|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: MOVEMENT ENTITIES TEST
//
// $NoKeywords: $
//=============================================================================//
#include "cbase.h"
#include "entitylist.h"
#include "entityoutput.h"
#include "keyframe/keyframe.h" // BUG: this needs to move if keyframe is a standard thing
#include "mathlib/mathlib.h" // FIXME: why do we still need this?
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// Hack, sort of. These interpolators don't get to hold state, but the ones
// that need state (like the rope simulator) should NOT be used as paths here.
IPositionInterpolator *g_pPositionInterpolators[8] = {0,0,0,0,0,0,0,0};
IPositionInterpolator* GetPositionInterpolator( int iInterp ) { if( !g_pPositionInterpolators[iInterp] ) g_pPositionInterpolators[iInterp] = Motion_GetPositionInterpolator( iInterp );
return g_pPositionInterpolators[iInterp]; }
static float Fix( float angle ) { while ( angle < 0 ) angle += 360; while ( angle > 360 ) angle -= 360;
return angle; }
void FixupAngles( QAngle &v ) { v.x = Fix( v.x ); v.y = Fix( v.y ); v.z = Fix( v.z ); }
//-----------------------------------------------------------------------------
//
// Purpose: Contains a description of a keyframe
// has no networked representation, so has to store origin, etc. itself
//
//-----------------------------------------------------------------------------
class CPathKeyFrame : public CLogicalEntity { public: DECLARE_CLASS( CPathKeyFrame, CLogicalEntity );
void Spawn( void ); void Activate( void ); void Link( void );
Vector m_Origin; QAngle m_Angles; // euler angles PITCH YAW ROLL (Y Z X)
Quaternion m_qAngle; // quaternion angle (generated from m_Angles)
string_t m_iNextKey; float m_flNextTime;
CPathKeyFrame *NextKey( int direction ); CPathKeyFrame *PrevKey( int direction );
float Speed( void ) { return m_flSpeed; } void SetKeyAngles( QAngle angles );
CPathKeyFrame *InsertNewKey( Vector newPos, QAngle newAngles ); void CalculateFrameDuration( void );
protected: CPathKeyFrame *m_pNextKey; CPathKeyFrame *m_pPrevKey;
float m_flSpeed;
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS( keyframe_track, CPathKeyFrame );
BEGIN_DATADESC( CPathKeyFrame )
DEFINE_FIELD( m_Origin, FIELD_VECTOR ), DEFINE_FIELD( m_Angles, FIELD_VECTOR ), DEFINE_FIELD( m_qAngle, FIELD_QUATERNION ),
DEFINE_KEYFIELD( m_iNextKey, FIELD_STRING, "NextKey" ), DEFINE_FIELD( m_flNextTime, FIELD_FLOAT ), // derived from speed
DEFINE_KEYFIELD( m_flSpeed, FIELD_FLOAT, "MoveSpeed" ), DEFINE_FIELD( m_pNextKey, FIELD_CLASSPTR ), DEFINE_FIELD( m_pPrevKey, FIELD_CLASSPTR ),
END_DATADESC()
//-----------------------------------------------------------------------------
// Purpose: Converts inputed euler angles to internal angle format (quaternions)
//-----------------------------------------------------------------------------
void CPathKeyFrame::Spawn( void ) { m_Origin = GetLocalOrigin(); m_Angles = GetLocalAngles();
SetKeyAngles( m_Angles ); }
//-----------------------------------------------------------------------------
// Purpose: Adds the keyframe into the path after all the other keys have spawned
//-----------------------------------------------------------------------------
void CPathKeyFrame::Activate( void ) { BaseClass::Activate(); Link();
CalculateFrameDuration(); }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CPathKeyFrame::CalculateFrameDuration( void ) { // calculate time from speed
if ( m_pNextKey && m_flSpeed > 0 ) { m_flNextTime = (m_Origin - m_pNextKey->m_Origin).Length() / m_flSpeed;
// couldn't get time from distance, get it from rotation instead
if ( !m_flNextTime ) { // speed is in degrees per second
// find the largest rotation component and use that
QAngle ang = m_Angles - m_pNextKey->m_Angles; FixupAngles( ang ); float x = 0; for ( int i = 0; i < 3; i++ ) { if ( abs(ang[i]) > x ) { x = abs(ang[i]); } }
m_flNextTime = x / m_flSpeed; } } }
//-----------------------------------------------------------------------------
// Purpose: Links the key frame into the key frame list
//-----------------------------------------------------------------------------
void CPathKeyFrame::Link( void ) { m_pNextKey = dynamic_cast<CPathKeyFrame*>( gEntList.FindEntityByName(NULL, m_iNextKey ) );
if ( m_pNextKey ) { m_pNextKey->m_pPrevKey = this; } }
//-----------------------------------------------------------------------------
// Purpose:
// Input : angles -
//-----------------------------------------------------------------------------
void CPathKeyFrame::SetKeyAngles( QAngle angles ) { m_Angles = angles; AngleQuaternion( m_Angles, m_qAngle ); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : direction -
// Output : CPathKeyFrame
//-----------------------------------------------------------------------------
CPathKeyFrame* CPathKeyFrame::NextKey( int direction ) { if ( direction == 1 ) { return m_pNextKey; } else if ( direction == -1 ) { return m_pPrevKey; } return this; }
//-----------------------------------------------------------------------------
// Purpose:
// Input : direction -
// Output : CPathKeyFrame
//-----------------------------------------------------------------------------
CPathKeyFrame *CPathKeyFrame::PrevKey( int direction ) { if ( direction == 1 ) { return m_pPrevKey; } else if ( direction == -1 ) { return m_pNextKey; } return this; }
//-----------------------------------------------------------------------------
// Purpose: Creates and insterts a new keyframe into the sequence
// Input : newPos -
// newAngles -
// Output : CPathKeyFrame
//-----------------------------------------------------------------------------
CPathKeyFrame *CPathKeyFrame::InsertNewKey( Vector newPos, QAngle newAngles ) { CPathKeyFrame *newKey = CREATE_ENTITY( CPathKeyFrame, "keyframe_track" );
// copy data across
newKey->SetKeyAngles( newAngles ); newKey->m_Origin = newPos; newKey->m_flSpeed = m_flSpeed; newKey->SetEFlags( GetEFlags() ); if ( m_iParent != NULL_STRING ) { newKey->SetParent( m_iParent, NULL ); }
// link forward
newKey->m_pNextKey = m_pNextKey; m_pNextKey->m_pPrevKey = newKey;
// link back
m_pNextKey = newKey; newKey->m_pPrevKey = this;
// calculate new times
CalculateFrameDuration(); newKey->CalculateFrameDuration();
return newKey; }
//-----------------------------------------------------------------------------
//
// Purpose: Basic keyframed movement behavior
//
//-----------------------------------------------------------------------------
class CBaseMoveBehavior : public CPathKeyFrame { public: DECLARE_CLASS( CBaseMoveBehavior, CPathKeyFrame );
void Spawn( void ); void Activate( void ); void MoveDone( void ); float SetObjectPhysicsVelocity( float moveTime );
// methods
virtual bool StartMoving( int direction ); virtual void StopMoving( void ); virtual bool IsMoving( void );
// derived classes should override this to get notification of arriving at new keyframes
// virtual void ArrivedAtKeyFrame( CPathKeyFrame * ) {}
bool IsAtSequenceStart( void ); bool IsAtSequenceEnd( void );
// interpolation functions
// int m_iTimeModifier;
int m_iPositionInterpolator; int m_iRotationInterpolator;
// animation vars
float m_flAnimStartTime; float m_flAnimEndTime; float m_flAverageSpeedAcrossFrame; // for advancing time with speed (not the normal visa-versa)
CPathKeyFrame *m_pCurrentKeyFrame; // keyframe currently moving from
CPathKeyFrame *m_pTargetKeyFrame; // keyframe being moved to
CPathKeyFrame *m_pPreKeyFrame, *m_pPostKeyFrame; // pre- and post-keyframe's for spline interpolation
float m_flTimeIntoFrame;
int m_iDirection; // 1 for forward, -1 for backward, and 0 for at rest
float CalculateTimeAdvancementForSpeed( float moveTime, float speed );
DECLARE_DATADESC(); };
LINK_ENTITY_TO_CLASS( move_keyframed, CBaseMoveBehavior );
BEGIN_DATADESC( CBaseMoveBehavior )
// DEFINE_KEYFIELD( m_iTimeModifier, FIELD_INTEGER, "TimeModifier" ),
DEFINE_KEYFIELD( m_iPositionInterpolator, FIELD_INTEGER, "PositionInterpolator" ), DEFINE_KEYFIELD( m_iRotationInterpolator, FIELD_INTEGER, "RotationInterpolator" ),
DEFINE_FIELD( m_pCurrentKeyFrame, FIELD_CLASSPTR ), DEFINE_FIELD( m_pTargetKeyFrame, FIELD_CLASSPTR ), DEFINE_FIELD( m_pPreKeyFrame, FIELD_CLASSPTR ), DEFINE_FIELD( m_pPostKeyFrame, FIELD_CLASSPTR ), DEFINE_FIELD( m_flAnimStartTime, FIELD_FLOAT ), DEFINE_FIELD( m_flAnimEndTime, FIELD_FLOAT ), DEFINE_FIELD( m_flAverageSpeedAcrossFrame, FIELD_FLOAT ), DEFINE_FIELD( m_flTimeIntoFrame, FIELD_FLOAT ), DEFINE_FIELD( m_iDirection, FIELD_INTEGER ),
END_DATADESC()
void CBaseMoveBehavior::Spawn( void ) { m_pCurrentKeyFrame = this; m_flTimeIntoFrame = 0; SetMoveType( MOVETYPE_PUSH );
// a move behavior is also it's first keyframe
m_Origin = GetLocalOrigin(); m_Angles = GetLocalAngles();
BaseClass::Spawn(); }
void CBaseMoveBehavior::Activate( void ) { BaseClass::Activate();
SetMoveDoneTime( 0.5 ); // start moving in 0.2 seconds time
// if we are just the basic keyframed entity, cycle our animation
if ( !stricmp(GetClassname(), "move_keyframed") ) { StartMoving( 1 ); } }
//-----------------------------------------------------------------------------
// Purpose: Checks to see if the we're at the start of the keyframe sequence
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CBaseMoveBehavior::IsAtSequenceStart( void ) { if ( !m_pCurrentKeyFrame ) return true;
if ( m_flAnimStartTime && m_flAnimStartTime >= GetLocalTime() ) { if ( !m_pCurrentKeyFrame->PrevKey(1) && !m_pTargetKeyFrame ) return true; }
return false; }
//-----------------------------------------------------------------------------
// Purpose: Checks to see if we're at the end of the keyframe sequence
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CBaseMoveBehavior::IsAtSequenceEnd( void ) { if ( !m_pCurrentKeyFrame ) return false;
if ( !m_pCurrentKeyFrame->NextKey(1) && !m_pTargetKeyFrame ) return true;
return false; }
//-----------------------------------------------------------------------------
// Purpose:
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CBaseMoveBehavior::IsMoving( void ) { if ( m_iDirection != 0 ) return true;
return false; }
//-----------------------------------------------------------------------------
// Purpose: Starts the object moving from it's current position, in the direction indicated
// Input : direction - 1 is forward through the sequence, -1 is backwards, and 0 is stop
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CBaseMoveBehavior::StartMoving( int direction ) { // 0 direction is to stop moving
if ( direction == 0 ) { StopMoving(); return false; } // check to see if we should keep moving in the current direction
if ( m_iDirection == direction ) { // if we're at the end of the current anim key, move to the next one
if ( GetLocalTime() >= m_flAnimEndTime ) { m_pCurrentKeyFrame = m_pTargetKeyFrame; m_flTimeIntoFrame = 0; if ( !m_pTargetKeyFrame->NextKey(direction) ) { // we've hit the end of the sequence
m_flAnimEndTime = 0; m_flAnimStartTime = 0; StopMoving(); return false; }
// advance the target keyframe
m_pTargetKeyFrame = m_pTargetKeyFrame->NextKey(direction); } } else { // we're changing direction
// need to calculate current position in the frame
// stop first, then start again
if ( m_iDirection != 0 ) { StopMoving(); }
m_iDirection = direction;
// if we're going in reverse, swap the currentkey and targetkey (since we're going opposite dir)
if ( direction == 1 ) { m_pTargetKeyFrame = m_pCurrentKeyFrame->NextKey( direction ); } else if ( direction == -1 ) { if ( m_flTimeIntoFrame > 0 ) { m_pTargetKeyFrame = m_pCurrentKeyFrame; m_pCurrentKeyFrame = m_pCurrentKeyFrame->NextKey( 1 ); } else { m_pTargetKeyFrame = m_pCurrentKeyFrame->PrevKey( 1 ); } }
// recalculate our movement from the stored data
if ( !m_pTargetKeyFrame ) { StopMoving(); return false; }
// calculate the keyframes before and after the keyframes we're interpolating between
m_pPostKeyFrame = m_pTargetKeyFrame->NextKey( direction ); if ( !m_pPostKeyFrame ) { m_pPostKeyFrame = m_pTargetKeyFrame; } m_pPreKeyFrame = m_pCurrentKeyFrame->PrevKey( direction ); if ( !m_pPreKeyFrame ) { m_pPreKeyFrame = m_pCurrentKeyFrame; } }
// no target, can't move
if ( !m_pTargetKeyFrame ) return false; // calculate start/end time
// ->m_flNextTime is the time to traverse to the NEXT key, so we need the opposite if travelling backwards
if ( m_iDirection == 1 ) { m_flAnimStartTime = GetLocalTime() - m_flTimeIntoFrame; m_flAnimEndTime = GetLocalTime() + m_pCurrentKeyFrame->m_flNextTime - m_flTimeIntoFrame; } else { // flip the timing, since we're in reverse
if ( m_flTimeIntoFrame ) m_flTimeIntoFrame = m_pTargetKeyFrame->m_flNextTime - m_flTimeIntoFrame;
m_flAnimStartTime = GetLocalTime() - m_flTimeIntoFrame; m_flAnimEndTime = GetLocalTime() + m_pTargetKeyFrame->m_flNextTime - m_flTimeIntoFrame; }
// calculate the average speed at which we cross
float animDuration = (m_flAnimEndTime - m_flAnimStartTime); float dist = (m_pCurrentKeyFrame->m_Origin - m_pTargetKeyFrame->m_Origin).Length(); m_flAverageSpeedAcrossFrame = animDuration / dist;
SetMoveDoneTime( m_flAnimEndTime - GetLocalTime() ); return true; }
//-----------------------------------------------------------------------------
// Purpose: stops the object from moving
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
void CBaseMoveBehavior::StopMoving( void ) { // remember exactly where we are in the frame
m_flTimeIntoFrame = 0;
if ( m_iDirection == 1 ) { // record the time if we're not at the end of the frame
if ( GetLocalTime() < m_flAnimEndTime ) { m_flTimeIntoFrame = GetLocalTime() - m_flAnimStartTime; } else { // we're actually at the end
if ( m_pTargetKeyFrame ) { m_pCurrentKeyFrame = m_pTargetKeyFrame; } } } else if ( m_iDirection == -1 ) { // store it only as a forward movement
m_pCurrentKeyFrame = m_pTargetKeyFrame;
if ( GetLocalTime() < m_flAnimEndTime ) { m_flTimeIntoFrame = m_flAnimEndTime - GetLocalTime(); } }
// stop moving totally
SetMoveDoneTime( -1 ); m_iDirection = 0; m_flAnimStartTime = 0; m_flAnimEndTime = 0; m_pTargetKeyFrame = NULL; SetAbsVelocity(vec3_origin); SetLocalAngularVelocity( vec3_angle ); }
//-----------------------------------------------------------------------------
// Purpose: We have just arrived at a key, move onto the next keyframe
//-----------------------------------------------------------------------------
void CBaseMoveBehavior::MoveDone( void ) { // if we're just a base then keep playing the anim
if ( !stricmp(STRING(m_iClassname), "move_keyframed") ) { int direction = m_iDirection; // start moving from the keyframe we've just reached
if ( !StartMoving(direction) ) { // try moving in the other direction
StartMoving( -direction ); } }
BaseClass::MoveDone(); }
//-----------------------------------------------------------------------------
// Purpose: Calculates a new moveTime based on the speed and the current point
// in the animation.
// used to advance keyframed objects that have dynamic speeds.
// Input : moveTime -
// Output : float - the new time in the keyframing sequence
//-----------------------------------------------------------------------------
float CBaseMoveBehavior::CalculateTimeAdvancementForSpeed( float moveTime, float speed ) { return (moveTime * speed * m_flAverageSpeedAcrossFrame); }
//-----------------------------------------------------------------------------
// Purpose:
// GetLocalTime() is the objects local current time
// Input : destTime - new time that is being moved to
// moveTime - amount of time to be advanced this frame
// Output : float - the actual amount of time to move (usually moveTime)
//-----------------------------------------------------------------------------
float CBaseMoveBehavior::SetObjectPhysicsVelocity( float moveTime ) { // make sure we have a valid set up
if ( !m_pCurrentKeyFrame || !m_pTargetKeyFrame ) return moveTime;
// if we're not moving, we're not moving
if ( !IsMoving() ) return moveTime; float destTime = moveTime + GetLocalTime();
// work out where we want to be, using destTime
m_flTimeIntoFrame = destTime - m_flAnimStartTime; float newTime = (destTime - m_flAnimStartTime) / (m_flAnimEndTime - m_flAnimStartTime); Vector newPos; QAngle newAngles;
IPositionInterpolator *pInterp = GetPositionInterpolator( m_iPositionInterpolator ); if( pInterp ) { // setup key frames
pInterp->SetKeyPosition( -1, m_pPreKeyFrame->m_Origin ); Motion_SetKeyAngles( -1, m_pPreKeyFrame->m_qAngle );
pInterp->SetKeyPosition( 0, m_pCurrentKeyFrame->m_Origin ); Motion_SetKeyAngles( 0, m_pCurrentKeyFrame->m_qAngle );
pInterp->SetKeyPosition( 1, m_pTargetKeyFrame->m_Origin ); Motion_SetKeyAngles( 1, m_pTargetKeyFrame->m_qAngle );
pInterp->SetKeyPosition( 2, m_pPostKeyFrame->m_Origin ); Motion_SetKeyAngles( 2, m_pPostKeyFrame->m_qAngle );
// find new interpolated position & rotation
pInterp->InterpolatePosition( newTime, newPos ); } else { newPos.Init(); }
Quaternion qRot; Motion_InterpolateRotation( newTime, m_iRotationInterpolator, qRot ); QuaternionAngles( qRot, newAngles );
// find our velocity vector (newPos - currentPos) and scale velocity vector according to the movetime
float oneOnMoveTime = 1 / moveTime; SetAbsVelocity( (newPos - GetLocalOrigin()) * oneOnMoveTime ); SetLocalAngularVelocity( (newAngles - GetLocalAngles()) * oneOnMoveTime );
return moveTime; }
|