|
|
// NextBotGroundLocomotion.cpp
// Basic ground-based movement for NextBotCombatCharacters
// Author: Michael Booth, February 2009
// Note: This is a refactoring of ZombieBotLocomotion from L4D
#include "cbase.h"
#include "func_break.h"
#include "func_breakablesurf.h"
#include "activitylist.h"
#include "BasePropDoor.h"
#include "nav.h"
#include "NextBot.h"
#include "NextBotGroundLocomotion.h"
#include "NextBotUtil.h"
#include "functorutils.h"
#include "SharedFunctorUtils.h"
#include "tier0/vprof.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#pragma warning( disable : 4355 ) // warning 'this' used in base member initializer list - we're using it safely
//----------------------------------------------------------------------------------------------------------
NextBotGroundLocomotion::NextBotGroundLocomotion( INextBot *bot ) : ILocomotion( bot ) { m_nextBot = NULL; m_ladder = NULL; m_desiredLean.x = 0.0f; m_desiredLean.y = 0.0f; m_desiredLean.z = 0.0f; m_bRecomputePostureOnCollision = false; m_ignorePhysicsPropTimer.Invalidate(); }
//----------------------------------------------------------------------------------------------------------
NextBotGroundLocomotion::~NextBotGroundLocomotion() { }
//----------------------------------------------------------------------------------------------------------
/**
* Reset locomotor to initial state */ void NextBotGroundLocomotion::Reset( void ) { BaseClass::Reset(); m_bRecomputePostureOnCollision = false; m_ignorePhysicsPropTimer.Invalidate();
m_nextBot = static_cast< NextBotCombatCharacter * >( GetBot()->GetEntity() ); m_desiredSpeed = 0.0f; m_velocity = vec3_origin; m_acceleration = vec3_origin;
m_desiredLean.x = 0.0f; m_desiredLean.y = 0.0f; m_desiredLean.z = 0.0f; m_ladder = NULL;
m_isJumping = false; m_isJumpingAcrossGap = false; m_ground = NULL; m_groundNormal = Vector( 0, 0, 1.0f ); m_isClimbingUpToLedge = false; m_isUsingFullFeetTrace = false;
m_moveVector = Vector( 1, 0, 0 ); m_priorPos = m_nextBot->GetPosition(); m_lastValidPos = m_nextBot->GetPosition();
m_inhibitObstacleAvoidanceTimer.Invalidate();
m_accumApproachVectors = vec3_origin; m_accumApproachWeights = 0.0f; }
//----------------------------------------------------------------------------------------------------------
/**
* Move the bot along a ladder */ bool NextBotGroundLocomotion::TraverseLadder( void ) { // not climbing a ladder right now
return false; }
//----------------------------------------------------------------------------------------------------------
/**
* Update internal state */ void NextBotGroundLocomotion::Update( void ) { VPROF_BUDGET( "NextBotGroundLocomotion::Update", "NextBot" );
BaseClass::Update();
const float deltaT = GetUpdateInterval();
// apply accumulated position changes
ApplyAccumulatedApproach();
// need to do this first thing, because ground constraints, etc, can change it
Vector origPos = GetFeet();
IBody *body = GetBot()->GetBodyInterface();
if ( TraverseLadder() ) { // bot is climbing a ladder
return; }
if ( !body->IsPostureMobile() ) { // sitting/lying on the ground - no slip
m_acceleration.x = 0.0f; m_acceleration.y = 0.0f; m_velocity.x = 0.0f; m_velocity.y = 0.0f; }
bool wasOnGround = IsOnGround();
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) ) { // fall if in the air
if ( !IsOnGround() ) { // no ground below us - fall
m_acceleration.z -= GetGravity(); }
if ( !IsClimbingOrJumping() || m_velocity.z <= 0.0f ) { // keep us on the ground
UpdateGroundConstraint(); } }
Vector newPos = GetFeet();
//
// Update position physics
//
Vector right( m_moveVector.y, -m_moveVector.x, 0.0f );
if ( IsOnGround() ) // || m_isClimbingUpToLedge )
{ if ( IsAttemptingToMove() ) { float forwardSpeed = DotProduct( m_velocity, m_moveVector ); Vector forwardVelocity = forwardSpeed * m_moveVector; Vector sideVelocity = DotProduct( m_velocity, right ) * right;
Vector frictionAccel = vec3_origin;
// only apply friction along forward direction if we are sliding backwards
if ( forwardSpeed < 0.0f ) { frictionAccel = -GetFrictionForward() * forwardVelocity; }
// always apply lateral friction to counteract sideslip
frictionAccel += -GetFrictionSideways() * sideVelocity;
m_acceleration.x += frictionAccel.x; m_acceleration.y += frictionAccel.y; } else { // come to a stop if we haven't been told to move
m_acceleration = vec3_origin; m_velocity = vec3_origin; } }
// compute new position, taking into account MOTION_CONTROLLED animations in progress
if ( body->HasActivityType( IBody::MOTION_CONTROLLED_XY ) ) { m_acceleration.x = 0.0f; m_acceleration.y = 0.0f; m_velocity.x = GetBot()->GetEntity()->GetAbsVelocity().x; m_velocity.y = GetBot()->GetEntity()->GetAbsVelocity().y; } else { // euler integration
m_velocity.x += m_acceleration.x * deltaT; m_velocity.y += m_acceleration.y * deltaT;
// euler integration
newPos.x += m_velocity.x * deltaT; newPos.y += m_velocity.y * deltaT; }
if ( body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) ) { m_acceleration.z = 0.0f; m_velocity.z = GetBot()->GetEntity()->GetAbsVelocity().z; } else { // euler integration
m_velocity.z += m_acceleration.z * deltaT;
// euler integration
newPos.z += m_velocity.z * deltaT; } // move bot to new position, resolving collisions along the way
UpdatePosition( newPos );
// set actual velocity based on position change after collision resolution step
Vector adjustedVelocity = ( GetFeet() - origPos ) / deltaT;
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_XY ) ) { m_velocity.x = adjustedVelocity.x; m_velocity.y = adjustedVelocity.y; }
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) ) { m_velocity.z = adjustedVelocity.z; }
// collision resolution may create very high instantaneous velocities, limit it
Vector2D groundVel = m_velocity.AsVector2D(); m_actualSpeed = groundVel.NormalizeInPlace();
if ( IsOnGround() ) { if ( m_actualSpeed > GetRunSpeed() ) { m_actualSpeed = GetRunSpeed(); m_velocity.x = m_actualSpeed * groundVel.x; m_velocity.y = m_actualSpeed * groundVel.y; }
// remove downward velocity when landing on the ground
if ( !wasOnGround ) { m_velocity.z = 0.0f; m_acceleration.z = 0.0f; } } else { // we're falling. if our velocity has become zero for any reason, shove it forward
const float epsilon = 1.0f; if ( m_velocity.IsLengthLessThan( epsilon ) ) { m_velocity = GetRunSpeed() * GetGroundMotionVector(); } }
// update entity velocity to that of locomotor
m_nextBot->SetAbsVelocity( m_velocity );
#ifdef LEANING
// lean sideways proportional to lateral acceleration
QAngle lean = GetDesiredLean(); float sideAccel = DotProduct( right, m_acceleration ); float slide = sideAccel / GetMaxAcceleration();
// max lean depends on how fast we're actually moving
float maxLeanAngle = NextBotLeanMaxAngle.GetFloat() * m_actualSpeed / GetRunSpeed();
// actual lean angle is proportional to lateral acceleration (sliding)
float desiredSideLean = -maxLeanAngle * slide; lean.y += ( desiredSideLean - lean.y ) * NextBotLeanRate.GetFloat() * deltaT;
SetDesiredLean( lean ); #endif // _DEBUG
// reset acceleration accumulation
m_acceleration = vec3_origin;
// debug display
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) ) { // track position over time
if ( IsOnGround() ) { NDebugOverlay::Cross3D( GetFeet(), 1.0f, 0, 255, 0, true, 15.0f ); } else { NDebugOverlay::Cross3D( GetFeet(), 1.0f, 0, 255, 255, true, 15.0f ); } } }
//----------------------------------------------------------------------------------------------------------
/**
* Move directly towards given position. * We need to do this in-air as well to land jumps. */ void NextBotGroundLocomotion::Approach( const Vector &rawPos, float goalWeight ) { BaseClass::Approach( rawPos );
m_accumApproachVectors += ( rawPos - GetFeet() ) * goalWeight; m_accumApproachWeights += goalWeight; m_bRecomputePostureOnCollision = true; }
//----------------------------------------------------------------------------------------------------------
void NextBotGroundLocomotion::ApplyAccumulatedApproach( void ) { VPROF_BUDGET( "NextBotGroundLocomotion::ApplyAccumulatedApproach", "NextBot" );
Vector rawPos = GetFeet();
const float deltaT = GetUpdateInterval();
if ( deltaT <= 0.0f ) return;
if ( m_accumApproachWeights > 0.0f ) { Vector approachDelta = m_accumApproachVectors / m_accumApproachWeights;
// limit total movement to our max speed
float maxMove = GetRunSpeed() * deltaT;
float desiredMove = approachDelta.NormalizeInPlace(); if ( desiredMove > maxMove ) { desiredMove = maxMove; }
rawPos += desiredMove * approachDelta;
m_accumApproachVectors = vec3_origin; m_accumApproachWeights = 0.0f; }
// can only move in 2D - geometry moves us up and down
Vector pos( rawPos.x, rawPos.y, GetFeet().z ); if ( !GetBot()->GetBodyInterface()->IsPostureMobile() ) { // body is not in a movable state right now
return; }
Vector currentPos = m_nextBot->GetPosition();
// compute unit vector to goal position
m_moveVector = pos - currentPos; m_moveVector.z = 0.0f; float change = m_moveVector.NormalizeInPlace();
const float epsilon = 0.001f; if ( change < epsilon ) { // no motion
m_forwardLean = 0.0f; m_sideLean = 0.0f; return; }
/*
// lean forward/backward based on acceleration
float desiredLean = m_acceleration / NextBotLeanForwardAccel.GetFloat();
QAngle lean = GetDesiredLean();
lean.x = NextBotLeanMaxAngle.GetFloat() * clamp( desiredLean, -1.0f, 1.0f );
SetDesiredLean( lean ); */
Vector newPos;
// if we just started a jump, don't snap to the ground - let us get in the air first
if ( DidJustJump() || !IsOnGround() ) { if ( false && m_isClimbingUpToLedge ) // causes bots to hang in air stuck against edges
{ // drive towards the approach position in XY to help reach ledge
m_moveVector = m_ledgeJumpGoalPos - currentPos; m_moveVector.z = 0.0f; m_moveVector.NormalizeInPlace(); m_acceleration += GetMaxAcceleration() * m_moveVector; } } else if ( IsOnGround() ) { // on the ground - move towards the approach position
m_isClimbingUpToLedge = false; // snap forward movement vector along floor
const Vector &groundNormal = GetGroundNormal(); Vector left( -m_moveVector.y, m_moveVector.x, 0.0f ); m_moveVector = CrossProduct( left, groundNormal ); m_moveVector.NormalizeInPlace(); // limit maximum forward speed from self-acceleration
float forwardSpeed = DotProduct( m_velocity, m_moveVector ); float maxSpeed = MIN( m_desiredSpeed, GetSpeedLimit() ); if ( forwardSpeed < maxSpeed ) { float ratio = ( forwardSpeed <= 0.0f ) ? 0.0f : ( forwardSpeed / maxSpeed ); float governor = 1.0f - ( ratio * ratio * ratio * ratio ); // accelerate towards goal
m_acceleration += governor * GetMaxAcceleration() * m_moveVector; } } }
//----------------------------------------------------------------------------------------------------------
/**
* Move the bot to the precise given position immediately, */ void NextBotGroundLocomotion::DriveTo( const Vector &pos ) { BaseClass::DriveTo( pos ); m_bRecomputePostureOnCollision = true; UpdatePosition( pos ); }
//--------------------------------------------------------------------------------------------
/*
* Trace filter solely for use with DetectCollision() below. */ class GroundLocomotionCollisionTraceFilter : public CTraceFilterSimple { public: GroundLocomotionCollisionTraceFilter( INextBot *me, const IHandleEntity *passentity, int collisionGroup ) : CTraceFilterSimple( passentity, collisionGroup ) { m_me = me; }
virtual bool ShouldHitEntity( IHandleEntity *pServerEntity, int contentsMask ) { if ( CTraceFilterSimple::ShouldHitEntity( pServerEntity, contentsMask ) ) { CBaseEntity *entity = EntityFromEntityHandle( pServerEntity );
// don't collide with ourself
if ( entity && m_me->IsSelf( entity ) ) return false;
return true; }
return false; }
INextBot *m_me; };
//----------------------------------------------------------------------------------------------------------
/**
* Check for collisions during move and attempt to resolve them */ bool NextBotGroundLocomotion::DetectCollision( trace_t *pTrace, int &recursionLimit, const Vector &from, const Vector &to, const Vector &vecMins, const Vector &vecMaxs ) { IBody *body = GetBot()->GetBodyInterface();
CBaseEntity *ignore = m_ignorePhysicsPropTimer.IsElapsed() ? NULL : m_ignorePhysicsProp; GroundLocomotionCollisionTraceFilter filter( GetBot(), ignore, COLLISION_GROUP_NONE );
TraceHull( from, to, vecMins, vecMaxs, body->GetSolidMask(), &filter, pTrace );
if ( !pTrace->DidHit() ) return false;
//
// A collision occurred - resolve it
//
// bust through "flimsy" breakables and keep on going
if ( pTrace->DidHitNonWorldEntity() && pTrace->m_pEnt != NULL ) { CBaseEntity *other = pTrace->m_pEnt;
if ( !other->MyCombatCharacterPointer() && IsEntityTraversable( other, IMMEDIATELY ) /*&& IsFlimsy( other )*/ ) { if ( recursionLimit <= 0 ) return true;
--recursionLimit;
// break the weak breakable we collided with
CTakeDamageInfo damageInfo( GetBot()->GetEntity(), GetBot()->GetEntity(), 100.0f, DMG_CRUSH ); CalculateExplosiveDamageForce( &damageInfo, GetMotionVector(), pTrace->endpos ); other->TakeDamage( damageInfo );
// retry trace now that the breakable is out of the way
return DetectCollision( pTrace, recursionLimit, from, to, vecMins, vecMaxs ); } }
/// @todo Only invoke OnContact() and Touch() once per collision pair
// inform other components of collision
if ( GetBot()->ShouldTouch( pTrace->m_pEnt ) ) { GetBot()->OnContact( pTrace->m_pEnt, pTrace ); }
INextBot *them = dynamic_cast< INextBot * >( pTrace->m_pEnt ); if ( them && them->ShouldTouch( m_nextBot ) ) { /// @todo construct mirror of trace
them->OnContact( m_nextBot ); } else { pTrace->m_pEnt->Touch( GetBot()->GetEntity() ); }
return true; }
//----------------------------------------------------------------------------------------------------------
Vector NextBotGroundLocomotion::ResolveCollision( const Vector &from, const Vector &to, int recursionLimit ) { VPROF_BUDGET( "NextBotGroundLocomotion::ResolveCollision", "NextBotExpensive" );
IBody *body = GetBot()->GetBodyInterface(); if ( body == NULL || recursionLimit < 0 ) { Assert( !m_bRecomputePostureOnCollision ); return to; }
// Only bother to recompute posture if we're currently standing or crouching
if ( m_bRecomputePostureOnCollision ) { if ( !body->IsActualPosture( IBody::STAND ) && !body->IsActualPosture( IBody::CROUCH ) ) { m_bRecomputePostureOnCollision = false; } }
// get bounding limits, ignoring step-upable height
bool bPerformCrouchTest = false; Vector mins; Vector maxs; if ( m_isUsingFullFeetTrace ) { mins = body->GetHullMins(); } else { mins = body->GetHullMins() + Vector( 0, 0, GetStepHeight() ); } if ( !m_bRecomputePostureOnCollision ) { maxs = body->GetHullMaxs(); if ( mins.z >= maxs.z ) { // if mins.z is greater than maxs.z, the engine will Assert
// in UTIL_TraceHull, and it won't work as advertised.
mins.z = maxs.z - 2.0f; } } else { const float halfSize = body->GetHullWidth() / 2.0f; maxs.Init( halfSize, halfSize, body->GetStandHullHeight() ); bPerformCrouchTest = true; }
trace_t trace; Vector desiredGoal = to; Vector resolvedGoal; IBody::PostureType nPosture = IBody::STAND; while( true ) { bool bCollided = DetectCollision( &trace, recursionLimit, from, desiredGoal, mins, maxs ); if ( !bCollided ) { resolvedGoal = desiredGoal; break; }
// If we hit really close to our target, then stop
if ( !trace.startsolid && desiredGoal.DistToSqr( trace.endpos ) < 1.0f ) { resolvedGoal = trace.endpos; break; }
// Check for crouch test, if it's necessary
// Don't bother about checking for crouch if we hit an actor
// Also don't bother checking for crouch if we hit a plane that pushes us upwards
if ( bPerformCrouchTest ) { // Don't do this work twice
bPerformCrouchTest = false;
nPosture = body->GetDesiredPosture();
if ( !trace.m_pEnt->MyNextBotPointer() && !trace.m_pEnt->IsPlayer() ) { // Here, our standing trace hit the world or something non-breakable
// If we're not currently crouching, then see if we could travel
// the entire distance if we were crouched
if ( nPosture != IBody::CROUCH ) { trace_t crouchTrace; NextBotTraversableTraceFilter crouchFilter( GetBot(), ILocomotion::IMMEDIATELY ); Vector vecCrouchMax( maxs.x, maxs.y, body->GetCrouchHullHeight() ); TraceHull( from, desiredGoal, mins, vecCrouchMax, body->GetSolidMask(), &crouchFilter, &crouchTrace ); if ( crouchTrace.fraction >= 1.0f && !crouchTrace.startsolid ) { nPosture = IBody::CROUCH; } } } else if ( nPosture == IBody::CROUCH ) { // Here, our standing trace hit an actor
// NOTE: This test occurs almost never, based on my tests
// Converts from crouch to stand in the case where the player
// is currently crouching, *and* his first trace (with the standing hull)
// hits an actor *and* if he didn't hit that actor, he could have
// moved standing the entire way to his desired endpoint
trace_t standTrace; NextBotTraversableTraceFilter standFilter( GetBot(), ILocomotion::IMMEDIATELY ); TraceHull( from, desiredGoal, mins, maxs, body->GetSolidMask(), &standFilter, &standTrace ); if ( standTrace.fraction >= 1.0f && !standTrace.startsolid ) { nPosture = IBody::STAND; } }
// Our first trace was based on the standing hull.
// If we need be crouched, the trace was bogus; we need to do another
if ( nPosture == IBody::CROUCH ) { maxs.z = body->GetCrouchHullHeight(); continue; } }
if ( trace.startsolid ) { // stuck inside solid; don't move
if ( trace.m_pEnt && !trace.m_pEnt->IsWorld() ) { // only ignore physics props that are not doors
if ( dynamic_cast< CPhysicsProp * >( trace.m_pEnt ) != NULL && dynamic_cast< CBasePropDoor * >( trace.m_pEnt ) == NULL ) { IPhysicsObject *physics = trace.m_pEnt->VPhysicsGetObject(); if ( physics && physics->IsMoveable() ) { // we've intersected a (likely moving) physics prop - ignore it for awhile so we can move out of it
m_ignorePhysicsProp = trace.m_pEnt; m_ignorePhysicsPropTimer.Start( 1.0f ); } } }
// return to last known non-interpenetrating position
resolvedGoal = m_lastValidPos;
break; } if ( --recursionLimit <= 0 ) { // reached recursion limit, no more adjusting allowed
resolvedGoal = trace.endpos; break; } // never slide downwards/concave to avoid getting stuck in the ground
if ( trace.plane.normal.z < 0.0f ) { trace.plane.normal.z = 0.0f; trace.plane.normal.NormalizeInPlace(); }
// slide off of surface we hit
Vector fullMove = desiredGoal - from; Vector leftToMove = fullMove * ( 1.0f - trace.fraction );
// obey climbing slope limit
if ( !body->HasActivityType( IBody::MOTION_CONTROLLED_Z ) && trace.plane.normal.z < GetTraversableSlopeLimit() && fullMove.z > 0.0f ) { fullMove.z = 0.0f; trace.plane.normal.z = 0.0f; trace.plane.normal.NormalizeInPlace(); }
float blocked = DotProduct( trace.plane.normal, leftToMove );
Vector unconstrained = fullMove - blocked * trace.plane.normal;
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) ) { NDebugOverlay::Line( trace.endpos, trace.endpos + 20.0f * trace.plane.normal, 255, 0, 150, true, 15.0f ); }
// check for collisions along remainder of move
// But don't bother if we're not going to deflect much
Vector remainingMove = from + unconstrained; if ( remainingMove.DistToSqr( trace.endpos ) < 1.0f ) { resolvedGoal = trace.endpos; break; }
desiredGoal = remainingMove; }
if ( !trace.startsolid ) { m_lastValidPos = resolvedGoal; }
if ( m_bRecomputePostureOnCollision ) { m_bRecomputePostureOnCollision = false;
if ( !body->IsActualPosture( nPosture ) ) { body->SetDesiredPosture( nPosture ); } }
return resolvedGoal; }
//--------------------------------------------------------------------------------------------------------
/**
* Collect the closest actors */ class ClosestActorsScan { public: ClosestActorsScan( const Vector &spot, int team, float maxRange = 0.0f, CBaseCombatCharacter *ignore = NULL ) { m_spot = spot; m_team = team; m_close = NULL; if ( maxRange > 0.0f ) { m_closeRangeSq = maxRange * maxRange; } else { m_closeRangeSq = 999999999.9f; } m_ignore = ignore; } bool operator() ( CBaseCombatCharacter *actor ) { if (actor == m_ignore) return true; if (actor->IsAlive() && (m_team == TEAM_ANY || actor->GetTeamNumber() == m_team)) { Vector to = actor->WorldSpaceCenter() - m_spot; float rangeSq = to.LengthSqr(); if (rangeSq < m_closeRangeSq) { m_closeRangeSq = rangeSq; m_close = actor; } } return true; } CBaseCombatCharacter *GetActor( void ) const { return m_close; } bool IsCloserThan( float range ) { return (m_closeRangeSq < (range * range)); }
bool IsFartherThan( float range ) { return (m_closeRangeSq > (range * range)); } Vector m_spot; int m_team; CBaseCombatCharacter *m_close; float m_closeRangeSq; CBaseCombatCharacter *m_ignore; };
#ifdef SKIPME
//----------------------------------------------------------------------------------------------------------
/**
* Push away zombies that are interpenetrating */ Vector NextBotGroundLocomotion::ResolveZombieCollisions( const Vector &pos ) { Vector adjustedNewPos = pos;
Infected *me = m_nextBot->MyInfectedPointer(); const float hullWidth = me->GetBodyInterface()->GetHullWidth();
// only avoid if we're actually trying to move somewhere, and are enraged
if ( me != NULL && !IsUsingLadder() && !IsClimbingOrJumping() && IsOnGround() && m_nextBot->IsAlive() && IsAttemptingToMove() /*&& GetBot()->GetBodyInterface()->IsArousal( IBody::INTENSE )*/ ) { VPROF_BUDGET( "NextBotGroundLocomotion::ResolveZombieCollisions", "NextBot" );
const CUtlVector< CHandle< Infected > > &neighbors = me->GetNeighbors(); Vector avoid = vec3_origin; float avoidWeight = 0.0f;
FOR_EACH_VEC( neighbors, it ) { Infected *them = neighbors[ it ];
if ( them ) { Vector toThem = them->GetAbsOrigin() - me->GetAbsOrigin(); toThem.z = 0.0f;
float range = toThem.NormalizeInPlace();
if ( range < hullWidth ) { // these two infected are in contact
me->Touch( them );
// move out of contact
float penetration = hullWidth - range;
float weight = 1.0f + ( 2.0f * penetration/hullWidth ); avoid += -weight * toThem; avoidWeight += weight; } } }
if ( avoidWeight > 0.0f ) { adjustedNewPos += 3.0f * ( avoid / avoidWeight ); } }
return adjustedNewPos; } #endif // _DEBUG
//----------------------------------------------------------------------------------------------------------
/**
* Move to newPos, resolving any collisions along the way */ void NextBotGroundLocomotion::UpdatePosition( const Vector &newPos ) { VPROF_BUDGET( "NextBotGroundLocomotion::UpdatePosition", "NextBot" );
if ( NextBotStop.GetBool() || (m_nextBot->GetFlags() & FL_FROZEN) != 0 ) { return; }
// avoid very nearby Actors to simulate "mushy" collisions between actors in contact with each other
//Vector adjustedNewPos = ResolveZombieCollisions( newPos );
Vector adjustedNewPos = newPos;
// check for collisions during move and resolve them
const int recursionLimit = 3; Vector safePos = ResolveCollision( m_nextBot->GetPosition(), adjustedNewPos, recursionLimit );
// set the bot's position
m_nextBot->SetPosition( safePos ); }
//----------------------------------------------------------------------------------------------------------
/**
* Prevent bot from sliding through floor, and snap to the ground if we're very near it */ void NextBotGroundLocomotion::UpdateGroundConstraint( void ) { VPROF_BUDGET( "NextBotGroundLocomotion::UpdateGroundConstraint", "NextBotExpensive" );
// if we're up on the upward arc of our jump, don't interfere by snapping to ground
// don't do ground constraint if we're climbing a ladder
if ( DidJustJump() || IsAscendingOrDescendingLadder() ) { m_isUsingFullFeetTrace = false; return; } IBody *body = GetBot()->GetBodyInterface(); if ( body == NULL ) { return; }
float halfWidth = body->GetHullWidth()/2.0f; // since we only care about ground collisions, keep hull short to avoid issues with low ceilings
/// @TODO: We need to also check actual hull height to avoid interpenetrating the world
float hullHeight = GetStepHeight(); // always need tolerance even when jumping/falling to make sure we detect ground penetration
// must be at least step height to avoid 'falling' down stairs
const float stickToGroundTolerance = GetStepHeight() + 0.01f;
trace_t ground; NextBotTraceFilterIgnoreActors filter( m_nextBot, COLLISION_GROUP_NONE );
TraceHull( m_nextBot->GetPosition() + Vector( 0, 0, GetStepHeight() + 0.001f ), m_nextBot->GetPosition() + Vector( 0, 0, -stickToGroundTolerance ), Vector( -halfWidth, -halfWidth, 0 ), Vector( halfWidth, halfWidth, hullHeight ), body->GetSolidMask(), &filter, &ground );
if ( ground.startsolid ) { // we're inside the ground - bad news
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) && !( gpGlobals->framecount % 60 ) ) { DevMsg( "%3.2f: Inside ground, ( %.0f, %.0f, %.0f )\n", gpGlobals->curtime, m_nextBot->GetPosition().x, m_nextBot->GetPosition().y, m_nextBot->GetPosition().z ); } return; }
if ( ground.fraction < 1.0f ) { // there is ground below us
m_groundNormal = ground.plane.normal;
m_isUsingFullFeetTrace = false; // zero velocity normal to the ground
float normalVel = DotProduct( m_groundNormal, m_velocity ); m_velocity -= normalVel * m_groundNormal; // check slope limit
if ( ground.plane.normal.z < GetTraversableSlopeLimit() ) { // too steep to stand here
// too steep to be ground - treat it like a wall hit
if ( ( m_velocity.x * ground.plane.normal.x + m_velocity.y * ground.plane.normal.y ) <= 0.0f ) { GetBot()->OnContact( ground.m_pEnt, &ground ); } // we're contacting some kind of ground
// zero accelerations normal to the ground
float normalAccel = DotProduct( m_groundNormal, m_acceleration ); m_acceleration -= normalAccel * m_groundNormal;
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) ) { DevMsg( "%3.2f: NextBotGroundLocomotion - Too steep to stand here\n", gpGlobals->curtime ); NDebugOverlay::Line( GetFeet(), GetFeet() + 20.0f * ground.plane.normal, 255, 150, 0, true, 5.0f ); }
// clear out upward velocity so we don't walk up lightpoles
m_velocity.z = MIN( 0, m_velocity.z ); m_acceleration.z = MIN( 0, m_acceleration.z );
return; } // inform other components of collision if we didn't land on the 'world'
if ( ground.m_pEnt && !ground.m_pEnt->IsWorld() ) { GetBot()->OnContact( ground.m_pEnt, &ground ); }
// snap us to the ground
m_nextBot->SetPosition( ground.endpos );
if ( !IsOnGround() ) { // just landed
m_nextBot->SetGroundEntity( ground.m_pEnt ); m_ground = ground.m_pEnt;
// landing stops any jump in progress
m_isJumping = false; m_isJumpingAcrossGap = false;
GetBot()->OnLandOnGround( ground.m_pEnt ); } } else { // not on the ground
if ( IsOnGround() ) { GetBot()->OnLeaveGround( m_nextBot->GetGroundEntity() ); if ( !IsClimbingUpToLedge() && !IsJumpingAcrossGap() ) { m_isUsingFullFeetTrace = true; // We're in the air and there's space below us, so use the full trace
m_acceleration.z -= GetGravity(); // start our gravity now
} } } }
//----------------------------------------------------------------------------------------------------------
/*
void NextBotGroundLocomotion::StandUp( void ) { // make sure there is room to stand
trace_t result; const float halfSize = GetHullWidth()/3.0f; Vector standHullMin( -halfSize, -halfSize, GetStepHeight() + 0.1f ); Vector standHullMax( halfSize, halfSize, GetStandHullHeight() ); TraceHull( GetFeet(), GetFeet(), standHullMin, standHullMax, MASK_NPCSOLID, m_nextBot, MASK_DEFAULTPLAYERSOLID, &result );
if ( result.fraction >= 1.0f && !result.startsolid ) { m_isCrouching = false; } } */
//----------------------------------------------------------------------------------------------------------
/**
* Initiate a climb to an adjacent high ledge */ bool NextBotGroundLocomotion::ClimbUpToLedge( const Vector &landingGoal, const Vector &landingForward, const CBaseEntity *obstacle ) { return false; }
//----------------------------------------------------------------------------------------------------------
/**
* Initiate a jump across an empty volume of space to far side */ void NextBotGroundLocomotion::JumpAcrossGap( const Vector &landingGoal, const Vector &landingForward ) { // can only jump if we're on the ground
if ( !IsOnGround() ) { return; }
IBody *body = GetBot()->GetBodyInterface(); if ( !body->StartActivity( ACT_JUMP ) ) { // body can't jump right now
return; }
// scale impulse to land on target
Vector toGoal = landingGoal - GetFeet(); // equation doesn't work if we're jumping upwards
float height = toGoal.z; toGoal.z = 0.0f; float range = toGoal.NormalizeInPlace();
// jump out at 45 degree angle
const float cos45 = 0.7071f; // avoid division by zero
if ( height > 0.9f * range ) { height = 0.9f * range; } // ballistic equation to find initial velocity assuming 45 degree inclination and landing at give range and height
float launchVel = ( range / cos45 ) / sqrt( ( 2.0f * ( range - height ) ) / GetGravity() );
Vector up( 0, 0, 1 ); Vector ahead = up + toGoal; ahead.NormalizeInPlace();
//m_velocity = cos45 * launchVel * ahead;
m_velocity = launchVel * ahead; m_acceleration = vec3_origin; m_isJumping = true; m_isJumpingAcrossGap = true; m_isClimbingUpToLedge = false;
GetBot()->OnLeaveGround( m_nextBot->GetGroundEntity() ); }
//----------------------------------------------------------------------------------------------------------
/**
* Initiate a simple undirected jump in the air */ void NextBotGroundLocomotion::Jump( void ) { // can only jump if we're on the ground
if ( !IsOnGround() ) { return; }
IBody *body = GetBot()->GetBodyInterface(); if ( !body->StartActivity( ACT_JUMP ) ) { // body can't jump right now
return; }
// jump straight up
m_velocity.z = sqrt( 2.0f * GetGravity() * GetMaxJumpHeight() ); m_isJumping = true; m_isClimbingUpToLedge = false;
GetBot()->OnLeaveGround( m_nextBot->GetGroundEntity() ); }
//----------------------------------------------------------------------------------------------------------
/**
* Set movement speed to running */ void NextBotGroundLocomotion::Run( void ) { m_desiredSpeed = GetRunSpeed(); }
//----------------------------------------------------------------------------------------------------------
/**
* Set movement speed to walking */ void NextBotGroundLocomotion::Walk( void ) { m_desiredSpeed = GetWalkSpeed(); }
//----------------------------------------------------------------------------------------------------------
/**
* Set movement speed to stopeed */ void NextBotGroundLocomotion::Stop( void ) { m_desiredSpeed = 0.0f; }
//----------------------------------------------------------------------------------------------------------
/**
* Return true if standing on something */ bool NextBotGroundLocomotion::IsOnGround( void ) const { return (m_nextBot->GetGroundEntity() != NULL); }
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when bot leaves ground for any reason */ void NextBotGroundLocomotion::OnLeaveGround( CBaseEntity *ground ) { m_nextBot->SetGroundEntity( NULL ); m_ground = NULL;
if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) ) { DevMsg( "%3.2f: NextBotGroundLocomotion::OnLeaveGround\n", gpGlobals->curtime ); } }
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when bot lands on the ground after being in the air */ void NextBotGroundLocomotion::OnLandOnGround( CBaseEntity *ground ) { if ( GetBot()->IsDebugging( NEXTBOT_LOCOMOTION ) ) { DevMsg( "%3.2f: NextBotGroundLocomotion::GetBot()->OnLandOnGround\n", gpGlobals->curtime ); } }
//----------------------------------------------------------------------------------------------------------
/**
* Get maximum speed bot can reach, regardless of desired speed */ float NextBotGroundLocomotion::GetSpeedLimit( void ) const { // if we're crouched, move at reduced speed
if ( !GetBot()->GetBodyInterface()->IsActualPosture( IBody::STAND ) ) { return 0.75f * GetRunSpeed(); }
// no limit
return 99999999.9f; }
//----------------------------------------------------------------------------------------------------------
/**
* Climb the given ladder to the top and dismount */ void NextBotGroundLocomotion::ClimbLadder( const CNavLadder *ladder, const CNavArea *dismountGoal ) { // if we're already climbing this ladder, don't restart
if ( m_ladder == ladder && m_isGoingUpLadder ) { return; } m_ladder = ladder; m_ladderDismountGoal = dismountGoal; m_isGoingUpLadder = true;
IBody *body = GetBot()->GetBodyInterface(); if ( body ) { // line them up to climb in XY
Vector mountSpot = m_ladder->m_bottom + m_ladder->GetNormal() * (0.75f * body->GetHullWidth()); mountSpot.z = GetBot()->GetPosition().z; UpdatePosition( mountSpot ); body->StartActivity( ACT_CLIMB_UP, IBody::MOTION_CONTROLLED_Z ); } }
//----------------------------------------------------------------------------------------------------------
/**
* Descend the given ladder to the bottom and dismount */ void NextBotGroundLocomotion::DescendLadder( const CNavLadder *ladder, const CNavArea *dismountGoal ) { // if we're already descending this ladder, don't restart
if ( m_ladder == ladder && !m_isGoingUpLadder ) { return; }
m_ladder = ladder; m_ladderDismountGoal = dismountGoal; m_isGoingUpLadder = false;
IBody *body = GetBot()->GetBodyInterface(); if ( body ) { // line them up to climb in XY
Vector mountSpot = m_ladder->m_top + m_ladder->GetNormal() * (0.75f * body->GetHullWidth()); mountSpot.z = GetBot()->GetPosition().z;
UpdatePosition( mountSpot );
float ladderYaw = UTIL_VecToYaw( -m_ladder->GetNormal() );
QAngle angles = m_nextBot->GetLocalAngles(); angles.y = ladderYaw; m_nextBot->SetLocalAngles( angles );
body->StartActivity( ACT_CLIMB_DOWN, IBody::MOTION_CONTROLLED_Z ); } }
//----------------------------------------------------------------------------------------------------------
bool NextBotGroundLocomotion::IsUsingLadder( void ) const { return ( m_ladder != NULL ); }
//----------------------------------------------------------------------------------------------------------
/**
* We are actually on the ladder right now, either climbing up or down */ bool NextBotGroundLocomotion::IsAscendingOrDescendingLadder( void ) const { return IsUsingLadder(); }
//----------------------------------------------------------------------------------------------------------
/**
* Return position of "feet" - point below centroid of bot at feet level */ const Vector &NextBotGroundLocomotion::GetFeet( void ) const { return m_nextBot->GetPosition(); }
//----------------------------------------------------------------------------------------------------------
const Vector & NextBotGroundLocomotion::GetAcceleration( void ) const { return m_acceleration; }
//----------------------------------------------------------------------------------------------------------
void NextBotGroundLocomotion::SetAcceleration( const Vector &accel ) { m_acceleration = accel; }
//----------------------------------------------------------------------------------------------------------
void NextBotGroundLocomotion::SetVelocity( const Vector &vel ) { m_velocity = vel; }
//----------------------------------------------------------------------------------------------------------
/**
* Return current world space velocity */ const Vector &NextBotGroundLocomotion::GetVelocity( void ) const { return m_velocity; }
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when an bot reaches its MoveTo goal */ void NextBotGroundLocomotion::OnMoveToSuccess( const Path *path ) { // stop
m_velocity = vec3_origin; m_acceleration = vec3_origin; }
//----------------------------------------------------------------------------------------------------------
/**
* Invoked when an bot fails to reach a MoveTo goal */ void NextBotGroundLocomotion::OnMoveToFailure( const Path *path, MoveToFailureType reason ) { // stop
m_velocity = vec3_origin; m_acceleration = vec3_origin; }
//----------------------------------------------------------------------------------------------------------
bool NextBotGroundLocomotion::DidJustJump( void ) const { return IsClimbingOrJumping() && (m_nextBot->GetAbsVelocity().z > 0.0f); }
//----------------------------------------------------------------------------------------------------------
/**
* Rotate body to face towards "target" */ void NextBotGroundLocomotion::FaceTowards( const Vector &target ) { const float deltaT = GetUpdateInterval(); QAngle angles = m_nextBot->GetLocalAngles(); float desiredYaw = UTIL_VecToYaw( target - GetFeet() );
float angleDiff = UTIL_AngleDiff( desiredYaw, angles.y ); float deltaYaw = GetMaxYawRate() * deltaT; if (angleDiff < -deltaYaw) { angles.y -= deltaYaw; } else if (angleDiff > deltaYaw) { angles.y += deltaYaw; } else { angles.y = desiredYaw; } m_nextBot->SetLocalAngles( angles ); }
|