|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Used to fire events based on the orientation of a given entity.
//
// Looks at its target's anglular velocity every frame and fires outputs
// as the angular velocity passes a given threshold value.
//
//=============================================================================//
#include "cbase.h"
#include "entityinput.h"
#include "entityoutput.h"
#include "eventqueue.h"
#include "mathlib/mathlib.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
enum { AVELOCITY_SENSOR_NO_LAST_RESULT = -2 };
ConVar g_debug_angularsensor( "g_debug_angularsensor", "0", FCVAR_CHEAT );
class CPointAngularVelocitySensor : public CPointEntity { DECLARE_CLASS( CPointAngularVelocitySensor, CPointEntity );
public:
CPointAngularVelocitySensor(); void Activate(void); void Spawn(void); void Think(void);
private:
float SampleAngularVelocity(CBaseEntity *pEntity); int CompareToThreshold(CBaseEntity *pEntity, float flThreshold, bool bFireVelocityOutput); void FireCompareOutput(int nCompareResult, CBaseEntity *pActivator); void DrawDebugLines( void );
// Input handlers
void InputTest( inputdata_t &inputdata ); void InputTestWithInterval( inputdata_t &inputdata );
EHANDLE m_hTargetEntity; // Entity whose angles are being monitored.
float m_flThreshold; // The threshold angular velocity that we are looking for.
int m_nLastCompareResult; // The comparison result from our last measurement, expressed as -1, 0, or 1
int m_nLastFireResult; // The last result for which we fire the output.
float m_flFireTime; float m_flFireInterval; float m_flLastAngVelocity; QAngle m_lastOrientation;
Vector m_vecAxis; bool m_bUseHelper;
// Outputs
COutputFloat m_AngularVelocity;
// Compare the target's angular velocity to the threshold velocity and fire the appropriate output.
// These outputs are filtered by m_flFireInterval to ignore excessive oscillations.
COutputEvent m_OnLessThan; COutputEvent m_OnLessThanOrEqualTo; COutputEvent m_OnGreaterThan; COutputEvent m_OnGreaterThanOrEqualTo; COutputEvent m_OnEqualTo;
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS(point_angularvelocitysensor, CPointAngularVelocitySensor);
BEGIN_DATADESC( CPointAngularVelocitySensor )
// Fields
DEFINE_FIELD( m_hTargetEntity, FIELD_EHANDLE ), DEFINE_KEYFIELD(m_flThreshold, FIELD_FLOAT, "threshold"), DEFINE_FIELD(m_nLastCompareResult, FIELD_INTEGER), DEFINE_FIELD( m_nLastFireResult, FIELD_INTEGER ), DEFINE_FIELD( m_flFireTime, FIELD_TIME ), DEFINE_KEYFIELD( m_flFireInterval, FIELD_FLOAT, "fireinterval" ), DEFINE_FIELD( m_flLastAngVelocity, FIELD_FLOAT ), DEFINE_FIELD( m_lastOrientation, FIELD_VECTOR ), // Inputs
DEFINE_INPUTFUNC(FIELD_VOID, "Test", InputTest), DEFINE_INPUTFUNC(FIELD_VOID, "TestWithInterval", InputTestWithInterval),
// Outputs
DEFINE_OUTPUT(m_OnLessThan, "OnLessThan"), DEFINE_OUTPUT(m_OnLessThanOrEqualTo, "OnLessThanOrEqualTo"), DEFINE_OUTPUT(m_OnGreaterThan, "OnGreaterThan"), DEFINE_OUTPUT(m_OnGreaterThanOrEqualTo, "OnGreaterThanOrEqualTo"), DEFINE_OUTPUT(m_OnEqualTo, "OnEqualTo"), DEFINE_OUTPUT(m_AngularVelocity, "AngularVelocity"),
DEFINE_KEYFIELD( m_vecAxis, FIELD_VECTOR, "axis" ), DEFINE_KEYFIELD( m_bUseHelper, FIELD_BOOLEAN, "usehelper" ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: constructor provides default values
//-----------------------------------------------------------------------------
CPointAngularVelocitySensor::CPointAngularVelocitySensor() { m_flFireInterval = 0.2f; }
//-----------------------------------------------------------------------------
// Purpose: Called when spawning after parsing keyvalues.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::Spawn(void) { m_flThreshold = fabs(m_flThreshold); m_nLastFireResult = AVELOCITY_SENSOR_NO_LAST_RESULT; m_nLastCompareResult = AVELOCITY_SENSOR_NO_LAST_RESULT; // m_flFireInterval = 0.2;
m_lastOrientation = vec3_angle; }
//-----------------------------------------------------------------------------
// Purpose: Called after all entities in the map have spawned.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::Activate(void) { BaseClass::Activate();
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target );
if (m_hTargetEntity) { SetNextThink( gpGlobals->curtime ); } }
//-----------------------------------------------------------------------------
// Purpose: Draws magic lines...
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::DrawDebugLines( void ) { if ( m_hTargetEntity ) { Vector vForward, vRight, vUp; AngleVectors( m_hTargetEntity->GetAbsAngles(), &vForward, &vRight, &vUp );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vForward * 64, 255, 0, 0, false, 0 ); NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vRight * 64, 0, 255, 0, false, 0 ); NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vUp * 64, 0, 0, 255, false, 0 ); }
if ( m_bUseHelper == true ) { QAngle Angles; Vector vAxisForward, vAxisRight, vAxisUp;
Vector vLine = m_vecAxis - GetAbsOrigin();
VectorNormalize( vLine );
VectorAngles( vLine, Angles ); AngleVectors( Angles, &vAxisForward, &vAxisRight, &vAxisUp );
NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vAxisForward * 64, 255, 0, 0, false, 0 ); NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vAxisRight * 64, 0, 255, 0, false, 0 ); NDebugOverlay::Line( GetAbsOrigin(), GetAbsOrigin() + vAxisUp * 64, 0, 0, 255, false, 0 ); } }
//-----------------------------------------------------------------------------
// Purpose: Returns the magnitude of the entity's angular velocity.
//-----------------------------------------------------------------------------
float CPointAngularVelocitySensor::SampleAngularVelocity(CBaseEntity *pEntity) { if (pEntity->GetMoveType() == MOVETYPE_VPHYSICS) { IPhysicsObject *pPhys = pEntity->VPhysicsGetObject(); if (pPhys != NULL) { Vector vecVelocity; AngularImpulse vecAngVelocity; pPhys->GetVelocity(&vecVelocity, &vecAngVelocity);
QAngle angles; pPhys->GetPosition( NULL, &angles );
float dt = gpGlobals->curtime - GetLastThink(); if ( dt == 0 ) dt = 0.1;
// HACKHACK: We don't expect a real 'delta' orientation here, just enough of an error estimate to tell if this thing
// is trying to move, but failing.
QAngle delta = angles - m_lastOrientation;
if ( ( delta.Length() / dt ) < ( vecAngVelocity.Length() * 0.01 ) ) { return 0.0f; } m_lastOrientation = angles;
if ( m_bUseHelper == false ) { return vecAngVelocity.Length(); } else { Vector vLine = m_vecAxis - GetAbsOrigin(); VectorNormalize( vLine );
Vector vecWorldAngVelocity; pPhys->LocalToWorldVector( &vecWorldAngVelocity, vecAngVelocity ); float flDot = DotProduct( vecWorldAngVelocity, vLine );
return flDot; } } } else { QAngle vecAngVel = pEntity->GetLocalAngularVelocity(); float flMax = MAX(fabs(vecAngVel[PITCH]), fabs(vecAngVel[YAW]));
return MAX(flMax, fabs(vecAngVel[ROLL])); }
return 0; }
//-----------------------------------------------------------------------------
// Purpose: Compares the given entity's angular velocity to the threshold velocity.
// Input : pEntity - Entity whose angular velocity is being measured.
// flThreshold -
// Output : Returns -1 if less than, 0 if equal to, or 1 if greater than the threshold.
//-----------------------------------------------------------------------------
int CPointAngularVelocitySensor::CompareToThreshold(CBaseEntity *pEntity, float flThreshold, bool bFireVelocityOutput) { if (pEntity == NULL) { return 0; }
float flAngVelocity = SampleAngularVelocity(pEntity);
if ( g_debug_angularsensor.GetBool() ) { DrawDebugLines(); }
if (bFireVelocityOutput && (flAngVelocity != m_flLastAngVelocity)) { m_AngularVelocity.Set(flAngVelocity, pEntity, this); m_flLastAngVelocity = flAngVelocity; }
if (flAngVelocity > flThreshold) { return 1; }
if (flAngVelocity == flThreshold) { return 0; }
return -1; }
//-----------------------------------------------------------------------------
// Called every frame to sense the angular velocity of the target entity.
// Output is filtered by m_flFireInterval to ignore excessive oscillations.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::Think(void) { if (m_hTargetEntity != NULL) { //
// Check to see if the measure entity's angular velocity has been within
// tolerance of the threshold for the given period of time.
//
int nCompare = CompareToThreshold(m_hTargetEntity, m_flThreshold, true); if (nCompare != m_nLastCompareResult) { // If we've oscillated back to where we last fired the output, don't
// fire the same output again.
if (nCompare == m_nLastFireResult) { m_flFireTime = 0; } else if (m_nLastCompareResult != AVELOCITY_SENSOR_NO_LAST_RESULT) { //
// The value has changed -- reset the timer. We'll fire the output if
// it stays at this value until the interval expires.
//
m_flFireTime = gpGlobals->curtime + m_flFireInterval; } m_nLastCompareResult = nCompare; } else if ((m_flFireTime != 0) && (gpGlobals->curtime >= m_flFireTime)) { //
// The compare result has held steady long enough -- time to
// fire the output.
//
FireCompareOutput(nCompare, this); m_nLastFireResult = nCompare; m_flFireTime = 0; }
SetNextThink( gpGlobals->curtime ); } }
//-----------------------------------------------------------------------------
// Fires the output after the fire interval if the velocity is stable.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::InputTestWithInterval( inputdata_t &inputdata ) { if (m_hTargetEntity != NULL) { m_flFireTime = gpGlobals->curtime + m_flFireInterval; m_nLastFireResult = AVELOCITY_SENSOR_NO_LAST_RESULT; m_nLastCompareResult = CompareToThreshold(m_hTargetEntity, m_flThreshold, true);
SetNextThink( gpGlobals->curtime ); } }
//-----------------------------------------------------------------------------
// Purpose: Input handler for forcing an instantaneous test of the condition.
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::InputTest( inputdata_t &inputdata ) { int nCompareResult = CompareToThreshold(m_hTargetEntity, m_flThreshold, false); FireCompareOutput(nCompareResult, inputdata.pActivator); }
//-----------------------------------------------------------------------------
// Purpose: Fires the appropriate output based on the given comparison result.
// Input : nCompareResult -
// pActivator -
//-----------------------------------------------------------------------------
void CPointAngularVelocitySensor::FireCompareOutput( int nCompareResult, CBaseEntity *pActivator ) { if (nCompareResult == -1) { m_OnLessThan.FireOutput(pActivator, this); m_OnLessThanOrEqualTo.FireOutput(pActivator, this); } else if (nCompareResult == 1) { m_OnGreaterThan.FireOutput(pActivator, this); m_OnGreaterThanOrEqualTo.FireOutput(pActivator, this); } else { m_OnEqualTo.FireOutput(pActivator, this); m_OnLessThanOrEqualTo.FireOutput(pActivator, this); m_OnGreaterThanOrEqualTo.FireOutput(pActivator, this); } }
// ============================================================================
//
// Simple velocity sensor
//
// ============================================================================
class CPointVelocitySensor : public CPointEntity { DECLARE_CLASS( CPointVelocitySensor, CPointEntity );
public:
void Spawn(); void Activate( void ); void Think( void );
private:
void SampleVelocity( void );
EHANDLE m_hTargetEntity; // Entity whose angles are being monitored.
Vector m_vecAxis; // Axis along which to measure the speed.
bool m_bEnabled; // Whether we're measuring or not
// Outputs
float m_fPrevVelocity; // stores velocity from last frame, so we only write the output if it has changed
COutputFloat m_Velocity;
void InputEnable( inputdata_t &inputdata ); void InputDisable( inputdata_t &inputdata );
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS( point_velocitysensor, CPointVelocitySensor );
BEGIN_DATADESC( CPointVelocitySensor )
// Fields
DEFINE_FIELD( m_hTargetEntity, FIELD_EHANDLE ), DEFINE_KEYFIELD( m_vecAxis, FIELD_VECTOR, "axis" ), DEFINE_KEYFIELD( m_bEnabled, FIELD_BOOLEAN, "enabled" ), DEFINE_FIELD( m_fPrevVelocity, FIELD_FLOAT ),
// Outputs
DEFINE_OUTPUT( m_Velocity, "Velocity" ),
DEFINE_INPUTFUNC( FIELD_VOID, "Enable", InputEnable ), DEFINE_INPUTFUNC( FIELD_VOID, "Disable", InputDisable ),
END_DATADESC()
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CPointVelocitySensor::Spawn() { Vector vLine = m_vecAxis - GetAbsOrigin(); VectorNormalize( vLine ); m_vecAxis = vLine; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointVelocitySensor::Activate( void ) { BaseClass::Activate();
m_hTargetEntity = gEntList.FindEntityByName( NULL, m_target ); if ( m_bEnabled && m_hTargetEntity ) { SetNextThink( gpGlobals->curtime ); } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointVelocitySensor::InputEnable( inputdata_t &inputdata ) { // Don't interrupt us if we're already enabled
if ( m_bEnabled ) return;
m_bEnabled = true; if ( m_hTargetEntity ) { SetNextThink( gpGlobals->curtime ); } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPointVelocitySensor::InputDisable( inputdata_t &inputdata ) { m_bEnabled = false; }
//-----------------------------------------------------------------------------
// Purpose: Called every frame
//-----------------------------------------------------------------------------
void CPointVelocitySensor::Think( void ) { if ( m_hTargetEntity != NULL && m_bEnabled ) { SampleVelocity(); SetNextThink( gpGlobals->curtime ); } }
//-----------------------------------------------------------------------------
// Purpose: Returns the magnitude of the entity's angular velocity.
//-----------------------------------------------------------------------------
void CPointVelocitySensor::SampleVelocity( void ) { if ( m_hTargetEntity == NULL ) return;
Vector vecVelocity;
if ( m_hTargetEntity->GetMoveType() == MOVETYPE_VPHYSICS ) { IPhysicsObject *pPhys = m_hTargetEntity->VPhysicsGetObject(); if ( pPhys != NULL ) { pPhys->GetVelocity( &vecVelocity, NULL ); } } else { vecVelocity = m_hTargetEntity->GetAbsVelocity(); }
/*
float flSpeed = VectorNormalize( vecVelocity ); float flDot = ( m_vecAxis != vec3_origin ) ? DotProduct( vecVelocity, m_vecAxis ) : 1.0f; */ // We want the component of the velocity vector in the direction of the axis, which since the
// axis is normalized is simply their dot product (eg V . A = |V|*|A|*cos(theta) )
m_fPrevVelocity = ( m_vecAxis != vec3_origin ) ? DotProduct( vecVelocity, m_vecAxis ) : 1.0f;
// if it's changed since the last frame, poke the output
if ( m_fPrevVelocity != m_Velocity.Get() ) { m_Velocity.Set( m_fPrevVelocity, NULL, NULL ); } }
|