames.FindOrAddFileName( pName ); m_ResourceNames[type].InsertNoSort( hFilename ); }
//-----------------------------------------------------------------------------
// Parse the raw resource list into resource dictionaries
//-----------------------------------------------------------------------------
void CQueuedLoader::ParseResourceList( CUtlBuffer &resourceList ) { // parse resource list into known types
characterset_t breakSet; CharacterSetBuild( &breakSet, "" ); char szToken[MAX_PATH]; int nCount = 0; for ( ;; ) { int nTokenSize = resourceList.ParseToken( &breakSet, szToken, sizeof( szToken ) ); if ( nTokenSize <= 0 ) { break; } AddResourceToTable( szToken ); nCount++; // Keep the spinner going!
if ( ( nCount % 1200 ) == 0 ) { m_pProgress->UpdateProgress( PROGRESS_GOTRESLIST ); } }
// add any additional resources
// duplicates don't need to be culled, loaders are supposed to handle resources that already exist
for ( int i = 0; i < m_AdditionalResources.GetNumStrings(); i++ ) { if ( g_QueuedLoader.GetSpewDetail() ) { Msg( "QueuedLoader: Appending: %s\n", m_AdditionalResources.String( i ) ); } AddResourceToTable( m_AdditionalResources.String( i ) ); }
// all done with adds
m_ExcludeResourceNames.RedoSort();
if ( g_QueuedLoader.GetSpewDetail() ) { for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i < RESOURCEPRELOAD_COUNT; i++ ) { Msg( "QueuedLoader: %s: %d Entries\n", g_ResourceLoaderNames[i], m_ResourceNames[i].Count() ); }
Msg( "QueuedLoader: Excludes: %d Entries\n", m_ExcludeResourceNames.Count() ); }
m_pProgress->UpdateProgress( PROGRESS_PARSEDRESLIST ); }
//-----------------------------------------------------------------------------
// Mark the start of the queued loading process.
//-----------------------------------------------------------------------------
bool CQueuedLoader::BeginMapLoading( const char *pMapName, bool bLoadForHDR, bool bOptimizeMapReload, void (*pfnBeginMapLoadingCallback)( int nStage ) ) { if ( IsPC() ) { return false; }
if ( CommandLine()->FindParm( "-noqueuedload" ) || CommandLine()->FindParm( "-noqueuedloader" ) ) { return false; }
if ( m_bStarted ) { // already started, shouldn't be started more than once
Assert( 0 ); return true; }
COM_TimestampedLog( "CQueuedLoader::BeginMapLoading" );
GetDVDLayout();
// set the IO throttle markers based on available memory
// these safety watermarks throttle the i/o from flooding memory, when the cores cannot keep up
// the delta must be larger than any single operation, otherwise deadlock
// markers that are too close will cause excessive suspension
if ( loader_throttle_io.GetInt() ) { size_t usedMemory, freeMemory; g_pMemAlloc->GlobalMemoryStatus( &usedMemory, &freeMemory ); if ( freeMemory >= 64*1024*1024 ) { // lots of available memory, can afford to have let the i/o get ahead
g_nHighIOSuspensionMark = 10*1024*1024; g_nLowIOSuspensionMark = 2*1024*1024; } else { // low memory, suspend the i/o more frequently
g_nHighIOSuspensionMark = 5*1024*1024; g_nLowIOSuspensionMark = 1*1024*1024; } } else { // no IO throttling
g_nHighIOSuspensionMark = 512*1024*1024; g_nLowIOSuspensionMark = 512*1024*1024; }
// default disabled
// can force an artificial i/o suspension, for debugging only
g_nForceSuspendIO = 0;
if ( GetSpewDetail() ) { Msg( "QueuedLoader: Suspend I/O at [%.2f,%.2f] MB\n", (float)g_nLowIOSuspensionMark/(1024.0f*1024.0f), (float)g_nHighIOSuspensionMark/(1024.0f*1024.0f) ); }
m_bStarted = true; m_bLoadForHDR = bLoadForHDR;
// map pak will be accessed asynchronously throughout loading and into game frame
g_pFullFileSystem->BeginMapAccess();
// remove any prior stale entries
CleanQueue(); Assert( m_SubmittedJobs.Count() == 0 && g_nActiveJobs == 0 && g_nQueuedJobs == 0 );
m_bActive = true; m_nSubmitCount = 0; m_StartTime = Plat_MSTime(); m_EndTime = 0; m_bCanBatch = false; m_bBatching = false; m_bDoProgress = false;
g_nIOMemory = 0; g_nAnonymousIOMemory = 0; g_nIOMemoryPeak = 0; g_nAnonymousIOMemoryPeak = 0;
m_bSameMap = bOptimizeMapReload && ( V_stricmp( pMapName, m_szMapNameToCompareSame ) == 0 ); if ( m_bSameMap ) { // Data will persist (so reloading a map is fast)
} else { // Full load of the new map's data
V_strncpy( m_szMapNameToCompareSame, pMapName, sizeof( m_szMapNameToCompareSame ) ); }
m_pProgress->BeginProgress(); m_pProgress->UpdateProgress( PROGRESS_START );
// load this map's resource list before any other i/o
char szBaseName[MAX_PATH]; char szFilename[MAX_PATH]; V_FileBase( pMapName, szBaseName, sizeof( szBaseName ) ); V_snprintf( szFilename, sizeof( szFilename ), "reslists_xbox/%s%s.lst", szBaseName, GetPlatformExt() );
CUtlBuffer resListBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER ); if ( !g_pFullFileSystem->ReadFile( szFilename, "GAME", resListBuffer, 0, 0 ) ) { // very bad, a valid reslist is critical
DevWarning( "QueuedLoader: Failed to get reslist '%s', Non-Optimal Loading.\n", szFilename ); if ( IsGameConsole() ) { // We can't ship with this; it's fatal.
Msg( "\n\n\n########\n######## BAD IMAGE: cannot load map reslist (%s)!\n########\n\n\n\n", szFilename ); DebuggerBreakIfDebugging(); } m_bActive = false; return false; }
if ( XBX_IsLocalized() ) { // find optional localized reslist fixup
V_snprintf( szFilename, sizeof( szFilename ), "reslists_xbox/%s%s.lst", XBX_GetLanguageString(), GetPlatformExt() ); CUtlBuffer localizedBuffer( 0, 0, CUtlBuffer::TEXT_BUFFER ); if ( g_pFullFileSystem->ReadFile( szFilename, "GAME", localizedBuffer, 0, 0 ) ) { // append it
resListBuffer.EnsureCapacity( resListBuffer.TellPut() + localizedBuffer.TellPut() ); resListBuffer.Put( localizedBuffer.PeekGet(), localizedBuffer.TellPut() ); } }
m_pProgress->UpdateProgress( PROGRESS_GOTRESLIST );
// due to its size, the bsp load is a lengthy i/o operation
// this causes a non-batched async i/o operation to commence immediately
m_pLoaders[RESOURCEPRELOAD_MODEL]->PrepareForCreate( m_bSameMap ); if ( !m_pLoaders[RESOURCEPRELOAD_MODEL]->CreateResource( pMapName ) ) { // very bad, a valid bsp is critical
DevWarning( "QueuedLoader: Failed to mount BSP '%s', Non-Optimal Loading.\n", pMapName ); m_bActive = false; return false; }
// parse the raw resource list into loader specific dictionaries
ParseResourceList( resListBuffer ); // run the distributed precache loaders, generating a batch of i/o requests
GetJobRequests();
// event each loader to discard dead resources
PurgeUnreferencedResources();
if ( pfnBeginMapLoadingCallback ) { (*pfnBeginMapLoadingCallback)( 1 ); }
// sort and start async fulfilling the i/o requests
// waits for all "must complete" jobs to finish
SubmitBatchedJobsAndWait();
// progress is only relevant during preload
// normal load process takes over any progress bar
// disable progress tracking to prevent any late queued operation from updating
m_pProgress->EndProgress();
return m_bActive; }
//-----------------------------------------------------------------------------
// Signal the end of the queued loading process, i/o will still be in progress.
//-----------------------------------------------------------------------------
void CQueuedLoader::EndMapLoading( bool bAbort ) { if ( !m_bStarted ) { // already stopped or never started
return; }
/////////////////////////////////////////////////////
// TBD: Cannot abort!!!! feature has not been done //
/////////////////////////////////////////////////////
bAbort = false;
bool bShutdownAppRequest = false; #ifdef _PS3
bShutdownAppRequest = GetTLSGlobals()->bNormalQuitRequested; #endif
// To satisfy system shutdown request, purge all pending jobs
// that haven't been submitted yet
if ( bShutdownAppRequest ) { m_PendingJobs.Purge(); }
if ( m_bActive ) { if ( bAbort ) { PurgeQueue(); } else { if ( GetSpewDetail() ) { // Under normal HDD circumstances this would be 0, the HDD can deliver fast enough
// that the jobs are done before the legacy load finishes. Under DVD maybe a few.
// When the debugging loader_defer_non_critical_jobs convar is active this will
// be a substantial portion due to it deferring all those jobs to now, to stress test
// this final phase.
Msg( "QueuedLoader: Finishing %d Jobs\n", (int)g_nJobsToFinishBeforePlay ); }
// We have unexplained GPU hangs, all of them die inside the CLoaderMemAlloc
// as we are trying to drive the loading progres below.
m_pProgress->PauseNonInteractiveProgress( true );
// clear any possible suspension and prevent any possible suspension from occurring
g_nForceSuspendIO = 0; AdjustAsyncIOSpeed();
// finish all outstanding priority jobs
SubmitPendingJobs();
// Upon shutdown we need to abort all jobs that have already been
// submitted since they can take a very long time to finish
if ( bShutdownAppRequest ) { // we need to flush IO before aborting thread pool, because IO jobs are constantly spawning compute jobs in g_pThreadPool
// in case we quit during loading a level
g_pFullFileSystem->AsyncFlush();
g_pThreadPool->AbortAll(); g_pFullFileSystem->AsyncFlush(); g_pFullFileSystem->RemoveAllSearchPaths(); m_pProgress->UpdateProgress( PROGRESS_END, true ); } else { while ( g_nHighPriorityJobs != 0 || g_nJobsToFinishBeforePlay != 0 ) { // yield some time
g_pThreadPool->Yield( MAIN_THREAD_YIELD_TIME ); m_pProgress->UpdateProgress( PROGRESS_END, true ); } }
// Restore
m_pProgress->PauseNonInteractiveProgress( false ); }
m_EndTime = Plat_MSTime(); m_bActive = false;
// transmit the end map event
for ( int i = RESOURCEPRELOAD_UNKNOWN+1; i < RESOURCEPRELOAD_COUNT; i++ ) { if ( m_pLoaders[i] ) { m_pLoaders[i]->OnEndMapLoading( bAbort ); } }
// free any unclaimed anonymous buffers
int iIndex = m_AnonymousJobs.First(); while ( iIndex != m_AnonymousJobs.InvalidIndex() ) { FileJob_t *pFileJob = m_AnonymousJobs[iIndex]; if ( pFileJob->m_bFreeTargetAfterIO && pFileJob->m_pTargetData ) { g_pFullFileSystem->FreeOptimalReadBuffer( pFileJob->m_pTargetData ); pFileJob->m_pTargetData = NULL; } g_nAnonymousIOMemory -= pFileJob->m_nActualBytesRead; iIndex = m_AnonymousJobs.Next( iIndex ); } m_AnonymousJobs.Purge();
if ( g_nIOMemory || g_nAnonymousIOMemory ) { // expected to be zero, otherwise logic flaw
DevWarning( "QueuedLoader: Unclaimed I/O memory: total:%d anonymous:%d\n", ( int ) g_nIOMemory, ( int ) g_nAnonymousIOMemory ); g_nIOMemory = 0; g_nAnonymousIOMemory = 0; }
// no longer needed
m_AdditionalResources.RemoveAll(); }
g_pFullFileSystem->EndMapAccess(); m_bStarted = false; }
//-----------------------------------------------------------------------------
// Returns true if loader is accepting queue requests.
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsMapLoading() const { return m_bActive; }
//-----------------------------------------------------------------------------
// Returns true if loader is working on same map as last load
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsSameMapLoading() const { return m_bActive && m_bSameMap; }
//-----------------------------------------------------------------------------
// Returns true if the loader is idle, indicates all i/o and work has completed.
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsFinished() const { return ( m_bActive == false && g_nActiveJobs == 0 && g_nQueuedJobs == 0 ); }
//-----------------------------------------------------------------------------
// Returns true if loader is batching
//-----------------------------------------------------------------------------
bool CQueuedLoader::IsBatching() const { return m_bBatching; }
int CQueuedLoader::GetSpewDetail() const { int spewDetail = loader_spew_info.GetInt(); if ( spewDetail <= 0 ) { return spewDetail; }
return 1 << ( spewDetail - 1 ); }
unsigned int CQueuedLoader::GetStartTime() { return m_StartTime; }
|