|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#include "cbase.h"
#include "physics.h"
#include "te_effect_dispatch.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
static int BestAxisMatchingNormal( matrix3x4_t &matrix, const Vector &normal ) { float bestDot = -1; int best = 0; for ( int i = 0; i < 3; i++ ) { Vector tmp; MatrixGetColumn( matrix, i, tmp ); float dot = fabs(DotProduct( tmp, normal )); if ( dot > bestDot ) { bestDot = dot; best = i; } }
return best; }
void PhysicsSplash( IPhysicsFluidController *pFluid, IPhysicsObject *pObject, CBaseEntity *pEntity ) { Vector normal; float dist; pFluid->GetSurfacePlane( &normal, &dist );
matrix3x4_t &matrix = pEntity->EntityToWorldTransform(); // Find the local axis that best matches the water surface normal
int bestAxis = BestAxisMatchingNormal( matrix, normal );
Vector tangent, binormal; MatrixGetColumn( matrix, (bestAxis+1)%3, tangent ); binormal = CrossProduct( normal, tangent ); VectorNormalize( binormal ); tangent = CrossProduct( binormal, normal ); VectorNormalize( tangent );
// Now we have a basis tangent to the surface that matches the object's local orientation as well as possible
// compute an OBB using this basis
// Get object extents in basis
Vector tanPts[2], binPts[2]; tanPts[0] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), -tangent ); tanPts[1] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), tangent ); binPts[0] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), -binormal ); binPts[1] = physcollision->CollideGetExtent( pObject->GetCollide(), pEntity->GetAbsOrigin(), pEntity->GetAbsAngles(), binormal );
// now compute the centered bbox
float mins[2], maxs[2], center[2], extents[2]; mins[0] = DotProduct( tanPts[0], tangent ); maxs[0] = DotProduct( tanPts[1], tangent );
mins[1] = DotProduct( binPts[0], binormal ); maxs[1] = DotProduct( binPts[1], binormal );
center[0] = 0.5 * (mins[0] + maxs[0]); center[1] = 0.5 * (mins[1] + maxs[1]);
extents[0] = maxs[0] - center[0]; extents[1] = maxs[1] - center[1];
Vector centerPoint = center[0] * tangent + center[1] * binormal + dist * normal;
Vector axes[2]; axes[0] = (maxs[0] - center[0]) * tangent; axes[1] = (maxs[1] - center[1]) * binormal;
// visualize OBB hit
/*
Vector corner1 = centerPoint - axes[0] - axes[1]; Vector corner2 = centerPoint + axes[0] - axes[1]; Vector corner3 = centerPoint + axes[0] + axes[1]; Vector corner4 = centerPoint - axes[0] + axes[1]; NDebugOverlay::Line( corner1, corner2, 0, 0, 255, false, 10 ); NDebugOverlay::Line( corner2, corner3, 0, 0, 255, false, 10 ); NDebugOverlay::Line( corner3, corner4, 0, 0, 255, false, 10 ); NDebugOverlay::Line( corner4, corner1, 0, 0, 255, false, 10 ); */
Vector corner[4];
corner[0] = centerPoint - axes[0] - axes[1]; corner[1] = centerPoint + axes[0] - axes[1]; corner[2] = centerPoint + axes[0] + axes[1]; corner[3] = centerPoint - axes[0] + axes[1];
CEffectData data;
if ( pObject->GetGameFlags() & FVPHYSICS_PART_OF_RAGDOLL ) { /*
data.m_vOrigin = centerPoint; data.m_vNormal = normal; VectorAngles( normal, data.m_vAngles ); data.m_flScale = random->RandomFloat( 8, 10 );
DispatchEffect( "watersplash", data ); int splashes = 4; Vector point;
for ( int i = 0; i < splashes; i++ ) { point = RandomVector( -32.0f, 32.0f ); point[2] = 0.0f;
point += corner[i];
data.m_vOrigin = point; data.m_vNormal = normal; VectorAngles( normal, data.m_vAngles ); data.m_flScale = random->RandomFloat( 4, 6 );
DispatchEffect( "watersplash", data ); } */
//FIXME: This code will not work correctly given how the ragdoll/fluid collision is acting currently
return; }
Vector vel; pObject->GetVelocity( &vel, NULL ); float rawSpeed = -DotProduct( normal, vel );
// proportional to cross-sectional area times velocity squared (fluid pressure)
float speed = rawSpeed * rawSpeed * extents[0] * extents[1] * (1.0f / 2500000.0f) * pObject->GetMass() * (0.01f);
speed = clamp( speed, 0, 50 );
bool bRippleOnly = false;
// allow the entity to perform a custom splash effect
if ( pEntity->PhysicsSplash( centerPoint, normal, rawSpeed, speed ) ) return;
//Deny really weak hits
//FIXME: We still need to ripple the surface in this case
if ( speed <= 0.35f ) { if ( speed <= 0.1f ) return;
bRippleOnly = true; } #ifdef PORTAL2
float size = RemapVal( speed, 0.35, 50, 2, 14 ); #else
float size = RemapVal( speed, 0.35, 50, 8, 18 ); #endif
//Find the surface area
float radius = extents[0] * extents[1]; //int splashes = clamp ( radius / 128.0f, 1, 2 ); //One splash for every three square feet of area
//Msg( "Speed: %.2f, Size: %.2f\n, Radius: %.2f, Splashes: %d", speed, size, radius, splashes );
Vector point;
data.m_fFlags = 0; data.m_vOrigin = centerPoint; data.m_vNormal = normal; VectorAngles( normal, data.m_vAngles ); data.m_flScale = size + random->RandomFloat( 0, 2 ); if ( pEntity->GetWaterType() & CONTENTS_SLIME ) { data.m_fFlags |= FX_WATER_IN_SLIME; }
if ( bRippleOnly ) { DispatchEffect( "waterripple", data ); } else { DispatchEffect( "watersplash", data ); }
if ( radius > 500.0f ) { int splashes = random->RandomInt( 1, 4 );
for ( int i = 0; i < splashes; i++ ) { point = RandomVector( -4.0f, 4.0f ); point[2] = 0.0f;
point += corner[i];
data.m_fFlags = 0; data.m_vOrigin = point; data.m_vNormal = normal; VectorAngles( normal, data.m_vAngles ); data.m_flScale = size + random->RandomFloat( -3, 1 ); if ( pEntity->GetWaterType() & CONTENTS_SLIME ) { data.m_fFlags |= FX_WATER_IN_SLIME; }
if ( bRippleOnly ) { DispatchEffect( "waterripple", data ); } else { DispatchEffect( "watersplash", data ); } } }
/*
for ( i = 0; i < splashes; i++ ) { point = RandomVector( -8.0f, 8.0f ); point[2] = 0.0f;
point += centerPoint + axes[0] * random->RandomFloat( -1, 1 ) + axes[1] * random->RandomFloat( -1, 1 );
data.m_vOrigin = point; data.m_vNormal = normal; VectorAngles( normal, data.m_vAngles ); data.m_flScale = size + random->RandomFloat( -2, 4 );
DispatchEffect( "watersplash", data ); } */ }
|