|
|
//===== Copyright (c) Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
//===========================================================================//
#include "pch_materialsystem.h"
#ifndef _PS3
#define MATSYS_INTERNAL
#endif
#include "cmaterialsystem.h"
#include "colorspace.h"
#include "materialsystem/materialsystem_config.h"
#include "materialsystem/imaterialproxyfactory.h"
#include "IHardwareConfigInternal.h"
#include "shadersystem.h"
#include "texturemanager.h"
#include "shaderlib/ShaderDLL.h"
#include "tier1/callqueue.h"
#include "tier1/smartptr.h"
#include "vstdlib/jobthread.h"
#include "cmatnullrendercontext.h"
#include "datacache/iresourceaccesscontrol.h"
#include "filesystem/IQueuedLoader.h"
#include "filesystem/IXboxInstaller.h"
#include "cdll_int.h"
#include "vjobs_interface.h"
#include "ps3/ps3_sn.h"
#include "shaderapidx9/imeshdx8.h"
#include "tier0/perfstats.h"
#if defined( _X360 )
#include "xbox/xbox_console.h"
#include "xbox/xbox_win32stubs.h"
#elif defined(_PS3)
#include "ps3/ps3_helpers.h"
#include "ps3/ps3_console.h"
#endif
// NOTE: This must be the last file included!!!
#include "tier0/memdbgon.h"
#ifdef PLATFORM_POSIX
#define _finite finite
#endif
// this is hooked into the engines convar
ConVar mat_debugalttab( "mat_debugalttab", "0", FCVAR_CHEAT ); ConVar gpu_level( "gpu_level", "3", 0, "GPU Level - Default: High" ); ConVar mat_force_vertexfog( "mat_force_vertexfog", "0", FCVAR_DEVELOPMENTONLY ); static ConVar mat_forcemanagedtextureintohardware( "mat_forcemanagedtextureintohardware", "1", FCVAR_CHEAT | FCVAR_DEVELOPMENTONLY ); ConVar mat_supportflashlight( "mat_supportflashlight", "-1", FCVAR_CHEAT | FCVAR_DEVELOPMENTONLY, "0 - do not support flashlight (don't load flashlight shader combos), 1 - flashlight is supported" ); // Default this to zero for the press playtest!
static ConVar mat_forcehardwaresync( "mat_forcehardwaresync", /* IsPC() ? "1" : */ "0" );
// Make sure this convar gets created before videocfg.lib is initialized, so it can be driven by dxsupport.cfg
static ConVar mat_tonemapping_occlusion_use_stencil( "mat_tonemapping_occlusion_use_stencil", "0", FCVAR_DEVELOPMENTONLY ); #if defined( DX_TO_GL_ABSTRACTION ) && !defined( _PS3 )
static ConVar mat_dxlevel( "mat_dxlevel", "100", FCVAR_DEVELOPMENTONLY, "", true, 90, true, 100, NULL ); //static ConVar mat_dxlevel( "mat_dxlevel", "95", FCVAR_DEVELOPMENTONLY, "", true, 95, true, 95, NULL );
//static ConVar mat_dxlevel( "mat_dxlevel", "92", FCVAR_DEVELOPMENTONLY, "", true, 92, true, 92, NULL );
#else
static ConVar mat_dxlevel( "mat_dxlevel", "0", FCVAR_DEVELOPMENTONLY ); #endif
ConVar mat_queue_mode( "mat_queue_mode", "-1", FCVAR_RELEASE, "The queue/thread mode the material system should use: -1=default, 0=synchronous single thread, 1=queued single thread, 2=queued multithreaded" );
ConVar mat_queue_report( "mat_queue_report", "0", FCVAR_ARCHIVE, "Report thread stalls. Positive number will filter by stalls >= time in ms. -1 reports all locks." ); ConVar mat_queue_mode_force_allow( "mat_queue_mode_force_allow", IsPS3() ? "1" : "0", FCVAR_DEVELOPMENTONLY, "Whether QMS can be enabled on single threaded CPU" ); ConVar mat_queue_priority("mat_queue_priority", "1", FCVAR_RELEASE);
// FIXME: Would like to remove these, but what the hey.
#if defined( DX_TO_GL_ABSTRACTION )
static ConVar cpu_level( "cpu_level", "3", 0, "CPU Level - Default: High" ); static ConVar gpu_mem_level( "gpu_mem_level", "3", 0, "Memory Level - Default: High" ); #else
static ConVar cpu_level( "cpu_level", "2", 0, "CPU Level - Default: High" ); static ConVar mem_level( "mem_level", "2", 0, "Memory Level - Default: High" ); static ConVar gpu_mem_level( "gpu_mem_level", "2", 0, "Memory Level - Default: High" ); #endif
static ConVar mat_picmip( "mat_picmip", "0", FCVAR_NONE, "", true, -10, true, 4 );
ConVar csm_quality_level( "csm_quality_level", "0", 0, "Cascaded shadow map quality level, [0,3], 0=VERY_LOW, 3=HIGHEST" );
// Moving this here (instead of in viewpostprocess.cpp) so videocfg.cpp can modify its value early during init based off whatever setting is in video.txt
#if defined( CSTRIKE15 )
ConVar mat_software_aa_strength( "mat_software_aa_strength", "-1.0", 0, "Software AA - perform a software anti-aliasing post-process (an alternative/supplement to MSAA). This value sets the strength of the effect: (0.0 - off), (1.0 - full)" ); #else
ConVar mat_software_aa_strength( "mat_software_aa_strength", IsPS3()? "0" : "-1.0", 0, "Software AA - perform a software anti-aliasing post-process (an alternative/supplement to MSAA). This value sets the strength of the effect: (0.0 - off), (1.0 - full)" ); #endif
ConVar mat_async_tex_maxtime_ms( "mat_async_tex_maxtime_ms", "0.5", FCVAR_DEVELOPMENTONLY, "Cutoff time (in ms) spent in ServiceAsyncTextureLoads" );
// Material system console channel
BEGIN_DEFINE_LOGGING_CHANNEL( LOG_MaterialSystemConsole, "MaterialSystemConsole", LCF_CONSOLE_ONLY ); ADD_LOGGING_CHANNEL_TAG( "Console" ); END_DEFINE_LOGGING_CHANNEL();
IMaterialInternal *g_pErrorMaterial = NULL;
#if defined( INCLUDE_SCALEFORM )
extern IScaleformUI* g_pScaleformUI; #endif
CreateInterfaceFn g_fnMatSystemConnectCreateInterface = NULL;
#ifdef _PS3
#define m_pRenderContext Ps3TlsMaterialSystemRenderContext
#elif defined(_X360)
IMatRenderContextInternal *CMaterialSystem::m_pRenderContexts[2]; #define m_pRenderContext CMaterialSystem::m_pRenderContexts[(int)ThreadInMainThread()]
#else
CTHREADLOCALPTR(IMatRenderContextInternal) CMaterialSystem::m_pRenderContext; #endif
#if defined( _X360 )
static const unsigned int g_GamerpicSize = 64; static const ImageFormat g_GamerpicFormat = IMAGE_FORMAT_LINEAR_BGRA8888; // note that this format is intentionally BGRA instead of ARBB
#endif // _X360
//#define PERF_TESTING 1
#ifdef DX_TO_GL_ABSTRACTION
// Uncomment if you want the material queued system to run on its own thread pool
// Otherwise it will use the global thread pool
#define MAT_QUEUED_OWN_THREADPOOL
#endif
//-----------------------------------------------------------------------------
// Implementational structures
//-----------------------------------------------------------------------------
#define MATERIAL_MAX_TREE_DEPTH 256
//-----------------------------------------------------------------------------
// Singleton instance exposed to the engine
//-----------------------------------------------------------------------------
CMaterialSystem g_MaterialSystem; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( CMaterialSystem, IMaterialSystem, MATERIAL_SYSTEM_INTERFACE_VERSION, g_MaterialSystem );
// Expose this to the external shader DLLs
MaterialSystem_Config_t g_config; EXPOSE_SINGLE_INTERFACE_GLOBALVAR( MaterialSystem_Config_t, MaterialSystem_Config_t, MATERIALSYSTEM_CONFIG_VERSION, g_config );
//-----------------------------------------------------------------------------
CThreadFastMutex g_MatSysMutex;
//-----------------------------------------------------------------------------
// Purpose: additional materialsystem information, internal use only
//-----------------------------------------------------------------------------
#ifndef _GAMECONSOLE
struct MaterialSystem_Config_Internal_t { int gpu_level; }; MaterialSystem_Config_Internal_t g_config_internal; #endif
//-----------------------------------------------------------------------------
// Necessary to allow the shader DLLs to get ahold of IMaterialSystemHardwareConfig
//-----------------------------------------------------------------------------
IHardwareConfigInternal* g_pHWConfig = 0; static void *GetHardwareConfig() { if ( g_pHWConfig ) return (IMaterialSystemHardwareConfig*)g_pHWConfig;
// can't call QueryShaderAPI here because it calls a factory function
// and we end up in an infinite recursion
return NULL; } EXPOSE_INTERFACE_FN( GetHardwareConfig, IMaterialSystemHardwareConfig, MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION );
//-----------------------------------------------------------------------------
// Necessary to allow the shader DLLs to get ahold of ICvar
//-----------------------------------------------------------------------------
static void *GetICVar() { return g_pCVar; } EXPOSE_INTERFACE_FN( GetICVar, ICVar, CVAR_INTERFACE_VERSION );
//-----------------------------------------------------------------------------
// Accessor to get at the material system
//-----------------------------------------------------------------------------
IMaterialSystemInternal *g_pInternalMaterialSystem = &g_MaterialSystem; #ifndef _PS3
IShaderUtil *g_pShaderUtil = &g_MaterialSystem; #endif
IVJobs * g_pVJobs = NULL;
#if defined( USE_SDL ) || defined( OSX )
#include "appframework/ilaunchermgr.h"
ILauncherMgr *g_pLauncherMgr = NULL; // set in CMaterialSystem::Connect
#endif
//-----------------------------------------------------------------------------
// Factory used to get at internal interfaces (used by shaderapi + shader dlls)
//-----------------------------------------------------------------------------
void *ShaderFactory( const char *pName, int *pReturnCode ) { if (pReturnCode) { *pReturnCode = IFACE_OK; } if ( !Q_stricmp( pName, FILESYSTEM_INTERFACE_VERSION )) return g_pFullFileSystem;
if ( !Q_stricmp( pName, QUEUEDLOADER_INTERFACE_VERSION )) return g_pQueuedLoader;
if ( !Q_stricmp( pName, VJOBS_INTERFACE_VERSION ) ) return g_pVJobs;
#if defined( _X360 )
if ( !Q_stricmp( pName, XBOXINSTALLER_INTERFACE_VERSION )) return g_pXboxInstaller; #endif
if ( !Q_stricmp( pName, SHADER_UTIL_INTERFACE_VERSION )) return g_pShaderUtil;
#if defined( USE_SDL )
if ( !Q_stricmp( pName, "SDLMgrInterface001" /*SDLMGR_INTERFACE_VERSION*/ )) return g_pLauncherMgr; #endif
#if PLATFORM_OSX
if ( !Q_stricmp( pName, "CocoaMgrInterface006" /*COCOAMGR_INTERFACE_VERSION*/ )) return g_pLauncherMgr; #endif
void * pInterface = g_MaterialSystem.QueryInterface( pName ); if ( pInterface ) return pInterface;
if ( pReturnCode ) { *pReturnCode = IFACE_FAILED; } return NULL; }
//-----------------------------------------------------------------------------
// Resource preloading for materials.
//-----------------------------------------------------------------------------
class CResourcePreloadMaterial : public CResourcePreload { virtual bool CreateResource( const char *pName ) { IMaterial *pMaterial = g_MaterialSystem.FindMaterial( pName, TEXTURE_GROUP_WORLD, false ); IMaterialInternal *pMatInternal = static_cast< IMaterialInternal * >( pMaterial ); if ( pMatInternal ) { // always work with the realtime material internally
pMatInternal = pMatInternal->GetRealTimeVersion();
// tag these for later identification (prevents an unwanted purge)
pMatInternal->MarkAsPreloaded( true ); if ( !pMatInternal->IsErrorMaterial() ) { // force material's textures to create now
pMatInternal->Precache(); return true; } else { if ( IsPosix() ) { printf("\n ##### CResourcePreloadMaterial::CreateResource can't find material %s\n", pName); } } }
return false; }
//-----------------------------------------------------------------------------
// Called before queued loader i/o jobs are actually performed. Must free up memory
// to ensure i/o requests have enough memory to succeed. The materials that were
// touched by the CreateResource() are inhibited from purging (as is their textures,
// by virtue of ref counts), all others are candidates. The preloaded materials
// are by definition zero ref'd until owned by the normal loading process. Any material
// that stays zero ref'd is a candidate for the post load purge.
//-----------------------------------------------------------------------------
virtual void PurgeUnreferencedResources() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0;
bool bDidUncacheMaterial = false; MaterialHandle_t hNext; for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext ) { hNext = g_MaterialSystem.NextMaterial( hMaterial );
IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial ); Assert( pMatInternal->GetReferenceCount() >= 0 );
// preloaded materials are safe from this pre-purge
if ( !pMatInternal->IsPreloaded() ) { // undo any possible artifical ref count
pMatInternal->ArtificialRelease(); if ( pMatInternal->GetReferenceCount() <= 0 ) { if ( bSpew ) { Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() ); } bDidUncacheMaterial = true; pMatInternal->Uncache(); pMatInternal->DeleteIfUnreferenced(); } } else { // clear the bit
pMatInternal->MarkAsPreloaded( false ); } }
// purged materials unreference their textures
// purge any zero ref'd textures
TextureManager()->RemoveUnusedTextures();
// fixup any excluded textures, may cause some new batch requests
MaterialSystem()->UpdateExcludedTextures(); }
virtual void PurgeAll() { bool bSpew = ( g_pQueuedLoader->GetSpewDetail() & LOADER_DETAIL_PURGES ) != 0;
bool bDidUncacheMaterial = false; MaterialHandle_t hNext; for ( MaterialHandle_t hMaterial = g_MaterialSystem.FirstMaterial(); hMaterial != g_MaterialSystem.InvalidMaterial(); hMaterial = hNext ) { hNext = g_MaterialSystem.NextMaterial( hMaterial );
IMaterialInternal *pMatInternal = g_MaterialSystem.GetMaterialInternal( hMaterial ); Assert( pMatInternal->GetReferenceCount() >= 0 );
pMatInternal->MarkAsPreloaded( false ); // undo any possible artifical ref count
pMatInternal->ArtificialRelease(); if ( pMatInternal->GetReferenceCount() <= 0 ) { if ( bSpew ) { Msg( "CResourcePreloadMaterial: Purging: %s (%d)\n", pMatInternal->GetName(), pMatInternal->GetReferenceCount() ); } bDidUncacheMaterial = true; pMatInternal->Uncache(); pMatInternal->DeleteIfUnreferenced(); } }
// purged materials unreference their textures
// purge any zero ref'd textures
TextureManager()->RemoveUnusedTextures(); }
void OnEndMapLoading( bool bAbort ) { CMaterialDict *pDict = g_MaterialSystem.GetMaterialDict(); for (MaterialHandle_t i = pDict->FirstMaterial(); i != pDict->InvalidMaterial(); i = pDict->NextMaterial(i) ) { pDict->GetMaterialInternal(i)->CompactMaterialVars(); }
CompactMaterialVarHeap(); }
#if defined( _PS3 )
virtual bool RequiresRendererLock() { return true; } #endif // _PS3
};
static CResourcePreloadMaterial s_ResourcePreloadMaterial;
//-----------------------------------------------------------------------------
// Resource preloading for cubemaps.
//-----------------------------------------------------------------------------
class CResourcePreloadCubemap : public CResourcePreload { virtual bool CreateResource( const char *pName ) { ITexture *pTexture = g_MaterialSystem.FindTexture( pName, TEXTURE_GROUP_CUBE_MAP, true ); ITextureInternal *pTexInternal = static_cast< ITextureInternal * >( pTexture ); if ( pTexInternal ) { // There can be cubemaps that are unbound by materials. To prevent an unwanted purge,
// mark and increase the ref count. Otherwise the pre-purge discards these zero
// ref'd textures, and then the normal loading process hitches on the miss.
// The zombie cubemaps DO get discarded after the normal loading process completes
// if no material references them.
pTexInternal->MarkAsPreloaded( true ); pTexInternal->IncrementReferenceCount(); if ( !IsErrorTexture( pTexInternal ) ) { return true; } } return false; }
//-----------------------------------------------------------------------------
// All valid cubemaps should have been owned by their materials. Undo the preloaded
// cubemap locks. Any zero ref'd cubemaps will be purged by the normal loading path conclusion.
//-----------------------------------------------------------------------------
virtual void OnEndMapLoading( bool bAbort ) { int iIndex = -1; for ( ;; ) { ITextureInternal *pTexInternal; iIndex = TextureManager()->FindNext( iIndex, &pTexInternal ); if ( iIndex == -1 || !pTexInternal ) { // end of list
break; }
if ( pTexInternal->IsPreloaded() ) { // undo the artificial increase
pTexInternal->MarkAsPreloaded( false ); pTexInternal->DecrementReferenceCount(); } } }
#if defined( _PS3 )
virtual bool RequiresRendererLock() { return true; } #endif // _PS3
}; static CResourcePreloadCubemap s_ResourcePreloadCubemap;
//-----------------------------------------------------------------------------
// Creates the debugging materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CreateDebugMaterials() { if ( !m_pDrawFlatMaterial ) { KeyValues *pVMTKeyValues = new KeyValues( "UnlitGeneric" ); pVMTKeyValues->SetInt( "$model", 1 ); pVMTKeyValues->SetFloat( "$decalscale", 0.05f ); pVMTKeyValues->SetString( "$basetexture", "error" ); // This is the "error texture"
pVMTKeyValues->SetInt( "$gammacolorread", 1 ); pVMTKeyValues->SetInt( "$linearwrite", 1 ); g_pErrorMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___error.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "UnlitGeneric" ); pVMTKeyValues->SetInt( "$flat", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); pVMTKeyValues->SetInt( "$gammacolorread", 1 ); pVMTKeyValues->SetInt( "$linearwrite", 1 ); m_pDrawFlatMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___flat.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_NONE] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil0.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil1.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil2.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil3.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil4.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil5.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_ALPHA_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil6.vmt", pVMTKeyValues ))->GetRealTimeVersion();
pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$clearcolor", 1 ); pVMTKeyValues->SetInt( "$clearalpha", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); m_pBufferClearObeyStencil[BUFFER_CLEAR_COLOR_AND_ALPHA_AND_DEPTH] = static_cast<IMaterialInternal*>(CreateMaterial( "___buffer_clear_obey_stencil7.vmt", pVMTKeyValues ))->GetRealTimeVersion();
if ( IsPS3() ) { pVMTKeyValues = new KeyValues( "BufferClearObeyStencil" ); pVMTKeyValues->SetInt( "$nocull", 1 ); pVMTKeyValues->SetInt( "$cleardepth", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); pVMTKeyValues->SetInt( "$reloadzcull", 1 ); m_pReloadZcullMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "__reload_zcull.vmt", pVMTKeyValues ))->GetRealTimeVersion(); } if ( IsX360() ) { pVMTKeyValues = new KeyValues( "RenderTargetBlit_X360" ); m_pRenderTargetBlitMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___renderTargetBlit.vmt", pVMTKeyValues ))->GetRealTimeVersion(); }
// PORTAL2 - hack to make sure BINK shaders are always precached to avoid hitches at runtime
if ( IsGameConsole() ) { pVMTKeyValues = new KeyValues( "Bik" );
pVMTKeyValues->SetInt( "$nofog", 1 ); pVMTKeyValues->SetInt( "$spriteorientation", 3 ); pVMTKeyValues->SetInt( "$translucent", 1 ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); pVMTKeyValues->SetInt( "$vertexalpha", 1 ); pVMTKeyValues->SetInt( "$nolod", 1 ); pVMTKeyValues->SetInt( "$nomip", 1 ); pVMTKeyValues->SetInt( "$nobasetexture", 1 );
m_pBIKPreloadMaterial = static_cast<IMaterialInternal*>(CreateMaterial( "___binkprecache.vmt", pVMTKeyValues ))->GetRealTimeVersion(); }
ShaderSystem()->CreateDebugMaterials(); } }
//-----------------------------------------------------------------------------
// Deletes the debugging materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CleanUpDebugMaterials() { if ( m_pDrawFlatMaterial ) { m_pDrawFlatMaterial->DecrementReferenceCount();
RemoveMaterial( m_pDrawFlatMaterial );
m_pDrawFlatMaterial = NULL;
for ( int i = BUFFER_CLEAR_NONE; i < BUFFER_CLEAR_TYPE_COUNT; ++i ) { m_pBufferClearObeyStencil[i]->DecrementReferenceCount(); RemoveMaterial( m_pBufferClearObeyStencil[i] ); m_pBufferClearObeyStencil[i] = NULL; }
if ( IsPS3() ) { m_pReloadZcullMaterial->DecrementReferenceCount(); RemoveMaterial( m_pReloadZcullMaterial ); m_pReloadZcullMaterial = NULL; }
if ( IsX360() ) { m_pRenderTargetBlitMaterial->DecrementReferenceCount(); RemoveMaterial( m_pRenderTargetBlitMaterial ); m_pRenderTargetBlitMaterial = NULL; }
// PORTAL2 - clean up preloaded bink shader
if ( IsGameConsole() ) { m_pBIKPreloadMaterial->DecrementReferenceCount(); RemoveMaterial( m_pBIKPreloadMaterial ); m_pBIKPreloadMaterial = NULL; }
ShaderSystem()->CleanUpDebugMaterials(); } }
void CMaterialSystem::CleanUpErrorMaterial() { // Destruction of g_pErrorMaterial is deferred until after CMaterialDict::Shutdown.
// The global g_pErrorMaterial is set to NULL so that IMaterialInternal::DestroyMaterial will delete it.
IMaterialInternal *pErrorMaterial = g_pErrorMaterial; g_pErrorMaterial = NULL; pErrorMaterial->DecrementReferenceCount(); IMaterialInternal::DestroyMaterial( pErrorMaterial ); }
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CMaterialSystem::CMaterialSystem() { m_nRenderThreadID = 0xFFFFFFFF; m_ShaderHInst = 0; m_pMaterialProxyFactory = NULL; m_pClientMaterialSystemInterface = NULL; m_nAdapter = 0; m_nAdapterFlags = 0; m_bRequestedEditorMaterials = false; m_bRequestedGBuffers = false; m_StandardTexturesAllocated = false; m_bRestoreManangedResources = true; m_bInFrame = false; m_bThreadHasOwnership = false;
#ifdef DX_TO_GL_ABSTRACTION
m_ThreadOwnershipID = 0; #endif
m_pShaderDLL = NULL; m_FullbrightLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_FullbrightBumpedLightmapTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_BlackTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_BlackAlphaZeroTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_FlatNormalTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_FlatSSBumpTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_GreyTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_GreyAlphaZeroTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_WhiteTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_LinearToGammaTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_LinearToGammaIdentityTableTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE; m_MaxDepthTextureHandle = INVALID_SHADERAPI_TEXTURE_HANDLE;
m_bInStubMode = false; m_pForcedTextureLoadPathID = NULL; m_bDisableRenderTargetAllocationForever = false; m_nAllocatingRenderTargets = false; m_pRenderContext = &m_HardwareRenderContext; m_iCurQueuedContext = 0; m_bGeneratedConfig = false; m_pMatQueueThreadPool = NULL;
m_pActiveAsyncTextureLoad = NULL;
#ifndef _PS3
m_pActiveAsyncJob = NULL; #else
m_bQMSJobSubmitted = false; #endif
m_IdealThreadMode = m_ThreadMode = MATERIAL_SINGLE_THREADED; m_nServiceThread = 0;
m_nConfigurationFlags = 0; m_bForcedSingleThreaded = true; m_bAllowQueuedRendering = false;
m_bStereoBoolsInitialized = false; m_bIsStereoSupported = false; m_bIsStereoActiveThisFrame = false;
m_bLevelLoadingComplete = false;
m_pSubString = NULL; m_bDeferredMaterialReload = false; }
CMaterialSystem::~CMaterialSystem() { if (m_pShaderDLL) { delete[] m_pShaderDLL; }
if ( m_pSubString ) { free( m_pSubString ); m_pSubString = NULL; } }
//-----------------------------------------------------------------------------
// Creates/destroys the shader implementation for the selected API
//-----------------------------------------------------------------------------
CreateInterfaceFn CMaterialSystem::CreateShaderAPI( char const* pShaderDLL ) { if ( !pShaderDLL ) return 0;
// Clean up the old shader
DestroyShaderAPI();
// Load the new shader
m_ShaderHInst = Sys_LoadModule( pShaderDLL );
// Error loading the shader
if ( !m_ShaderHInst ) return 0;
// Get our class factory methods...
return Sys_GetFactory( m_ShaderHInst ); }
void CMaterialSystem::DestroyShaderAPI() { if (m_ShaderHInst) { // NOTE: By unloading the library, this will destroy m_pShaderAPI
Sys_UnloadModule( m_ShaderHInst ); g_pShaderAPI = 0; g_pHWConfig = 0; g_pShaderShadow = 0; m_ShaderHInst = 0; } }
//-----------------------------------------------------------------------------
// Sets which shader we should be using. Has to be done before connect!
//-----------------------------------------------------------------------------
void CMaterialSystem::SetShaderAPI( char const *pShaderAPIDLL ) { #if defined( _PS3 ) || defined( _OSX )
return; #endif
if ( m_ShaderAPIFactory ) { Warning( "Cannot set the shader API twice!\n" ); return; }
if ( !pShaderAPIDLL ) { pShaderAPIDLL = "shaderapidx9"; }
// m_pShaderDLL is needed to spew driver info
Assert( pShaderAPIDLL ); int len = Q_strlen( pShaderAPIDLL ) + 1; m_pShaderDLL = new char[len]; memcpy( m_pShaderDLL, pShaderAPIDLL, len );
m_ShaderAPIFactory = CreateShaderAPI( pShaderAPIDLL ); if ( !m_ShaderAPIFactory ) { DestroyShaderAPI(); } }
//-----------------------------------------------------------------------------
// Connect/disconnect
//-----------------------------------------------------------------------------
bool CMaterialSystem::Connect( CreateInterfaceFn factory ) { if ( !factory ) return false;
if ( !BaseClass::Connect( factory ) ) return false;
if ( !g_pFullFileSystem ) { Warning( "The material system requires the filesystem to run!\n" ); return false; } g_pVJobs = ( IVJobs* )factory( VJOBS_INTERFACE_VERSION, NULL );
// Get at the interfaces exported by the shader DLL
#ifndef _OSX
g_pShaderDeviceMgr = (IShaderDeviceMgr*)m_ShaderAPIFactory( SHADER_DEVICE_MGR_INTERFACE_VERSION, 0 ); if ( !g_pShaderDeviceMgr ) return false; g_pHWConfig = (IHardwareConfigInternal*)m_ShaderAPIFactory( MATERIALSYSTEM_HARDWARECONFIG_INTERFACE_VERSION, 0 ); if ( !g_pHWConfig ) return false; #endif
#ifndef DEDICATED
#if defined( USE_SDL )
#if !defined( LINUX )
g_pHWConfig = g_pHardwareConfig; #endif
g_pLauncherMgr = (ILauncherMgr *)factory( "SDLMgrInterface001", NULL ); if ( !g_pLauncherMgr ) return false;
#elif defined( _PS3 )
g_pHWConfig = g_pHardwareConfig; #elif defined( _OSX )
g_pHWConfig = g_pHardwareConfig;
// write a link to the Cocoa manager into the config record so the shader subsystem can get to it.
// alas we can't include icocoamgr.h due to a header conflict in the SDK, so the interface name here is hardwired for now
// /System/Library/Frameworks/CoreServices.framework/Frameworks/CarbonCore.framework/Headers/Threads.h:520:
// error: declaration of C function ‘OSErr CreateThreadPool(ThreadStyle, SInt16, Size)’
#define COCOAMGR_INTERFACE_VERSION "CocoaMgrInterface006"
g_pLauncherMgr = (ILauncherMgr *)factory( COCOAMGR_INTERFACE_VERSION, NULL ); if ( !g_pLauncherMgr ) return false;
#elif defined(_WIN32)
#else
#error
#endif
#endif // !DEDICATED
#ifndef _OSX
// FIXME: ShaderAPI, ShaderDevice, and ShaderShadow should only come in after setting mode
g_pShaderAPI = (IShaderAPI*)m_ShaderAPIFactory( SHADERAPI_INTERFACE_VERSION, 0 ); if ( !g_pShaderAPI ) return false; g_pShaderDevice = (IShaderDevice*)m_ShaderAPIFactory( SHADER_DEVICE_INTERFACE_VERSION, 0 ); if ( !g_pShaderDevice ) return false; g_pShaderShadow = (IShaderShadow*)m_ShaderAPIFactory( SHADERSHADOW_INTERFACE_VERSION, 0 ); if ( !g_pShaderShadow ) return false; #endif
// Remember the factory for connect
g_fnMatSystemConnectCreateInterface = factory;
#if defined( INCLUDE_SCALEFORM )
g_pScaleformUI = ( IScaleformUI* ) factory( SCALEFORMUI_INTERFACE_VERSION, 0 ); #endif
return g_pShaderDeviceMgr->Connect( ShaderFactory ); }
void CMaterialSystem::Disconnect() { // Forget the factory for connect
g_fnMatSystemConnectCreateInterface = NULL;
if ( g_pShaderDeviceMgr ) { g_pShaderDeviceMgr->Disconnect(); g_pShaderDeviceMgr = NULL;
// Unload the DLL
DestroyShaderAPI(); } #if !defined( _PS3 ) && !defined( _OSX )
g_pShaderAPI = NULL; g_pHWConfig = NULL; g_pShaderShadow = NULL; g_pShaderDevice = NULL; #endif
#if defined( INCLUDE_SCALEFORM )
g_pScaleformUI = NULL; #endif
BaseClass::Disconnect(); }
//-----------------------------------------------------------------------------
// Used to enable editor materials. Must be called before Init.
//-----------------------------------------------------------------------------
void CMaterialSystem::EnableEditorMaterials() { m_bRequestedEditorMaterials = true; }
void CMaterialSystem::EnableGBuffers() { m_bRequestedGBuffers = true; }
//-----------------------------------------------------------------------------
// Method to get at interfaces supported by the SHADDERAPI
//-----------------------------------------------------------------------------
void *CMaterialSystem::QueryShaderAPI( const char *pInterfaceName ) { // Returns various interfaces supported by the shader API dll
void *pInterface = NULL; if (m_ShaderAPIFactory) { pInterface = m_ShaderAPIFactory( pInterfaceName, NULL ); } return pInterface; }
//-----------------------------------------------------------------------------
// Method to get at different interfaces supported by the material system
//-----------------------------------------------------------------------------
void *CMaterialSystem::QueryInterface( const char *pInterfaceName ) { // Returns various interfaces supported by the shader API dll
void *pInterface = QueryShaderAPI( pInterfaceName ); if ( pInterface ) return pInterface;
CreateInterfaceFn factory = Sys_GetFactoryThis(); // This silly construction is necessary
return factory( pInterfaceName, NULL ); // to prevent the LTCG compiler from crashing.
}
//-----------------------------------------------------------------------------
// Must be called before Init(), if you're going to call it at all...
//-----------------------------------------------------------------------------
void CMaterialSystem::SetAdapter( int nAdapter, int nAdapterFlags ) { m_nAdapter = nAdapter; m_nAdapterFlags = nAdapterFlags; g_pShaderDeviceMgr->GetCurrentModeInfo( &m_nAdapterInfo, m_nAdapter ); }
//-----------------------------------------------------------------------------
// Initializes the color correction terms
//-----------------------------------------------------------------------------
void CMaterialSystem::InitColorCorrection( ) { if ( ColorCorrectionSystem() ) { ColorCorrectionSystem()->Init(); } }
#ifndef _PS3 // make some empty stubs so we can use IsPS3() instead of ifdefs
static inline void PS3InitFontLibrary( unsigned fontFileCacheSizeInBytes, unsigned maxNumFonts ) {}; static inline void PS3DumpFontLibrary(){} #define kPS3_DEFAULT_MAX_USER_FONTS 0
#endif
//-----------------------------------------------------------------------------
// Initialization + shutdown of the material system
//-----------------------------------------------------------------------------
void AllocateScratchRSXMemory();
InitReturnVal_t CMaterialSystem::Init() { InitReturnVal_t nRetVal = BaseClass::Init(); if ( nRetVal != INIT_OK ) return nRetVal;
// NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps.
MathLib_Init( 2.2f, 2.2f, 0.0f, OVERBRIGHT );
g_pShaderDeviceMgr->SetAdapter( m_nAdapter, m_nAdapterFlags ); if ( g_pShaderDeviceMgr->Init( ) != INIT_OK ) { DestroyShaderAPI(); return INIT_FAILED; }
mat_forcemanagedtextureintohardware.SetValue( HardwareConfig()->PreferTexturesInHWMemory() ); mat_forcehardwaresync.SetValue( HardwareConfig()->PreferHardwareSync() ); mat_dxlevel.SetValue( HardwareConfig()->GetDXSupportLevel() );
// Texture manager...
TextureManager()->Init( m_nAdapterFlags );
// Shader system!
ShaderSystem()->Init();
#if defined( WIN32 ) && !defined( _X360 )
// HACKHACK: <sigh> This horrible hack is possibly the only way to reliably detect an old
// version of hammer initializing the material system. We need to know this so that we set
// up the editor materials properly. If we don't do this, we never allocate the white lightmap,
// for example. We can remove this when we update the SDK!!
char szExeName[_MAX_PATH]; if ( ::GetModuleFileName( ( HINSTANCE )GetModuleHandle( NULL ), szExeName, sizeof( szExeName ) ) ) { char szRight[20]; Q_StrRight( szExeName, 11, szRight, sizeof( szRight ) ); if ( ( !Q_stricmp( szRight, "\\hammer.exe" ) ) || ( !Q_stricmp( szRight, "\\vmview.exe" ) ) ) { m_bRequestedEditorMaterials = true; m_bRequestedGBuffers = true; } }
// HACKHACK: This will go away when we get rid of tools mode in the first place.
if ( CommandLine()->FindParm( "-foundrymode" ) != 0 ) { m_bRequestedEditorMaterials = true; m_bRequestedGBuffers = true; } if ( CommandLine()->FindParm( "-tools" ) != 0 ) { m_bRequestedGBuffers = true; } if ( CommandLine()->FindParm( "-buildcubemaps" ) || CommandLine()->FindParm( "-buildmodelforworld" ) ) { mat_queue_mode.SetValue( 0 ); }
#endif // WIN32
m_nConfigurationFlags = 0; if ( m_bRequestedEditorMaterials ) { m_nConfigurationFlags |= MATCONFIG_FLAGS_SUPPORT_EDITOR; } if ( m_bRequestedGBuffers ) { m_nConfigurationFlags |= MATCONFIG_FLAGS_SUPPORT_GBUFFER; }
InitColorCorrection();
// Set up debug materials...
CreateDebugMaterials();
if ( IsGameConsole() ) { g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_MATERIAL, &s_ResourcePreloadMaterial ); g_pQueuedLoader->InstallLoader( RESOURCEPRELOAD_CUBEMAP, &s_ResourcePreloadCubemap ); }
if ( IsPS3() ) { InitializePS3Fonts(); // load the font library and keep it resident forever.
// for an alternative means, where you just load and unload
// the library as needed, look at PS3FontLibraryRAII --
// that's disabled at the moment because we evidently render
// characters ad hoc each frame always.
PS3InitFontLibrary( 256 * 1024, kPS3_DEFAULT_MAX_USER_FONTS ); // try a 256kb file cache
}
// Set up a default material system config
// GenerateConfigFromConfigKeyValues( &g_config, false );
// UpdateConfig( false );
// JAY: Added this command line parameter to force creating <32x32 mips
// to test for reported performance regressions on some systems
if ( CommandLine()->FindParm("-forceallmips") ) { extern bool g_bForceTextureAllMips; g_bForceTextureAllMips = true; }
BeginRenderTargetAllocation(); m_CompositeTextureGenerator.Init(); EndRenderTargetAllocation(); m_CustomMaterialManager.Init();
return m_HardwareRenderContext.Init( this ); }
//-----------------------------------------------------------------------------
// For backwards compatability
//-----------------------------------------------------------------------------
static CreateInterfaceFn s_TempCVarFactory; static CreateInterfaceFn s_TempFileSystemFactory;
void* TempCreateInterface( const char *pName, int *pReturnCode ) { void *pRetVal = NULL;
if ( s_TempCVarFactory ) { pRetVal = s_TempCVarFactory( pName, pReturnCode ); if (pRetVal) return pRetVal; }
pRetVal = s_TempFileSystemFactory( pName, pReturnCode ); if (pRetVal) return pRetVal;
return NULL; }
//-----------------------------------------------------------------------------
// Initializes and shuts down the shader API
//-----------------------------------------------------------------------------
CreateInterfaceFn CMaterialSystem::Init( char const* pShaderAPIDLL, IMaterialProxyFactory *pMaterialProxyFactory, CreateInterfaceFn fileSystemFactory, CreateInterfaceFn cvarFactory ) { SetShaderAPI( pShaderAPIDLL );
s_TempCVarFactory = cvarFactory; s_TempFileSystemFactory = fileSystemFactory; if ( !Connect( TempCreateInterface ) ) return 0;
if (Init() != INIT_OK) return NULL;
// save the proxy factory
m_pMaterialProxyFactory = pMaterialProxyFactory;
return m_ShaderAPIFactory; }
void CMaterialSystem::Shutdown( ) { DestroyMatQueueThreadPool();
m_CustomMaterialManager.Shutdown(); m_CompositeTextureGenerator.Shutdown();
m_HardwareRenderContext.Shutdown();
// Clean up standard textures
ReleaseStandardTextures();
// Clean up the debug materials
CleanUpDebugMaterials();
g_pMorphMgr->FreeMaterials(); g_pOcclusionQueryMgr->FreeOcclusionQueryObjects();
GetLightmaps()->Shutdown(); m_MaterialDict.Shutdown();
CleanUpErrorMaterial();
// Shader system!
ShaderSystem()->Shutdown();
// Texture manager...
TextureManager()->Shutdown();
if (g_pShaderDeviceMgr) { g_pShaderDeviceMgr->Shutdown(); } #if defined( _PS3 )
// this would have been called in g_pShaderDeviceMgr->Shutdown(), but since g_pShaderDeviceMgr is sometimes NULL, we'll clean up mesh manager once more, just in case
MeshMgr()->Shutdown(); #endif
if ( IsPS3() ) PS3DumpFontLibrary();
BaseClass::Shutdown(); }
void CMaterialSystem::ModInit() { // Set up a default material system config
GenerateConfigFromConfigKeyValues( &g_config, false ); UpdateConfig( false );
// Shader system!
ShaderSystem()->ModInit(); }
void CMaterialSystem::ModShutdown() { // Shader system!
ShaderSystem()->ModShutdown();
// HACK - this is here to unhook ourselves from the client interface, since we're not actually notified when it happens
m_pMaterialProxyFactory = NULL; m_pClientMaterialSystemInterface = NULL; }
//-----------------------------------------------------------------------------
// Returns the current adapter in use
//-----------------------------------------------------------------------------
IMaterialSystemHardwareConfig *CMaterialSystem::GetHardwareConfig( const char *pVersion, int *returnCode ) { return ( IMaterialSystemHardwareConfig * )m_ShaderAPIFactory( pVersion, returnCode ); }
//-----------------------------------------------------------------------------
// Returns the current adapter in use
//-----------------------------------------------------------------------------
int CMaterialSystem::GetCurrentAdapter() const { return g_pShaderDevice->GetCurrentAdapter(); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::SetThreadMode( MaterialThreadMode_t nextThreadMode, int nServiceThread ) { m_IdealThreadMode = nextThreadMode; m_nServiceThread = nServiceThread; }
MaterialThreadMode_t CMaterialSystem::GetThreadMode() { return m_ThreadMode; }
bool CMaterialSystem::IsRenderThreadSafe( ) { #if defined( WIN32 ) && !defined( DX_TO_GL_ABSTRACTION )
return true; #else
return ( m_ThreadMode != MATERIAL_QUEUED_THREADED && ThreadInMainThread() ) || ( m_ThreadMode == MATERIAL_QUEUED_THREADED && m_nRenderThreadID == ThreadGetCurrentId() ); #endif
}
void CMaterialSystem::OnDebugEvent( const char * pEvent ) { g_pShaderDevice->OnDebugEvent( pEvent ); }
bool CMaterialSystem::AllowThreading( bool bAllow, int nServiceThread ) { if ( CommandLine()->ParmValue( "-threads", 2 ) < 2 ) // if -threads specified on command line to restrict all the pools then obey and not turn on QMS
bAllow = false;
bool bOldAllow = m_bAllowQueuedRendering;
if ( GetCPUInformation().m_nPhysicalProcessors >= 2 || mat_queue_mode_force_allow.GetBool() ) { m_bAllowQueuedRendering = bAllow; bool bQueued = m_IdealThreadMode != MATERIAL_SINGLE_THREADED; if ( bAllow && !bQueued ) { // go into queued mode
DevMsg( "Queued Material System: ENABLED!\n" ); OnDebugEvent( "Allow Threading"); SetThreadMode( MATERIAL_QUEUED_THREADED, nServiceThread ); } else if ( !bAllow && bQueued ) { // disabling queued mode just needs to stop the queuing of drawing
// but still allow other threaded access to the Material System
// flush the queue
DevMsg( "Queued Material System: DISABLED!\n" ); ForceSingleThreaded(); MaterialLock_t hMaterialLock = Lock(); SetThreadMode( MATERIAL_SINGLE_THREADED, -1 ); Unlock( hMaterialLock ); OnDebugEvent( "Disallow Threading" ); } } else { m_bAllowQueuedRendering = false; }
return bOldAllow; }
void CMaterialSystem::ExecuteQueued() { }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::GetRenderContext() { IMatRenderContext *pResult = m_pRenderContext; if ( !pResult ) { pResult = &m_HardwareRenderContext; m_pRenderContext = &m_HardwareRenderContext; } return RetAddRef( pResult ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::CreateRenderContext( MaterialContextType_t type ) { switch ( type ) { case MATERIAL_HARDWARE_CONTEXT: return NULL;
case MATERIAL_QUEUED_CONTEXT: { CMatQueuedRenderContext *pQueuedContext = new CMatQueuedRenderContext; pQueuedContext->Init( this, &m_HardwareRenderContext ); pQueuedContext->BeginQueue( &m_HardwareRenderContext ); return pQueuedContext;
}
case MATERIAL_NULL_CONTEXT: { CMatRenderContextBase *pNullContext = CreateNullRenderContext(); pNullContext->Init(); pNullContext->InitializeFrom( &m_HardwareRenderContext ); return pNullContext; } } Assert(0); return NULL; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
IMatRenderContext *CMaterialSystem::SetRenderContext( IMatRenderContext *pNewContext ) { IMatRenderContext *pOldContext = m_pRenderContext; if ( pNewContext ) { pNewContext->AddRef(); m_pRenderContext = ( assert_cast<IMatRenderContextInternal *>(pNewContext) ); } else { m_pRenderContext = NULL; } return pOldContext; }
//-----------------------------------------------------------------------------
// Get/Set Material proxy factory
//-----------------------------------------------------------------------------
IMaterialProxyFactory* CMaterialSystem::GetMaterialProxyFactory() { return m_pMaterialProxyFactory; }
void CMaterialSystem::SetMaterialProxyFactory( IMaterialProxyFactory* pFactory ) { // Changing the factory requires an uncaching of all materials
// since the factory may contain different proxies
UncacheAllMaterials();
m_pMaterialProxyFactory = pFactory; }
IClientMaterialSystem *CMaterialSystem::GetClientMaterialSystemInterface() { if ( m_pClientMaterialSystemInterface ) return m_pClientMaterialSystemInterface;
if ( !m_pMaterialProxyFactory ) return NULL;
CreateInterfaceFn pClientFactory = m_pMaterialProxyFactory->GetFactory(); if ( !pClientFactory ) return NULL;
m_pClientMaterialSystemInterface = (IClientMaterialSystem *)pClientFactory( VCLIENTMATERIALSYSTEM_INTERFACE_VERSION, NULL ); return m_pClientMaterialSystemInterface; }
void CMaterialSystem::RefreshFrontBufferNonInteractive() {
#ifdef _PS3
extern bool IsItSafeToRefreshFrontBufferNonInteractivePs3(); if ( !IsItSafeToRefreshFrontBufferNonInteractivePs3() ) #else
if ( !ThreadInMainThread() ) #endif
return;
CMatRenderContextPtr pRenderContext( materials ); pRenderContext->RefreshFrontBufferNonInteractive(); }
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
static CThreadFastMutex s_mtFrameTimestamps; static double s_flMstThreadBeginTimestamp = 0.0f; static double s_flTotalFrameBeginTimestamp = 0.0f; static ApplicationPerformanceCountersInfo_t s_apci;
void OnFrameTimestampAvailableMain( float ms ) { AUTO_LOCK( s_mtFrameTimestamps ); s_apci.msMain = ms; } void OnFrameTimestampAvailableMST( float ms ) { AUTO_LOCK( s_mtFrameTimestamps ); if ( !ms ) { s_flMstThreadBeginTimestamp = Plat_FloatTime(); } else { double flMstThreadFrameTimeSec = Plat_FloatTime() - s_flMstThreadBeginTimestamp; s_apci.msMST = flMstThreadFrameTimeSec*1000.0f; } }
void OnFrameTimestampAvailableRsx( float ms ) { AUTO_LOCK( s_mtFrameTimestamps ); s_apci.msGPU = ms; }
void OnFrameTimestampAvailableTotal( float ms ) { AUTO_LOCK( s_mtFrameTimestamps ); s_apci.msTotal = ms; }
#ifdef _X360
static LARGE_INTEGER s_gpuStartTime; static LARGE_INTEGER s_gpuTime;
void OnGpuStartFrame(uint32 context) { QueryPerformanceCounter( &s_gpuStartTime ); }
void OnGpuEndFrame(uint32 context) { LARGE_INTEGER current_time; QueryPerformanceCounter( ¤t_time ); s_gpuTime.QuadPart = current_time.QuadPart - s_gpuStartTime.QuadPart; }
#endif
#endif
uint32 CMaterialSystem::GetFrameTimestamps( ApplicationPerformanceCountersInfo_t &apci, ApplicationInstantCountersInfo_t & aici ) { #if defined (_X360) && X360_ALLOW_TIMESTAMPS
LARGE_INTEGER freq; QueryPerformanceFrequency(&freq); s_apci.msGPU = 1000.0f * ((double)s_gpuTime.QuadPart / (double)(freq.QuadPart)); #endif
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
AUTO_LOCK( s_mtFrameTimestamps ); V_memcpy( &apci, &s_apci, sizeof( s_apci ) ); return 1000; #else
return 0; #endif
}
bool CMaterialSystem::CanDownloadTextures() const { return g_pShaderAPI->CanDownloadTextures(); }
int CMaterialSystem::GetConfigurationFlags( void ) const { return m_nConfigurationFlags; }
//-----------------------------------------------------------------------------
// Can we use editor materials?
//-----------------------------------------------------------------------------
bool CMaterialSystem::CanUseEditorMaterials( void ) const { return GetConfigurationFlags() & MATCONFIG_FLAGS_SUPPORT_EDITOR; }
//-----------------------------------------------------------------------------
// Methods related to mode setting...
//-----------------------------------------------------------------------------
// Gets the number of adapters...
int CMaterialSystem::GetDisplayAdapterCount() const { return g_pShaderDeviceMgr->GetAdapterCount( ); }
// Returns info about each adapter
void CMaterialSystem::GetDisplayAdapterInfo( int adapter, MaterialAdapterInfo_t& info ) const { g_pShaderDeviceMgr->GetAdapterInfo( adapter, info ); }
// Returns the number of modes
int CMaterialSystem::GetModeCount( int adapter ) const { return g_pShaderDeviceMgr->GetModeCount( adapter ); }
//-----------------------------------------------------------------------------
// Compatability function, should go away eventually
//-----------------------------------------------------------------------------
static void ConvertModeStruct( ShaderDeviceInfo_t *pMode, const MaterialSystem_Config_t &config ) { pMode->m_DisplayMode.m_nWidth = config.m_VideoMode.m_Width; pMode->m_DisplayMode.m_nHeight = config.m_VideoMode.m_Height; pMode->m_DisplayMode.m_Format = config.m_VideoMode.m_Format; pMode->m_DisplayMode.m_nRefreshRateNumerator = config.m_VideoMode.m_RefreshRate; pMode->m_DisplayMode.m_nRefreshRateDenominator = config.m_VideoMode.m_RefreshRate ? 1 : 0; pMode->m_nBackBufferCount = ( config.m_bWantTripleBuffered && config.WaitForVSync() && !config.Windowed() ) ? 2 : 1; // Only used in ShaderAPIDX10
pMode->m_nAASamples = config.m_nAASamples; pMode->m_nAAQuality = config.m_nAAQuality; pMode->m_nDXLevel = config.dxSupportLevel; pMode->m_nWindowedSizeLimitWidth = (int)config.m_WindowedSizeLimitWidth; pMode->m_nWindowedSizeLimitHeight = (int)config.m_WindowedSizeLimitHeight;
pMode->m_bWindowed = config.Windowed(); pMode->m_bResizing = config.Resizing(); pMode->m_bUseStencil = config.Stencil(); pMode->m_bLimitWindowedSize = config.LimitWindowedSize(); pMode->m_bWaitForVSync = config.WaitForVSync(); pMode->m_bScaleToOutputResolution = config.ScaleToOutputResolution(); pMode->m_bUsingMultipleWindows = config.UsingMultipleWindows(); }
static void ConvertModeStruct( MaterialVideoMode_t *pMode, const ShaderDisplayMode_t &info ) { pMode->m_Width = info.m_nWidth; pMode->m_Height = info.m_nHeight; pMode->m_Format = info.m_Format; pMode->m_RefreshRate = info.m_nRefreshRateNumerator / info.m_nRefreshRateDenominator; }
//-----------------------------------------------------------------------------
// Returns mode information..
//-----------------------------------------------------------------------------
void CMaterialSystem::GetModeInfo( int nAdapter, int nMode, MaterialVideoMode_t& info ) const { ShaderDisplayMode_t shaderInfo; g_pShaderDeviceMgr->GetModeInfo( &shaderInfo, nAdapter, nMode ); ConvertModeStruct( &info, shaderInfo ); }
//-----------------------------------------------------------------------------
// Returns the mode info for the current display device
//-----------------------------------------------------------------------------
void CMaterialSystem::GetDisplayMode( MaterialVideoMode_t& info ) const { ShaderDisplayMode_t shaderInfo; g_pShaderDeviceMgr->GetCurrentModeInfo( &shaderInfo, m_nAdapter ); ConvertModeStruct( &info, shaderInfo ); }
void CMaterialSystem::ForceSingleThreaded() { if ( !ThreadInMainThread() ) { Error("Can't force single thread from within thread!\n"); } if ( GetThreadMode() != MATERIAL_SINGLE_THREADED ) { #ifndef _PS3
if ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() ) { m_pActiveAsyncJob->WaitForFinish(); } SafeRelease( m_pActiveAsyncJob ); #else
if (m_bQMSJobSubmitted) { g_pGcmSharedData->WaitForQMS(); m_bQMSJobSubmitted = 0; } #endif
#ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadRelease(); #else
g_pShaderAPI->AcquireThreadOwnership(); #endif
g_pShaderAPI->EnableShaderShaderMutex( false ); m_pRenderContext = &m_HardwareRenderContext; for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { Assert( m_QueuedRenderContexts[i].IsInitialized() );
m_QueuedRenderContexts[i].EndQueue(true);
m_QueuedRenderContexts[i].Shutdown(); } if( mat_debugalttab.GetBool() ) { Warning("Forcing queued mode off!\n"); }
// NOTE: Must happen after EndQueue or proxies get bound again, which is bad.
m_ThreadMode = MATERIAL_SINGLE_THREADED;
m_bForcedSingleThreaded = true; } } //-----------------------------------------------------------------------------
// Sets the mode...
//-----------------------------------------------------------------------------
bool CMaterialSystem::SetMode( void* hwnd, const MaterialSystem_Config_t &config ) { Assert( m_bGeneratedConfig );
ForceSingleThreaded();
ShaderDeviceInfo_t info; ConvertModeStruct( &info, config );
bool bPreviouslyUsingGraphics = g_pShaderDevice->IsUsingGraphics(); bool bOk = g_pShaderAPI->SetMode( hwnd, m_nAdapter, info ); if ( !bOk ) return false;
AllocateScratchRSXMemory();
TextureManager()->FreeStandardRenderTargets(); TextureManager()->AllocateStandardRenderTargets();
// FIXME: There's gotta be a better way of doing this?
// After the first mode set, make sure to download any textures created
// before the first mode set. After the first mode set, all textures
// will be reloaded via the reaquireresources call. Same goes for procedural materials
if ( !bPreviouslyUsingGraphics ) { if ( IsPC() ) { TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); if ( MaterialSystem()->CanUseEditorMaterials() ) { // We are in Hammer. Allocate these here since we aren't going to allocate
// lightmaps.
// HACK!
// NOTE! : Overbright is 1.0 so that Hammer will work properly with the white bumped and unbumped lightmaps.
MathLib_Init( 2.2f, 2.2f, 0.0f, OVERBRIGHT ); AllocateStandardTextures(); } }
if ( IsX360() || IsPS3() ) { // shaderapi was not viable at init time, it is now
TextureManager()->ReloadTextures(); AllocateStandardTextures(); } }
g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax, config.m_fGammaTVExponent, config.m_bGammaTVEnabled );
// Copy over that state which isn't stored currently in convars
g_config.m_VideoMode = config.m_VideoMode; g_config.SetFlag( MATSYS_VIDCFG_FLAGS_WINDOWED, config.Windowed() ); g_config.SetFlag( MATSYS_VIDCFG_FLAGS_STENCIL, config.Stencil() ); WriteConfigIntoConVars( config );
extern void SetupDirtyDiskReportFunc(); SetupDirtyDiskReportFunc();
return true; }
// Creates/ destroys a child window
bool CMaterialSystem::AddView( void* hwnd ) { return g_pShaderDevice->AddView( hwnd ); }
void CMaterialSystem::RemoveView( void* hwnd ) { g_pShaderDevice->RemoveView( hwnd ); }
// Activates a view
void CMaterialSystem::SetView( void* hwnd ) { g_pShaderDevice->SetView( hwnd ); }
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to release vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddReleaseFunc( MaterialBufferReleaseFunc_t func ) { // Shouldn't have two copies in our list
Assert( m_ReleaseFunc.Find( func ) == -1 ); m_ReleaseFunc.AddToTail( func ); }
void CMaterialSystem::RemoveReleaseFunc( MaterialBufferReleaseFunc_t func ) { int i = m_ReleaseFunc.Find( func ); if( i != -1 ) m_ReleaseFunc.Remove(i); }
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to restore vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddRestoreFunc( MaterialBufferRestoreFunc_t func ) { // Shouldn't have two copies in our list
Assert( m_RestoreFunc.Find( func ) == -1 ); m_RestoreFunc.AddToTail( func ); }
void CMaterialSystem::RemoveRestoreFunc( MaterialBufferRestoreFunc_t func ) { int i = m_RestoreFunc.Find( func ); Assert( i != -1 ); m_RestoreFunc.Remove(i); }
//-----------------------------------------------------------------------------
// Installs a function to be called when we need to release vertex buffers
//-----------------------------------------------------------------------------
void CMaterialSystem::AddEndFrameCleanupFunc( EndFrameCleanupFunc_t func ) { // Shouldn't have two copies in our list
Assert( m_EndFrameCleanupFunc.Find( func ) == -1 ); m_EndFrameCleanupFunc.AddToTail( func ); }
void CMaterialSystem::RemoveEndFrameCleanupFunc( EndFrameCleanupFunc_t func ) { int i = m_EndFrameCleanupFunc.Find( func ); if( i != -1 ) { m_EndFrameCleanupFunc.Remove(i); } }
// Gets called when the level is shuts down, will call the registered callback
void CMaterialSystem::OnLevelShutdown() { // changing contexts away from gameplay
m_bLevelLoadingComplete = false;
int nSize = m_OnLevelShutdownFuncs.Count(); for (int i = 0 ; i < nSize ; ++i) { COnLevelShutdownFunc & instance = m_OnLevelShutdownFuncs[i]; instance.m_Func(instance.m_pUserData); } }
// Installs a function to be called when the level is shuts down
bool CMaterialSystem::AddOnLevelShutdownFunc( OnLevelShutdownFunc_t func, void * pUserData ) { COnLevelShutdownFunc instance(func, pUserData); int i = m_OnLevelShutdownFuncs.Find( instance ); if (i != -1) { return false; } m_OnLevelShutdownFuncs.AddToTail(instance); return true; }
bool CMaterialSystem::RemoveOnLevelShutdownFunc( OnLevelShutdownFunc_t func, void * pUserData ) { COnLevelShutdownFunc instance(func, pUserData); int i = m_OnLevelShutdownFuncs.Find( instance ); if (i == -1) { return false; } m_OnLevelShutdownFuncs.Remove(i); return true; }
//-----------------------------------------------------------------------------
// // Installs a function to be called when we need to perform operation before next rendering context is started
//-----------------------------------------------------------------------------
void CMaterialSystem::AddEndFramePriorToNextContextFunc( EndFramePriorToNextContextFunc_t func ) { // Shouldn't have two copies in our list
Assert( m_EndFramePriorToNextContextFunc.Find( func ) == m_EndFramePriorToNextContextFunc.InvalidIndex() ); m_EndFramePriorToNextContextFunc.AddToTail( func ); }
void CMaterialSystem::RemoveEndFramePriorToNextContextFunc( EndFramePriorToNextContextFunc_t func ) { int i = m_EndFramePriorToNextContextFunc.Find( func ); if( i != m_EndFramePriorToNextContextFunc.InvalidIndex() ) { m_EndFramePriorToNextContextFunc.Remove(i); } }
ICustomMaterialManager *CMaterialSystem::GetCustomMaterialManager() { return &m_CustomMaterialManager; }
ICompositeTextureGenerator *CMaterialSystem::GetCompositeTextureGenerator() { return &m_CompositeTextureGenerator; }
void CMaterialSystem::OnLevelLoadingComplete() { // called from engine when level has loaded and gameplay is expected to commence
m_bLevelLoadingComplete = true; }
//-----------------------------------------------------------------------------
// Called by the shader API when it's just about to lose video memory
//-----------------------------------------------------------------------------
void CMaterialSystem::ReleaseShaderObjects( int nChangeFlags ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReleaseShaderObjects\n" ); }
Flush( false );
m_HardwareRenderContext.OnReleaseShaderObjects();
if ( ( nChangeFlags & MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ) == 0 ) { g_pOcclusionQueryMgr->FreeOcclusionQueryObjects();
// If we're in an alt+tab event don't release managed resources
bool bReleaseManaged = ( nChangeFlags & MATERIAL_RESTORE_RELEASE_MANAGED_RESOURCES ) ? true : false; m_bRestoreManangedResources = bReleaseManaged;
TextureManager()->ReleaseTextures( bReleaseManaged ); ReleaseStandardTextures(); if ( bReleaseManaged ) { GetLightmaps()->ReleaseLightmapPages(); } } for (int i = 0; i < m_ReleaseFunc.Count(); ++i) { m_ReleaseFunc[i]( nChangeFlags ); } }
void CMaterialSystem::RestoreShaderObjects( CreateInterfaceFn shaderFactory, int nChangeFlags ) { #if !defined( _PS3 ) && !defined( _OSX )
if ( shaderFactory ) { g_pShaderAPI = (IShaderAPI*)shaderFactory( SHADERAPI_INTERFACE_VERSION, NULL ); g_pShaderDevice = (IShaderDevice*)shaderFactory( SHADER_DEVICE_INTERFACE_VERSION, NULL ); g_pShaderShadow = (IShaderShadow*)shaderFactory( SHADERSHADOW_INTERFACE_VERSION, NULL ); } #endif
for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) ) { IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( i ); if ( pMat ) { pMat->ReportVarChanged( NULL ); } }
if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::RestoreShaderObjects\n" ); }
// Shader API sets this to the max value the card supports when it resets
// the state, so restore this value.
g_pShaderAPI->SetAnisotropicLevel( GetCurrentConfigForVideoCard().m_nForceAnisotropicLevel );
if ( ( nChangeFlags & MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ) == 0 ) { // NOTE: render targets must be restored first, then vb/ibs, then managed textures
// FIXME: Gotta restore lightmap pages + standard textures before restore funcs are called
// because they use them both.
TextureManager()->RestoreRenderTargets(); AllocateStandardTextures(); if ( m_bRestoreManangedResources ) { GetLightmaps()->RestoreLightmapPages(); } g_pOcclusionQueryMgr->AllocOcclusionQueryObjects(); }
for (int i = 0; i < m_RestoreFunc.Count(); ++i) { m_RestoreFunc[i]( nChangeFlags ); }
if ( ( nChangeFlags & MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ) == 0 && m_bRestoreManangedResources ) { TextureManager()->RestoreNonRenderTargetTextures();
// Reset the restore to true in the odd case that we get a RestoreShaderObjects without a ReleaseShaderObjects
m_bRestoreManangedResources = true; }
}
//-----------------------------------------------------------------------------
// Use this to spew information about the 3D layer
//-----------------------------------------------------------------------------
void CMaterialSystem::SpewDriverInfo() const { Warning( "ShaderAPI: %s\n", m_pShaderDLL ); g_pShaderDevice->SpewDriverInfo(); }
//-----------------------------------------------------------------------------
// Color converting blitter
//-----------------------------------------------------------------------------
bool CMaterialSystem::ConvertImageFormat( unsigned char *src, enum ImageFormat srcImageFormat, unsigned char *dst, enum ImageFormat dstImageFormat, int width, int height, int srcStride, int dstStride ) { return ImageLoader::ConvertImageFormat( src, srcImageFormat, dst, dstImageFormat, width, height, srcStride, dstStride ); }
//-----------------------------------------------------------------------------
// Figures out the amount of memory needed by a bitmap
//-----------------------------------------------------------------------------
int CMaterialSystem::GetMemRequired( int width, int height, int depth, ImageFormat format, bool mipmap ) { return ImageLoader::GetMemRequired( width, height, depth, format, mipmap ); }
ShaderAPITextureHandle_t CMaterialSystem::GetShaderAPITextureBindHandle( ITexture *pTexture, int nFrameVar, int nTextureChannel ) { return ShaderSystem()->GetShaderAPITextureBindHandle( pTexture, nFrameVar, nTextureChannel ); }
//-----------------------------------------------------------------------------
// Method to allow clients access to the MaterialSystem_Config
//-----------------------------------------------------------------------------
MaterialSystem_Config_t& CMaterialSystem::GetConfig() { Assert( m_bGeneratedConfig ); return g_config; }
//-----------------------------------------------------------------------------
// Gets image format info
//-----------------------------------------------------------------------------
ImageFormatInfo_t const& CMaterialSystem::ImageFormatInfo( ImageFormat fmt) const { return ImageLoader::ImageFormatInfo(fmt); }
//-----------------------------------------------------------------------------
// Reads keyvalues for information
//-----------------------------------------------------------------------------
static void ReadInt( KeyValues *pGroup, const char *pName, int nDefaultVal, int nUndefinedVal, int *pDest ) { *pDest = pGroup->GetInt( pName, nDefaultVal ); // Warning( "\t%s = %d\n", pName, *pDest );
Assert( *pDest != nUndefinedVal ); }
static void ReadFlt( KeyValues *pGroup, const char *pName, float flDefaultVal, float flUndefinedVal, float *pDest ) { *pDest = pGroup->GetFloat( pName, flDefaultVal ); // Warning( "\t%s = %f\n", pName, *pDest );
Assert( *pDest != flUndefinedVal ); }
static void LoadFlags( KeyValues *pGroup, const char *pName, bool bDefaultValue, unsigned int nFlag, unsigned int *pFlags ) { int nValue = pGroup->GetInt( pName, bDefaultValue ? 1 : 0 ); // Warning( "\t%s = %s\n", pName, nValue ? "true" : "false" );
if ( nValue ) { *pFlags |= nFlag; } }
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::GenerateConfigFromConfigKeyValues( MaterialSystem_Config_t *pConfig, bool bOverwriteCommandLineValues ) { KeyValues *pKeyValues = new KeyValues( "config" ); if ( !pKeyValues ) return;
if ( IsPC() && !GetRecommendedVideoConfig( pKeyValues ) ) { pKeyValues->deleteThis(); return; }
float flAspectRatio; pConfig->m_Flags = 0; ReadInt( pKeyValues, "setting.defaultres", 640, -1, &pConfig->m_VideoMode.m_Width ); ReadInt( pKeyValues, "setting.defaultresheight", 480, -1, &pConfig->m_VideoMode.m_Height ); ReadFlt( pKeyValues, "setting.aspectratio", ( 4.0f / 3.0f ), -1, &flAspectRatio ); int nUnsupported = 0; ReadInt( pKeyValues, "setting.unsupported", 0, -1, &nUnsupported ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_UNSUPPORTED, nUnsupported != 0 );
#ifdef LINUX
uint width = 0; uint height = 0; uint refreshHz = 0; // Not used
// query backbuffer size (window size whether FS or windowed)
if( g_pLauncherMgr ) { g_pLauncherMgr->GetNativeDisplayInfo( -1, width, height, refreshHz ); }
pConfig->m_VideoMode.m_Width = width; pConfig->m_VideoMode.m_Height = height;
#elif defined( _X360 )
pConfig->m_VideoMode.m_Width = GetSystemMetrics( SM_CXSCREEN ); pConfig->m_VideoMode.m_Height = GetSystemMetrics( SM_CYSCREEN ); // We can afford better aniso in standard def
if ( pConfig->m_VideoMode.m_Width == 640 ) { static ConVarRef mat_forceaniso( "mat_forceaniso" ); mat_forceaniso.SetValue( 8 ); } #elif defined( _PS3 )
// Shader API does the dirty work of querying cellVideo libraries for screen res, so just piggy back on it
ShaderDisplayMode_t info; g_pShaderDeviceMgr->GetModeInfo( &info, 0, 0 ); pConfig->m_VideoMode.m_Width = info.m_nWidth; pConfig->m_VideoMode.m_Height = info.m_nHeight; // We can afford better aniso in standard def
if ( pConfig->m_VideoMode.m_Width == 640 ) { static ConVarRef mat_forceaniso( "mat_forceaniso" ); mat_forceaniso.SetValue( 8 ); } #endif
// Destroy the keys.
pKeyValues->deleteThis();
m_bGeneratedConfig = true; }
//-----------------------------------------------------------------------------
// If mat_proxy goes to 0, we need to reload all materials, because their shader
// params might have been messed with.
//-----------------------------------------------------------------------------
static void MatProxyCallback( IConVar *pConVar, const char *old, float flOldValue ) { ConVarRef var( pConVar ); int oldVal = (int)flOldValue; if ( var.GetInt() == 0 && oldVal != 0 ) { g_MaterialSystem.ReloadMaterials(); } }
//-----------------------------------------------------------------------------
// Convars that control the config record
//-----------------------------------------------------------------------------
ConVar mat_vsync( "mat_vsync", IsGameConsole() ? "1" : "0", FCVAR_NONE, "Force sync to vertical retrace", true, 0.0, true, 1.0 );
// Texture-related
static ConVar mat_forceaniso( "mat_forceaniso", "1" ); // 0 = Bilinear, 1 = Trilinear, 2+ = Aniso
static ConVar mat_filterlightmaps( "mat_filterlightmaps", "1" ); static ConVar mat_filtertextures( "mat_filtertextures", "1" ); static ConVar mat_mipmaptextures( "mat_mipmaptextures", "1" );
static void mat_showmiplevels_Callback_f( IConVar *var, const char *pOldValue, float flOldValue ) { // turn off texture filtering if we are showing mip levels.
mat_filtertextures.SetValue( ( ( ConVar * )var )->GetInt() == 0 ); } // Debugging textures
static ConVar mat_showmiplevels( "mat_showmiplevels", "0", FCVAR_CHEAT, "color-code miplevels 2: normalmaps, 1: everything else", mat_showmiplevels_Callback_f );
static ConVar mat_specular( "mat_specular", "1", 0, "Enable/Disable specularity for perf testing. Will cause a material reload upon change." ); static ConVar mat_bumpmap( "mat_bumpmap", "1" ); static ConVar mat_detail_tex( "mat_detail_tex", "1" ); static ConVar mat_phong( "mat_phong", "1" ); static ConVar mat_parallaxmap( "mat_parallaxmap", "1" ); static ConVar mat_reducefillrate( "mat_reducefillrate", "0" );
// moved up: static ConVar mat_picmip( "mat_picmip", "0", FCVAR_NONE, "", true, -10, true, 4 );
static ConVar mat_monitorgamma( "mat_monitorgamma", "2.2", FCVAR_ARCHIVE | FCVAR_ARCHIVE_GAMECONSOLE, "monitor gamma (typically 2.2 for CRT and 1.7 for LCD)", true, 1.6f, true, 2.6f ); static ConVar mat_monitorgamma_tv_range_min( "mat_monitorgamma_tv_range_min", "16" ); static ConVar mat_monitorgamma_tv_range_max( "mat_monitorgamma_tv_range_max", "235" ); // TV's generally have a 2.5 gamma, so we need to convert our 2.2 frame buffer into a 2.5 frame buffer for display on a TV
static ConVar mat_monitorgamma_tv_exp( "mat_monitorgamma_tv_exp", "2.5", 0, "", true, 1.0f, true, 4.0f );
static ConVar mat_monitorgamma_tv_enabled( "mat_monitorgamma_tv_enabled", IsGameConsole() ? "1" : "0", FCVAR_ARCHIVE | FCVAR_ARCHIVE_GAMECONSOLE, "" );
static ConVar mat_triplebuffered( "mat_triplebuffered", "0", 0, "This means we want triple buffering if we are fullscreen and vsync'd" ); static ConVar mat_antialias( "mat_antialias", "0" ); static ConVar mat_aaquality( "mat_aaquality", "0" ); static ConVar mat_diffuse( "mat_diffuse", "1" ); static ConVar mat_showlowresimage( "mat_showlowresimage", "0", FCVAR_CHEAT ); static ConVar mat_fullbright( "mat_fullbright","0", FCVAR_CHEAT ); static ConVar mat_normalmaps( "mat_normalmaps", "0", FCVAR_CHEAT ); static ConVar mat_measurefillrate( "mat_measurefillrate", "0", FCVAR_CHEAT ); static ConVar mat_fillrate( "mat_fillrate", "0", FCVAR_CHEAT ); static ConVar mat_reversedepth( "mat_reversedepth", "0", FCVAR_CHEAT ); #if defined( PLATFORM_POSIX ) && !defined( _PS3 )
static ConVar mat_bufferprimitives( "mat_bufferprimitives", "0" ); // I'm not seeing any benefit speed wise for buffered primitives on GLM/POSIX (checked via TF2 timedemo) - default to zero
#else
static ConVar mat_bufferprimitives( "mat_bufferprimitives", "1" ); #endif
static ConVar mat_drawflat( "mat_drawflat","0", FCVAR_CHEAT ); static ConVar mat_softwarelighting( "mat_softwarelighting", "0" ); static ConVar mat_proxy( "mat_proxy", "0", FCVAR_CHEAT, "", MatProxyCallback ); static ConVar mat_norendering( "mat_norendering", "0", FCVAR_CHEAT ); static ConVar mat_compressedtextures( "mat_compressedtextures", "1" ); static ConVar mat_fastspecular( "mat_fastspecular", "1", 0, "Enable/Disable specularity for visual testing. Will not reload materials and will not affect perf." ); static ConVar mat_fastnobump( "mat_fastnobump", "0", FCVAR_CHEAT ); // Binds 1-texel normal map for quick internal testing
static ConVar mat_drawgray( "mat_drawgray","0", FCVAR_CHEAT );
// These are not controlled by the material system, but are limited by settings in the material system
static ConVar r_shadowrendertotexture( "r_shadowrendertotexture", "0" ); #if ( defined( CSTRIKE15 ) && defined( _PS3) )
static ConVar r_flashlightdepthtexture( "r_flashlightdepthtexture", "1" ); #else
static ConVar r_flashlightdepthtexture( "r_flashlightdepthtexture", "1" ); #endif
// On non-gameconsoles mat_motion_blur_enabled now comes from video.txt/videodefaults.txt
static ConVar mat_motion_blur_enabled( "mat_motion_blur_enabled", IsGameConsole() ? "1" : "0" );
static ConVar mat_paint_enabled( "mat_paint_enabled", "0" );
uint32 g_nDebugVarsSignature = 0;
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::ReadConfigFromConVars( MaterialSystem_Config_t *pConfig ) { if ( !g_pCVar ) return;
// video panel config items
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_NO_WAIT_FOR_VSYNC, !mat_vsync.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_SPECULAR, !mat_specular.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_BUMPMAP, !mat_bumpmap.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_DETAIL, !mat_detail_tex.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_DISABLE_PHONG, !mat_phong.GetBool() ); pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_PARALLAX_MAPPING, mat_parallaxmap.GetBool() ); pConfig->m_nForceAnisotropicLevel = MAX( mat_forceaniso.GetInt(), 1 );
// special handling for mat_dxlevel since it must be clamped to allowable values
int nDxLevel = clamp( mat_dxlevel.GetInt(), g_pMaterialSystemHardwareConfig->GetMinDXSupportLevel(), g_pMaterialSystemHardwareConfig->GetMaxDXSupportLevel() ); pConfig->dxSupportLevel = nDxLevel; mat_dxlevel.SetValue( nDxLevel );
pConfig->skipMipLevels = mat_picmip.GetInt();
pConfig->m_fMonitorGamma = mat_monitorgamma.GetFloat(); pConfig->m_fGammaTVRangeMin = mat_monitorgamma_tv_range_min.GetFloat(); pConfig->m_fGammaTVRangeMax = mat_monitorgamma_tv_range_max.GetFloat(); pConfig->m_fGammaTVExponent = mat_monitorgamma_tv_exp.GetFloat(); pConfig->m_bGammaTVEnabled = mat_monitorgamma_tv_enabled.GetBool();
pConfig->m_bWantTripleBuffered = mat_triplebuffered.GetBool(); pConfig->m_nAASamples = mat_antialias.GetInt(); pConfig->m_nAAQuality = mat_aaquality.GetInt(); pConfig->bShowDiffuse = mat_diffuse.GetBool(); // pConfig->bAllowCheats = false; // hack
pConfig->bShowNormalMap = mat_normalmaps.GetBool(); pConfig->bShowLowResImage = mat_showlowresimage.GetBool(); pConfig->bMeasureFillRate = mat_measurefillrate.GetBool(); pConfig->bVisualizeFillRate = mat_fillrate.GetBool(); pConfig->bFilterLightmaps = mat_filterlightmaps.GetBool(); pConfig->bFilterTextures = mat_filtertextures.GetBool(); pConfig->bMipMapTextures = mat_mipmaptextures.GetBool(); pConfig->nShowMipLevels = mat_showmiplevels.GetInt(); pConfig->bReverseDepth = mat_reversedepth.GetBool(); pConfig->bBufferPrimitives = mat_bufferprimitives.GetBool(); pConfig->bDrawFlat = mat_drawflat.GetBool(); pConfig->bSoftwareLighting = mat_softwarelighting.GetBool(); pConfig->proxiesTestMode = mat_proxy.GetInt(); pConfig->m_bSuppressRendering = mat_norendering.GetBool(); pConfig->bCompressedTextures = mat_compressedtextures.GetBool(); pConfig->bShowSpecular = mat_fastspecular.GetBool(); pConfig->nFullbright = mat_fullbright.GetInt(); pConfig->m_bFastNoBump = mat_fastnobump.GetBool(); pConfig->m_bMotionBlur = mat_motion_blur_enabled.GetBool(); pConfig->m_bSupportFlashlight = mat_supportflashlight.GetBool(); pConfig->m_bShadowDepthTexture = r_flashlightdepthtexture.GetBool(); pConfig->bDrawGray = mat_drawgray.GetBool(); // PAINT
pConfig->m_bPaintInGame = mat_paint_enabled.GetBool(); pConfig->m_bPaintInMap = GetPaintmaps()->IsEnabled();
ConVarRef csm_quality_level( "csm_quality_level" ); pConfig->m_nCSMQuality = (CSMQualityMode_t)clamp( csm_quality_level.GetInt(), CSMQUALITY_VERY_LOW, (int)CSMQUALITY_TOTAL_MODES - 1 );
pConfig->SetFlag( MATSYS_VIDCFG_FLAGS_ENABLE_HDR, HardwareConfig() && HardwareConfig()->GetHDREnabled() ); }
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
void CMaterialSystem::WriteConfigIntoConVars( const MaterialSystem_Config_t &config ) { if ( !g_pCVar ) return;
mat_vsync.SetValue( config.WaitForVSync() ); mat_specular.SetValue( config.UseSpecular() ); mat_bumpmap.SetValue( config.UseBumpmapping() ); mat_detail_tex.SetValue( config.UseDetailTexturing() ); mat_parallaxmap.SetValue( config.UseParallaxMapping() ); mat_forceaniso.SetValue( config.m_nForceAnisotropicLevel ); mat_dxlevel.SetValue( config.dxSupportLevel ); mat_picmip.SetValue( config.skipMipLevels ); mat_phong.SetValue( config.UsePhong() );
mat_monitorgamma.SetValue( config.m_fMonitorGamma ); mat_monitorgamma_tv_range_min.SetValue( config.m_fGammaTVRangeMin ); mat_monitorgamma_tv_range_max.SetValue( config.m_fGammaTVRangeMax ); mat_monitorgamma_tv_exp.SetValue( config.m_fGammaTVExponent ); mat_monitorgamma_tv_enabled.SetValue( config.m_bGammaTVEnabled );
mat_triplebuffered.SetValue( config.m_bWantTripleBuffered ? 1 : 0 ); mat_antialias.SetValue( config.m_nAASamples ); mat_aaquality.SetValue( config.m_nAAQuality ); mat_diffuse.SetValue( config.bShowDiffuse ? 1 : 0 ); // config.bAllowCheats = false; // hack
mat_normalmaps.SetValue( config.bShowNormalMap ? 1 : 0 ); mat_showlowresimage.SetValue( config.bShowLowResImage ? 1 : 0 ); mat_measurefillrate.SetValue( config.bMeasureFillRate ? 1 : 0 ); mat_fillrate.SetValue( config.bVisualizeFillRate ? 1 : 0 ); mat_filterlightmaps.SetValue( config.bFilterLightmaps ? 1 : 0 ); mat_filtertextures.SetValue( config.bFilterTextures ? 1 : 0 ); mat_mipmaptextures.SetValue( config.bMipMapTextures ? 1 : 0 ); mat_showmiplevels.SetValue( config.nShowMipLevels ); mat_reversedepth.SetValue( config.bReverseDepth ? 1 : 0 ); mat_bufferprimitives.SetValue( config.bBufferPrimitives ? 1 : 0 ); mat_drawflat.SetValue( config.bDrawFlat ? 1 : 0 ); mat_softwarelighting.SetValue( config.bSoftwareLighting ? 1 : 0 ); mat_proxy.SetValue( config.proxiesTestMode ); mat_norendering.SetValue( config.m_bSuppressRendering ? 1 : 0 ); mat_compressedtextures.SetValue( config.bCompressedTextures ? 1 : 0 ); mat_fastspecular.SetValue( config.bShowSpecular ? 1 : 0 ); mat_fullbright.SetValue( config.nFullbright ); mat_fastnobump.SetValue( config.m_bFastNoBump ? 1 : 0 ); bool hdre = config.HDREnabled(); HardwareConfig()->SetHDREnabled( hdre ); r_flashlightdepthtexture.SetValue( config.m_bShadowDepthTexture ? 1 : 0 ); mat_motion_blur_enabled.SetValue( config.m_bMotionBlur ? 1 : 0 ); mat_supportflashlight.SetValue( config.m_bSupportFlashlight ? 1 : 0 ); mat_drawgray.SetValue( config.bDrawGray ? 1 : 0 );
ConVarRef csm_quality_level( "csm_quality_level" ); csm_quality_level.SetValue( clamp<int>( config.m_nCSMQuality, CSMQUALITY_VERY_LOW, CSMQUALITY_TOTAL_MODES - 1 ) ); }
//-----------------------------------------------------------------------------
// This is called constantly to catch for config changes
//-----------------------------------------------------------------------------
bool CMaterialSystem::OverrideConfig( const MaterialSystem_Config_t &_config, bool forceUpdate ) { Assert( m_bGeneratedConfig ); // internal config settings
#ifndef _GAMECONSOLE
MaterialSystem_Config_Internal_t config_internal; config_internal.gpu_level = gpu_level.GetInt(); #endif
if ( !memcmp( &_config, &g_config, sizeof(_config) ) #ifndef _GAMECONSOLE
&& !memcmp( &config_internal, &g_config_internal, sizeof(config_internal) ) #endif
) return false;
MaterialLock_t hLock = Lock(); MaterialSystem_Config_t config = _config;
// It's illegal to create a window larger than the screen resolution
if ( config.Windowed() ) { config.m_VideoMode.m_Width = clamp( config.m_VideoMode.m_Width, 0, m_nAdapterInfo.m_nWidth ); config.m_VideoMode.m_Height = clamp( config.m_VideoMode.m_Height, 0, m_nAdapterInfo.m_nHeight ); }
bool bRedownloadLightmaps = false; bool bRedownloadTextures = false; bool recomputeSnapshots = false; bool bReloadMaterials = false; bool bResetAnisotropy = false; bool bSetStandardVertexShaderConstants = false; bool bMonitorGammaChanged = false; bool bVideoModeChange = false; bool bResetTextureFilter = false; bool bForceAltTab = false;
if ( !g_pShaderDevice->IsUsingGraphics() ) { g_config = config;
#ifndef _GAMECONSOLE
g_config_internal = config_internal; #endif
// Shouldn't call this more than once.
ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false ); Unlock( hLock ); return bRedownloadLightmaps; }
// set the default state since we might be changing the number of
// texture units, etc. (i.e. we don't want to leave unit 2 in overbright mode
// if it isn't going to be reset upon each SetDefaultState because there is
// effectively only one texture unit.)
g_pShaderAPI->SetDefaultState(); // toggle dx emulation level
if ( config.dxSupportLevel != g_config.dxSupportLevel ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting bReloadMaterials because new dxlevel = %d and old dxlevel = %d\n", ( int )config.dxSupportLevel, g_config.dxSupportLevel ); }
// Necessary for DXSupportLevelChanged to work
g_config.dxSupportLevel = config.dxSupportLevel;
// This will reset config to match whatever the dxlevel wants
g_pShaderAPI->DXSupportLevelChanged( config.dxSupportLevel ); bReloadMaterials = true; }
if ( config.m_nCSMQuality != g_config.m_nCSMQuality ) { //forceUpdate = true;
bReloadMaterials = true; recomputeSnapshots = true; }
if ( config.HDREnabled() != g_config.HDREnabled() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials, and bForceAltTab because new hdr level = %d and old hdr level = %d\n", ( int )config.HDREnabled(), g_config.HDREnabled() ); }
forceUpdate = true; bReloadMaterials = true; bForceAltTab = true; }
if ( config.ShadowDepthTexture() != g_config.ShadowDepthTexture() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: Setting forceUpdate, bReloadMaterials and recomputeSnapshots (ShadowDepthTexture changed: %d -> %d)\n", g_config.ShadowDepthTexture() ? 1 : 0, config.ShadowDepthTexture() ? 1 : 0 ); }
if ( !IsGameConsole() ) { // On the 360, we don't actually destroy or recreate any render targets when r_shadowdepthtexture changes,
// so we don't have to do any of this stuff
forceUpdate = true; bReloadMaterials = true; recomputeSnapshots = true; } }
if ( forceUpdate ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" ); } GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps ); recomputeSnapshots = true; bRedownloadLightmaps = true; bRedownloadTextures = true; bResetAnisotropy = true; bSetStandardVertexShaderConstants = true; }
// toggle bump mapping
if ( config.UseBumpmapping() != g_config.UseBumpmapping() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" ); } recomputeSnapshots = true; bReloadMaterials = true; bResetAnisotropy = true; }
// toggle detail texturing
if ( config.UseDetailTexturing() != g_config.UseDetailTexturing() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: forceUpdate is true, therefore setting recomputeSnapshots, bRedownloadLightmaps, bRedownloadTextures, bResetAnisotropy, and bSetStandardVertexShaderConstants\n" ); } recomputeSnapshots = true; bReloadMaterials = true; bResetAnisotropy = true; }
// toggle specularity
if ( config.UseSpecular() != g_config.UseSpecular() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new usespecular=%d, old usespecular=%d, setting recomputeSnapshots, bReloadMaterials, and bResetAnisotropy\n", ( int )config.UseSpecular(), ( int )g_config.UseSpecular() ); } recomputeSnapshots = true; bReloadMaterials = true; bResetAnisotropy = true; } // toggle parallax mapping
if ( config.UseParallaxMapping() != g_config.UseParallaxMapping() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new UseParallaxMapping=%d, old UseParallaxMapping=%d, setting bReloadMaterials\n", ( int )config.UseParallaxMapping(), ( int )g_config.UseParallaxMapping() ); } bReloadMaterials = true; }
// toggle phong
if ( config.UsePhong() != g_config.UsePhong() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new UsePhong=%d, old UsePhong=%d, setting bReloadMaterials\n", ( int )config.UsePhong(), ( int )g_config.UsePhong() ); } bReloadMaterials = true; }
// toggle reverse depth
if ( config.bReverseDepth != g_config.bReverseDepth ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new ReduceFillrate=%d, old ReduceFillrate=%d, setting bReloadMaterials\n", ( int )config.bReverseDepth, ( int )g_config.bReverseDepth ); } recomputeSnapshots = true; bResetAnisotropy = true; }
// toggle no transparency
if ( config.bNoTransparency != g_config.bNoTransparency ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bNoTransparency=%d, old bNoTransparency=%d, setting recomputeSnapshots and bResetAnisotropy\n", ( int )config.bNoTransparency, ( int )g_config.bNoTransparency ); } recomputeSnapshots = true; bResetAnisotropy = true; }
// toggle lightmap filtering
if ( config.bFilterLightmaps != g_config.bFilterLightmaps ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bFilterLightmaps=%d, old bFilterLightmaps=%d, setting EnableLightmapFiltering\n", ( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps ); } GetLightmaps()->EnableLightmapFiltering( config.bFilterLightmaps ); } // toggle software lighting
if ( config.bSoftwareLighting != g_config.bSoftwareLighting ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bSoftwareLighting=%d, old bSoftwareLighting=%d, setting bReloadMaterials\n", ( int )config.bFilterLightmaps, ( int )g_config.bFilterLightmaps ); } bReloadMaterials = true; }
#ifndef _GAMECONSOLE
if ( config_internal.gpu_level != g_config_internal.gpu_level ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new gpu_level=%d, old gpu_level=%d, setting bReloadMaterials\n", ( int )config_internal.gpu_level, ( int )g_config_internal.gpu_level ); } bReloadMaterials = true; }
#endif
// generic things that cause us to redownload lightmaps
if ( config.bAllowCheats != g_config.bAllowCheats ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new bAllowCheats=%d, old bAllowCheats=%d, setting bRedownloadLightmaps\n", ( int )config.bAllowCheats, ( int )g_config.bAllowCheats ); } bRedownloadLightmaps = true; }
// generic things that cause us to redownload textures
if ( config.bAllowCheats != g_config.bAllowCheats || config.skipMipLevels != g_config.skipMipLevels || config.nShowMipLevels != g_config.nShowMipLevels || ( config.bCompressedTextures != g_config.bCompressedTextures ) || config.bShowLowResImage != g_config.bShowLowResImage || config.bDrawGray != g_config.bDrawGray ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: setting bRedownloadTextures, recomputeSnapshots, and bResetAnisotropy\n" ); } bRedownloadTextures = true; recomputeSnapshots = true; bResetAnisotropy = true; }
if ( config.m_nForceAnisotropicLevel != g_config.m_nForceAnisotropicLevel ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new m_nForceAnisotropicLevel: %d, old m_nForceAnisotropicLevel: %d, setting bResetAnisotropy and bResetTextureFilter\n", ( int )config.m_nForceAnisotropicLevel, ( int )g_config.m_nForceAnisotropicLevel ); } bResetAnisotropy = true; bResetTextureFilter = true; }
if ( config.m_fMonitorGamma != g_config.m_fMonitorGamma || config.m_fGammaTVRangeMin != g_config.m_fGammaTVRangeMin || config.m_fGammaTVRangeMax != g_config.m_fGammaTVRangeMax || config.m_fGammaTVExponent != g_config.m_fGammaTVExponent || config.m_bGammaTVEnabled != g_config.m_bGammaTVEnabled ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: new monitorgamma: %f, old monitorgamma: %f, setting bMonitorGammaChanged\n", config.m_fMonitorGamma, g_config.m_fMonitorGamma ); } bMonitorGammaChanged = true; }
if ( config.m_VideoMode.m_Width != g_config.m_VideoMode.m_Width || config.m_VideoMode.m_Height != g_config.m_VideoMode.m_Height || config.m_VideoMode.m_RefreshRate != g_config.m_VideoMode.m_RefreshRate || config.m_nAASamples != g_config.m_nAASamples || config.m_nAAQuality != g_config.m_nAAQuality || config.Windowed() != g_config.Windowed() || config.NoWindowBorder() != g_config.NoWindowBorder() || config.Stencil() != g_config.Stencil() ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: video mode changed for one of various reasons\n" ); } bVideoModeChange = true; }
// Toggle triple buffering
if ( config.m_bWantTripleBuffered != g_config.m_bWantTripleBuffered ) { // Only force a video mode change if we are fullscreen and vsync'd
if ( ( IsGameConsole() || !config.Windowed() ) && ( config.WaitForVSync() ) ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: video mode changed because triple buffering changed\n" ); } bVideoModeChange = true; } }
// toggle wait for vsync
if ( (IsGameConsole() || !config.Windowed()) && (config.WaitForVSync() != g_config.WaitForVSync()) ) { # if ( !defined( _X360 ) )
{ if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: video mode changed due to toggle of wait for vsync\n" ); } bVideoModeChange = true; } # else
{ g_pShaderAPI->EnableVSync_360( config.WaitForVSync() ); } # endif
}
g_config = config; #ifndef _GAMECONSOLE
g_config_internal = config_internal; #endif
if ( bRedownloadTextures || bRedownloadLightmaps ) { // Get rid of this?
ColorSpace::SetGamma( 2.2f, 2.2f, OVERBRIGHT, g_config.bAllowCheats, false ); }
// 360 does not support various configuration changes and cannot reload materials
if ( !IsGameConsole() ) { if ( bResetAnisotropy || recomputeSnapshots || bRedownloadLightmaps || bRedownloadTextures || bResetAnisotropy || bVideoModeChange || bSetStandardVertexShaderConstants || bResetTextureFilter ) { Unlock( hLock ); ForceSingleThreaded(); hLock = Lock(); } } if ( bReloadMaterials && !IsGameConsole() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ReloadMaterials\n" ); } ReloadMaterials(); }
// 360 does not support various configuration changes and cannot reload textures
// 360 has no reason to reload textures, it's unnecessary and massively expensive
// 360 does not use this path as an init affect to get its textures into memory
if ( bRedownloadTextures && !IsGameConsole() ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: redownloading textures\n" ); }
if ( CanDownloadTextures() ) { TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); } } else if ( bResetTextureFilter ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ResetTextureFilteringState\n" ); } TextureManager()->ResetTextureFilteringState(); }
// Recompute all state snapshots
if ( recomputeSnapshots ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: RecomputeAllStateSnapshots\n" ); } RecomputeAllStateSnapshots(); }
if ( bResetAnisotropy ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetAnisotropicLevel\n" ); } g_pShaderAPI->SetAnisotropicLevel( config.m_nForceAnisotropicLevel ); }
if ( bSetStandardVertexShaderConstants ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetStandardVertexShaderConstants\n" ); } g_pShaderAPI->SetStandardVertexShaderConstants( OVERBRIGHT ); }
if ( bMonitorGammaChanged ) { if( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: SetHardwareGammaRamp\n" ); } g_pShaderDevice->SetHardwareGammaRamp( config.m_fMonitorGamma, config.m_fGammaTVRangeMin, config.m_fGammaTVRangeMax, config.m_fGammaTVExponent, config.m_bGammaTVEnabled ); }
if ( bVideoModeChange ) { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: ChangeVideoMode\n" ); } ShaderDeviceInfo_t info; ConvertModeStruct( &info, config ); g_pShaderAPI->ChangeVideoMode( info ); }
if ( bForceAltTab ) { // Simulate an Alt-Tab
// g_pShaderAPI->ReleaseResources();
// g_pShaderAPI->ReacquireResources();
}
Unlock( hLock ); if ( bVideoModeChange ) { ForceSingleThreaded(); } return bRedownloadLightmaps; }
//-----------------------------------------------------------------------------
// This is called when the config changes
//-----------------------------------------------------------------------------
bool CMaterialSystem::UpdateConfig( bool forceUpdate ) { int nUpdateFlags = 0; if ( g_pCVar && g_pCVar->HasQueuedMaterialThreadConVarSets() ) { ForceSingleThreaded(); nUpdateFlags = g_pCVar->ProcessQueuedMaterialThreadConVarSets(); }
MaterialSystem_Config_t config = g_config; #ifndef DEDICATED
ReadConfigFromConVars( &config ); #endif
return OverrideConfig( config, forceUpdate ); }
void CMaterialSystem::ReleaseResources() { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReleaseResources\n" ); } g_pShaderDevice->ReleaseResources(); #if defined( FEATURE_SUBD_SUPPORT )
g_pSubDMgr->ReleaseResources(); #endif
}
void CMaterialSystem::ReacquireResources() { if ( mat_debugalttab.GetBool() ) { Warning( "mat_debugalttab: CMaterialSystem::ReacquireResources\n" ); } g_pShaderDevice->ReacquireResources(); #if defined( FEATURE_SUBD_SUPPORT )
g_pSubDMgr->ReacquireResources(); #endif
}
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, int firstIndex, int numIndices ) { if ( IsInStubMode() ) { return false; }
return GetRenderContextInternal()->OnDrawMesh( pMesh, firstIndex, numIndices ); }
bool CMaterialSystem::OnDrawMesh( IMesh *pMesh, CPrimList *pLists, int nLists ) { if ( IsInStubMode() ) return false;
return GetRenderContextInternal()->OnDrawMesh( pMesh, pLists, nLists ); }
bool CMaterialSystem::OnDrawMeshModulated( IMesh *pMesh, const Vector4D &diffuseModulation, int firstIndex, int numIndices ) { if ( IsInStubMode() ) return false;
return GetRenderContextInternal()->OnDrawMeshModulated( pMesh, diffuseModulation, firstIndex, numIndices ); }
void CMaterialSystem::OnThreadEvent( uint32 threadEvent ) { m_threadEvents.AddToTail( threadEvent ); }
//-----------------------------------------------------------------------------
// Creates a procedural texture
//-----------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateProceduralTexture( const char *pTextureName, const char *pTextureGroupName, int w, int h, ImageFormat fmt, int nFlags ) { ITextureInternal* pTex = TextureManager()->CreateProceduralTexture( pTextureName, pTextureGroupName, w, h, 1, fmt, nFlags ); return pTex; } #if defined( _X360 )
//-----------------------------------------------------------------------------
// Create a texture for displaying gamerpics.
// This function allocates the texture in the correct gamerpic format, but it does not fill in the gamerpic data.
//-----------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateGamerpicTexture( const char *pTextureName, const char *pTextureGroupName, int nFlags ) { return CreateProceduralTexture( pTextureName, pTextureGroupName, g_GamerpicSize, g_GamerpicSize, g_GamerpicFormat, nFlags ); }
//-----------------------------------------------------------------------------
// Update the given texture with the player gamerpic for the local player at the given index.
// Note: this texture must be the correct size and format. Use CreateGamerpicTexture.
//-----------------------------------------------------------------------------
bool CMaterialSystem::UpdateLocalGamerpicTexture( ITexture *pTexture, DWORD userIndex ) { Assert( pTexture != NULL ); Assert( pTexture->GetActualWidth() == g_GamerpicSize && pTexture->GetActualHeight() == g_GamerpicSize ); Assert( pTexture->GetImageFormat() == g_GamerpicFormat ); Assert( userIndex >= 0 && userIndex < 4 );
// lock
CPixelWriter writer; g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTexture)->GetTextureHandle( 0 ) ); g_pShaderAPI->TexLock( 0, 0, 0, 0, g_GamerpicSize, g_GamerpicSize, writer );
// Write the gamerpic to the texture.
BYTE *pBuf = (BYTE*)writer.GetPixelMemory(); DWORD retVal = XUserReadGamerPicture( userIndex, FALSE, pBuf, g_GamerpicSize * writer.GetPixelSize(), g_GamerpicSize * writer.GetPixelSize(), NULL );
// unlock
g_pShaderAPI->TexUnlock();
return (retVal == ERROR_SUCCESS); }
//-----------------------------------------------------------------------------
// Update the given texture with a remote player's gamerpic.
// Note: this texture must be the correct size and format. Use CreateGamerpicTexture.
//-----------------------------------------------------------------------------
bool CMaterialSystem::UpdateRemoteGamerpicTexture( ITexture *pTexture, XUID xuid ) { Assert( pTexture != NULL ); Assert( pTexture->GetActualWidth() == g_GamerpicSize && pTexture->GetActualHeight() == g_GamerpicSize ); Assert( pTexture->GetImageFormat() == g_GamerpicFormat );
//
// Read the remote player's profile.
//
const DWORD xuidCount = 1; XUID xuids[xuidCount]; xuids[0] = xuid;
const DWORD settingIdCount = 1; DWORD settingIds[settingIdCount]; settingIds[0] = XPROFILE_GAMERCARD_PICTURE_KEY;
// Get the size of the results.
DWORD resultsSize = 0; DWORD retVal = XUserReadProfileSettingsByXuid( 0, XBX_GetPrimaryUserId(), xuidCount, xuids, settingIdCount, settingIds, &resultsSize, 0, 0 ); if ( retVal != ERROR_INSUFFICIENT_BUFFER ) { return false; }
Assert( resultsSize > 0 );
// Get the profile with the correct results size.
CArrayAutoPtr<unsigned char> spResultsBuffer( new unsigned char[resultsSize] ); XUSER_READ_PROFILE_SETTING_RESULT *pResults = (XUSER_READ_PROFILE_SETTING_RESULT*)spResultsBuffer.Get(); retVal = XUserReadProfileSettingsByXuid( 0, 0, xuidCount, xuids, settingIdCount, settingIds, &resultsSize, pResults, 0 ); if ( retVal != ERROR_SUCCESS || pResults->dwSettingsLen == 0 ) { return false; }
// lock
CPixelWriter writer; g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTexture)->GetTextureHandle( 0 ) ); g_pShaderAPI->TexLock( 0, 0, 0, 0, g_GamerpicSize, g_GamerpicSize, writer );
// Write the gamerpic to the texture.
BYTE *pBuf = (BYTE*)writer.GetPixelMemory(); retVal = XUserReadGamerPictureByKey( &(pResults->pSettings[0].data), FALSE, pBuf, g_GamerpicSize * writer.GetPixelSize(), g_GamerpicSize * writer.GetPixelSize(), NULL );
// unlock
g_pShaderAPI->TexUnlock();
return (retVal == ERROR_SUCCESS); }
#endif // _X360
//-----------------------------------------------------------------------------
// Create new materials (currently only used by the editor!)
//-----------------------------------------------------------------------------
IMaterial *CMaterialSystem::CreateMaterial( const char *pMaterialName, KeyValues *pVMTKeyValues ) { // For not, just create a material with no default settings
IMaterialInternal* pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, TEXTURE_GROUP_OTHER, pVMTKeyValues ); pMaterial->IncrementReferenceCount(); AddMaterialToMaterialList( pMaterial ); return pMaterial->GetQueueFriendlyVersion(); }
//-----------------------------------------------------------------------------
// Finds or creates a procedural material
//-----------------------------------------------------------------------------
IMaterial *CMaterialSystem::FindProceduralMaterial( const char *pMaterialName, const char *pTextureGroupName, KeyValues *pVMTKeyValues ) { // We need lower-case symbols for this to work
int nLen = Q_strlen( pMaterialName ) + 1; char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pTemp, pMaterialName, nLen ); Q_strlower( pTemp ); Q_FixSlashes( pTemp, '/' );
// 'true' causes the search to find procedural materials
IMaterialInternal *pMaterial = m_MaterialDict.FindMaterial( pTemp, true ); if ( pMaterial ) { if ( pVMTKeyValues != NULL ) { pVMTKeyValues->deleteThis(); } } else { if ( pVMTKeyValues != NULL ) { pMaterial = IMaterialInternal::CreateMaterial( pMaterialName, pTextureGroupName, pVMTKeyValues ); AddMaterialToMaterialList( static_cast<IMaterialInternal*>( pMaterial ) ); } else { pMaterial = g_pErrorMaterial; } }
return pMaterial->GetQueueFriendlyVersion(); }
//-----------------------------------------------------------------------------
// Search by name
//-----------------------------------------------------------------------------
IMaterial* CMaterialSystem::FindMaterial( char const *pMaterialName, const char *pTextureGroupName, bool bComplain, const char *pComplainPrefix ) { if ( g_pResourceAccessControl ) { if ( !g_pResourceAccessControl->IsAccessAllowed( RESOURCE_MATERIAL, pMaterialName ) ) return g_pErrorMaterial->GetRealTimeVersion(); }
if ( !pMaterialName ) { return g_pErrorMaterial->GetQueueFriendlyVersion(); }
// We need lower-case symbols for this to work
int nLen = Q_strlen( pMaterialName ) + 1; char *pFixedNameTemp = (char*)stackalloc( nLen ); char *pTemp = (char*)stackalloc( nLen ); Q_strncpy( pFixedNameTemp, pMaterialName, nLen ); Q_strlower( pFixedNameTemp ); #ifdef PLATFORM_POSIX
// strip extensions needs correct slashing for the OS, so fix it up early for Posix
Q_FixSlashes( pFixedNameTemp, '/' ); #endif
Q_StripExtension( pFixedNameTemp, pTemp, nLen ); #ifndef PLATFORM_POSIX
Q_FixSlashes( pTemp, '/' ); #endif
Assert( nLen >= Q_strlen( pTemp ) + 1 );
IMaterialInternal *pExistingMaterial = m_MaterialDict.FindMaterial( pTemp, false ); // 'false' causes the search to find only file-created materials
if ( pExistingMaterial ) return pExistingMaterial->GetQueueFriendlyVersion();
#if defined( DEVELOPMENT_ONLY ) || defined( ALLOW_TEXT_MODE )
static bool s_bTextMode = CommandLine()->HasParm( "-textmode" ); if ( s_bTextMode ) return g_pErrorMaterial->GetQueueFriendlyVersion(); #endif
// if ( !m_MaterialDict.IsMissing(pTemp) )
{ // It hasn't been seen yet, so let's check to see if it's in the filesystem.
nLen = Q_strlen( "materials/" ) + Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1; char *vmtName = (char *)stackalloc( nLen );
// Check to see if this is a UNC-specified material name
bool bIsUNC = pTemp[0] == '/' && pTemp[1] == '/' && pTemp[2] != '/'; if ( !bIsUNC ) { Q_strncpy( vmtName, "materials/", nLen ); Q_strncat( vmtName, pTemp, nLen, COPY_ALL_CHARACTERS ); } else { Q_strncpy( vmtName, pTemp, nLen ); }
//Q_strncat( vmtName, ".vmt", nLen, COPY_ALL_CHARACTERS );
Assert( nLen >= (int)Q_strlen( vmtName ) + 1 );
CUtlVector<FileNameHandle_t> includes; KeyValues *pKeyValues = new KeyValues("vmt"); KeyValues *pPatchKeyValues = new KeyValues( "vmt_patches" ); if ( !LoadVMTFile( *pKeyValues, *pPatchKeyValues, vmtName, true, &includes ) ) { pKeyValues->deleteThis(); pKeyValues = NULL; pPatchKeyValues->deleteThis(); pPatchKeyValues = NULL; } else { char *matNameWithExtension; nLen = Q_strlen( pTemp ) + Q_strlen( ".vmt" ) + 1; matNameWithExtension = (char *)stackalloc( nLen ); Q_strncpy( matNameWithExtension, pTemp, nLen ); Q_strncat( matNameWithExtension, ".vmt", nLen, COPY_ALL_CHARACTERS );
IMaterialInternal *pMat = NULL; if ( !Q_stricmp( pKeyValues->GetName(), "subrect" ) ) { pMat = m_MaterialDict.AddMaterialSubRect( matNameWithExtension, pTextureGroupName, pKeyValues, pPatchKeyValues ); } else { pMat = m_MaterialDict.AddMaterial( matNameWithExtension, pTextureGroupName ); if ( g_pShaderDevice->IsUsingGraphics() ) { if ( !bIsUNC ) { m_pForcedTextureLoadPathID = "GAME"; } pMat->PrecacheVars( pKeyValues, pPatchKeyValues, &includes ); m_pForcedTextureLoadPathID = NULL; } } pKeyValues->deleteThis(); pPatchKeyValues->deleteThis(); return pMat->GetQueueFriendlyVersion(); }
if ( bComplain ) { Assert( pTemp );
// convert to lowercase
nLen = Q_strlen(pTemp) + 1 ; char *name = (char*)stackalloc( nLen ); Q_strncpy( name, pTemp, nLen ); Q_strlower( name );
if ( m_MaterialDict.NoteMissing( name ) ) { if ( pComplainPrefix ) { DevWarning( "%s", pComplainPrefix ); } DevWarning( "material \"%s\" not found.\n", name ); } } }
return g_pErrorMaterial->GetQueueFriendlyVersion(); }
bool CMaterialSystem::LoadKeyValuesFromVMTFile( KeyValues &vmtKeyValues, const char *pMaterialName, bool bUsesUNCFilename ) { CUtlVector<FileNameHandle_t> includes; KeyValues *pPatchKeyValues = new KeyValues( "vmt_patches" );
bool bResult = LoadVMTFile( vmtKeyValues, *pPatchKeyValues, pMaterialName, bUsesUNCFilename, &includes );
// we don't need these, they were applied to vmtKeyValues
pPatchKeyValues->deleteThis(); pPatchKeyValues = NULL;
return bResult; }
static char const *TextureAliases[] = { // this table is only here for backwards compatibility where a render target change was made,
// and we wish to redirect an existing old client.dll for hl2 to reference this texture. It's
// not meant as a general texture aliasing system.
"_rt_FullFrameFB1", "_rt_FullScreen" };
ITexture *CMaterialSystem::FindTexture( char const *pTextureName, const char *pTextureGroupName, bool bComplain /* = false */, int nAdditionalCreationFlags /* = 0 */ ) { ITextureInternal *pTexture = TextureManager()->FindOrLoadTexture( pTextureName, pTextureGroupName, nAdditionalCreationFlags ); Assert( pTexture ); if ( pTexture->IsError() && !CommandLine()->HasParm( "-textmode" ) ) { if ( IsPC() ) { for ( int i=0; i<NELEMS( TextureAliases ); i+=2 ) { if ( !Q_stricmp( pTextureName, TextureAliases[i] ) ) { return FindTexture( TextureAliases[i+1], pTextureGroupName, bComplain, nAdditionalCreationFlags ); } } } if ( bComplain ) { DevWarning( "Texture '%s' not found.\n", pTextureName ); } }
return pTexture; }
bool CMaterialSystem::IsTextureLoaded( char const* pTextureName ) const { return TextureManager()->IsTextureLoaded( pTextureName ); }
bool CMaterialSystem::GetTextureInformation( char const *szTextureName, MaterialTextureInfo_t &info ) const { return TextureManager()->GetTextureInformation( szTextureName, info ); }
void CMaterialSystem::AddTextureAlias( const char *pAlias, const char *pRealName ) { TextureManager()->AddTextureAlias( pAlias, pRealName ); }
void CMaterialSystem::RemoveTextureAlias( const char *pAlias ) { TextureManager()->RemoveTextureAlias( pAlias ); }
void CMaterialSystem::SetExcludedTextures( const char *pScriptName, bool bUsingWeaponModelCache ) { TextureManager()->SetExcludedTextures( pScriptName, bUsingWeaponModelCache ); }
void CMaterialSystem::UpdateExcludedTextures( void ) { TextureManager()->UpdateExcludedTextures();
// Have to re-setup the representative textures since they may have been removed out from under us by the queued loader.
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial( i ) ) { GetMaterialInternal( i )->FindRepresentativeTexture(); GetMaterialInternal( i )->PrecacheMappingDimensions(); } }
void CMaterialSystem::ClearForceExcludes( void ) { TextureManager()->ClearForceExcludes(); }
//-----------------------------------------------------------------------------
// Recomputes state snapshots for all materials
//-----------------------------------------------------------------------------
void CMaterialSystem::RecomputeAllStateSnapshots() { g_pShaderAPI->ClearSnapshots(); for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { GetMaterialInternal(i)->RecomputeStateSnapshots(); } g_pShaderAPI->ResetRenderState(); }
//-----------------------------------------------------------------------------
// Uncache all materials
//-----------------------------------------------------------------------------
void CMaterialSystem::UncacheAllMaterials() { MaterialLock_t hLock = Lock(); Flush( true );
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial( i ) ) { Assert( GetMaterialInternal(i)->GetReferenceCount() >= 0 ); GetMaterialInternal(i)->Uncache(); } TextureManager()->RemoveUnusedTextures(); Unlock( hLock ); }
//-----------------------------------------------------------------------------
// Uncache unused materials
//-----------------------------------------------------------------------------
void CMaterialSystem::UncacheUnusedMaterials( bool bRecomputeStateSnapshots ) { MaterialLock_t hLock = Lock(); Flush( true );
// We need two loops to make sure we don't reset the snapshots if nothing got removed,
// otherwise the snapshot recomputation is expensive and avoided at load time
bool bDidUncacheMaterial = false; for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { IMaterialInternal *pMatInternal = GetMaterialInternal( i ); Assert( pMatInternal->GetReferenceCount() >= 0 ); if ( pMatInternal->GetReferenceCount() <= 0 ) { bDidUncacheMaterial = true; pMatInternal->Uncache(); } }
if ( IsX360() && bRecomputeStateSnapshots ) { // Always recompute snapshots because the queued loading process skips it during pre-purge,
// allowing it to happen just once, here.
bDidUncacheMaterial = true; }
if ( bDidUncacheMaterial && bRecomputeStateSnapshots ) { // Clear the state snapshots since we are going to rebuild all of them.
g_pShaderAPI->ClearSnapshots(); g_pShaderAPI->ClearVertexAndPixelShaderRefCounts();
for ( MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { IMaterialInternal *pMatInternal = GetMaterialInternal(i); if ( pMatInternal->GetReferenceCount() > 0 ) { // Recompute the state snapshots for the materials that we are keeping
// since we blew all of them away above.
pMatInternal->RecomputeStateSnapshots(); } } g_pShaderAPI->PurgeUnusedVertexAndPixelShaders(); }
if ( bRecomputeStateSnapshots ) { // kick out all per material context datas
for( MaterialHandle_t i = m_MaterialDict.FirstMaterial(); i != m_MaterialDict.InvalidMaterial(); i = m_MaterialDict.NextMaterial( i ) ) { GetMaterialInternal(i)->ClearContextData(); } }
TextureManager()->RemoveUnusedTextures(); Unlock( hLock ); }
//-----------------------------------------------------------------------------
// Release temporary HW memory...
//-----------------------------------------------------------------------------
void CMaterialSystem::ResetTempHWMemory( bool bExitingLevel ) { if( !IsPS3() ) { // Doing this on map transitions is not beneficial on PS3 (in fact it may fragment our RSX allocator)
g_pShaderAPI->DestroyVertexBuffers( bExitingLevel ); } TextureManager()->ReleaseTempRenderTargetBits(); }
//-----------------------------------------------------------------------------
// Get GPU memory usage stats
//-----------------------------------------------------------------------------
void CMaterialSystem::GetGPUMemoryStats( GPUMemoryStats &stats ) { g_pShaderAPI->GetGPUMemoryStats( stats ); }
bool CMaterialSystem::IsLevelLoadingComplete() const { return m_bLevelLoadingComplete; }
void CMaterialSystem::OnAsyncTextureDataComplete( AsyncTextureContext_t *pContext, void *pData, int nNumReadBytes, AsyncTextureLoadError_t loadError ) { // queue the async loaded texture data, cannot deal with update the texture data until end-of-frame on the main thread
AsyncTextureLoad_t textureLoad; textureLoad.m_pContext = pContext; textureLoad.m_pData = pData; textureLoad.m_nNumReadBytes = nNumReadBytes; textureLoad.m_LoadError = loadError; m_QueuedAsyncTextureLoads.PushItem( textureLoad ); }
void CMaterialSystem::ServiceAsyncTextureLoads() { if ( !m_QueuedAsyncTextureLoads.Count() && !m_pActiveAsyncTextureLoad ) { // nothing to do
return; }
// We don't necessarily process all the elements in the queue in order to avoid
// large spikes on the main thread
// Spreading the cost of creating the async textures across multiple frames
double flStartTime = Plat_FloatTime(); float flRemainingMaxTimeMs = mat_async_tex_maxtime_ms.GetFloat();
// Resume FinishAsyncDownload() that was interrupted on the previous frame
// Need to do it first (before processing any other async textures from the queue)
// otherwise the VTF texture created on the previous frame will be invalid !
if ( m_pActiveAsyncTextureLoad ) { m_pActiveAsyncTextureLoad->m_pContext->m_pTexture->FinishAsyncDownload( m_pActiveAsyncTextureLoad->m_pContext, m_pActiveAsyncTextureLoad->m_pData, m_pActiveAsyncTextureLoad->m_nNumReadBytes, !m_bLevelLoadingComplete || (m_pActiveAsyncTextureLoad->m_LoadError != ASYNCTEXTURE_LOADERROR_NONE), flRemainingMaxTimeMs );
m_pActiveAsyncTextureLoad = NULL;
// Limit the amount of time spent creating D3D resources
float flElapsedMs = (Plat_FloatTime() - flStartTime) * 1000.0f; flRemainingMaxTimeMs = mat_async_tex_maxtime_ms.GetFloat() - flElapsedMs; if (flRemainingMaxTimeMs < 0.0f) { return; } }
// async texture loads are only valid AFTER the level has completed loading
// abort data incorrectly delivered during loading or on any data error
while ( m_QueuedAsyncTextureLoads.PopItem( &m_AsyncTextureLoad ) ) { bool bDownloadCompleted = m_AsyncTextureLoad.m_pContext->m_pTexture->FinishAsyncDownload( m_AsyncTextureLoad.m_pContext, m_AsyncTextureLoad.m_pData, m_AsyncTextureLoad.m_nNumReadBytes, !m_bLevelLoadingComplete || ( m_AsyncTextureLoad.m_LoadError != ASYNCTEXTURE_LOADERROR_NONE ), flRemainingMaxTimeMs );
if ( !bDownloadCompleted ) { // FinishAsyncDownload has been interrupted and need to resume at the next frame
m_pActiveAsyncTextureLoad = &m_AsyncTextureLoad; break; } else { m_pActiveAsyncTextureLoad = NULL; }
// Limit the amount of time spent creating D3D resources
float flElapsedMs = ( Plat_FloatTime() - flStartTime ) * 1000.0f; flRemainingMaxTimeMs = mat_async_tex_maxtime_ms.GetFloat() - flElapsedMs; if ( flRemainingMaxTimeMs < 0.0f ) { break; } } }
//#define SPEW_SERVICE_END_FRAME_TIME
void CMaterialSystem::ServiceEndFramePriorToNextContext() { #if !defined( _CERT ) && defined( SPEW_SERVICE_END_FRAME_TIME )
double flStartTime = Plat_FloatTime(); #endif
// All these callers are highly specialized handlers aware of
// this precise calling state. These handlers all need to perform some
// operation that must be on the main thread while no rendering
// is concurrent.
bool bDataProcessed = false;
volatile int nLastCallIndex; volatile EndFramePriorToNextContextFunc_t pLastCallSite;
for ( int i = 0; i < m_EndFramePriorToNextContextFunc.Count(); ++i ) { nLastCallIndex = i; pLastCallSite = m_EndFramePriorToNextContextFunc[ i ];
bDataProcessed |= m_EndFramePriorToNextContextFunc[ i ](); }
if ( !bDataProcessed ) { // Because this is at the main thread frame boundary, the async texture loading can simply be delayed until the next frame,
// to lighten the amount of a burst of main thread work. The async texture loading is tolerant of getting delayed because
// it's only driving a resident texture to a higher/lower resolution. This is more of a specific assist because the above caller
// is known to be the modelloader handling of weapon meshes eviction/restore.
ServiceAsyncTextureLoads(); }
#if !defined( _CERT ) && defined( SPEW_SERVICE_END_FRAME_TIME )
float flElapsed = ( Plat_FloatTime() - flStartTime ) * 1000.0f; if ( flElapsed > 1.0f ) { DevWarning( "ServiceEndFramePriorToNextContext: %.2f ms\n", flElapsed ); } #endif
bool bDeviceReady = g_pShaderAPI->CanDownloadTextures();
if ( m_bDeferredMaterialReload && bDeviceReady) { m_bDeferredMaterialReload = false; char *pReloadSubString = m_pSubString; m_pSubString = NULL; ReloadMaterials( pReloadSubString ); if ( pReloadSubString ) { free( pReloadSubString ); } }
}
//-----------------------------------------------------------------------------
// Cache used materials
//-----------------------------------------------------------------------------
void CMaterialSystem::CacheUsedMaterials( ) { IMatRenderContextInternal *pRenderContext = GetRenderContextInternal(); pRenderContext->EvictManagedResources();
for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { IMaterialInternal* pMat = GetMaterialInternal(i); Assert( pMat->GetReferenceCount() >= 0 );
if( pMat->GetReferenceCount() > 0 ) { pMat->Precache(); } } if( mat_forcemanagedtextureintohardware.GetBool() ) { TextureManager()->ForceAllTexturesIntoHardware(); } }
//-----------------------------------------------------------------------------
// Reloads textures + materials
//-----------------------------------------------------------------------------
void CMaterialSystem::ReloadTextures( void ) { ForceSingleThreaded(); // 360 should not have gotten here
Assert( !IsX360() );
TextureManager()->RestoreRenderTargets(); TextureManager()->RestoreNonRenderTargetTextures(); }
void CMaterialSystem::ReloadMaterials( const char *pSubString ) { bool bDeviceReady = g_pShaderAPI->CanDownloadTextures();
if ( !bDeviceReady ) { if ( m_bDeferredMaterialReload && !m_pSubString ) return; // ignore request, all materials already pending a reload (otherwise malicious user can request only a subset of materials to reload)
if ( m_pSubString ) { free( m_pSubString ); m_pSubString = NULL; } if ( pSubString ) { m_pSubString = strdup( pSubString ); } m_bDeferredMaterialReload = true; return; }
ForceSingleThreaded(); bool bVertexFormatChanged = false; if( pSubString == NULL ) { bVertexFormatChanged = true; UncacheAllMaterials(); CacheUsedMaterials(); } else { Flush( false ); char const chMultiDelim = '*'; CUtlVector< char > arrSearchSubString; CUtlVector< char const * > arrSearchItems;
if ( strchr( pSubString, chMultiDelim ) ) { arrSearchSubString.SetCount( strlen( pSubString ) + 1 ); strcpy( arrSearchSubString.Base(), pSubString ); for ( char * pch = arrSearchSubString.Base(); pch; ) { char *pchEnd = strchr( pch, chMultiDelim ); pchEnd ? *( pchEnd ++ ) = 0 : 0; arrSearchItems.AddToTail( pch ); pch = pchEnd; } }
for (MaterialHandle_t i = FirstMaterial(); i != InvalidMaterial(); i = NextMaterial(i) ) { if( GetMaterialInternal(i)->GetReferenceCount() <= 0 ) continue;
char const *szMatName = GetMaterialInternal(i)->GetName(); if ( arrSearchItems.Count() > 1 ) { bool bMatched = false; for ( int k = 0; !bMatched && ( k < arrSearchItems.Count() ); ++ k ) if( Q_stristr( szMatName, arrSearchItems[k] ) ) bMatched = true; if ( !bMatched ) continue; } else { if( !Q_stristr( szMatName, pSubString ) ) continue; }
if ( !GetMaterialInternal(i)->IsPrecached() ) { if ( GetMaterialInternal(i)->IsPrecachedVars() ) { GetMaterialInternal(i)->Uncache( ); } } else { VertexFormat_t oldVertexFormat = GetMaterialInternal(i)->GetVertexFormat(); GetMaterialInternal(i)->Uncache(); GetMaterialInternal(i)->Precache(); GetMaterialInternal(i)->ReloadTextures(); if( GetMaterialInternal(i)->GetVertexFormat() != oldVertexFormat ) { bVertexFormatChanged = true; } } } }
if( bVertexFormatChanged ) { // Reloading materials could cause a vertex format change, so
// we need to release and restore
// NOTE: Not calling ReleaseShaderObjects/RestoreShaderObjects
// because we don't want to free anything other than vbs
// FIXME: Should I add a flags to the release func? Probably.
ReleaseShaderObjects( MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ); RestoreShaderObjects( NULL, MATERIAL_RESTORE_VERTEX_FORMAT_CHANGED ); } }
#define NOMINAL_LIGHTMAP 1.0f
//-----------------------------------------------------------------------------
// Allocates the standard textures used by the material system
//-----------------------------------------------------------------------------
void CMaterialSystem::AllocateStandardTextures() { if ( m_StandardTexturesAllocated ) return;
m_StandardTexturesAllocated = true;
// This texture is where subdivision patch list goes
#if defined( FEATURE_SUBD_SUPPORT )
if ( g_pSubDMgr->ShouldAllocateTextures() ) { g_pSubDMgr->AllocateTextures(); } #endif
float nominal_lightmap_value = NOMINAL_LIGHTMAP; if ( HardwareConfig()->GetHDRType() == HDR_TYPE_INTEGER ) { nominal_lightmap_value = NOMINAL_LIGHTMAP/16.0; }
unsigned char texel[4]; texel[3] = 255;
// using a pixel writer to hide platform endian issues
// the PC passes through, the 360 has endian swapped formats
// NOTE: the IMAGE_FORMAT_BGRA8888 is used when expecting a IMAGE_FORMAT_BGRX8888 to ensure the alpha component gets converted/swapped
CPixelWriter pixelWriter; unsigned char outTexel[4];
int tcFlags = TEXTURE_CREATE_MANAGED; int tcFlagsSRGB = TEXTURE_CREATE_MANAGED | (IsPS3()?0:TEXTURE_CREATE_SRGB); if ( IsX360() ) { // during init time, ok to allow any pixel conversion operations
tcFlags |= TEXTURE_CREATE_CANCONVERTFORMAT; tcFlagsSRGB |= TEXTURE_CREATE_CANCONVERTFORMAT; }
// allocate a black single texel texture
m_BlackTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[BLACK_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_BlackTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 0; pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_BLACK, m_BlackTextureHandle );
// allocate a fully white single texel texture
m_WhiteTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[WHITE_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_WhiteTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 255; pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_WHITE, m_WhiteTextureHandle );
// allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2)
m_GreyTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlagsSRGB, "[GREY_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_GreyTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 128; texel[3] = 255; // needs to be 255 so that mat_fullbright 2 stuff isn't translucent.
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY, m_GreyTextureHandle );
// allocate a grey single texel texture with an alpha of zero (for mat_fullbright 2)
m_GreyAlphaZeroTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlagsSRGB, "[GREYALPHAZERO_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_GreyAlphaZeroTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = 128; texel[3] = 0; // needs to be 0 so that self-illum doens't affect mat_fullbright 2
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, outTexel ); texel[3] = 255; // set back to default value so we don't affect the rest of this code.
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY_ALPHA_ZERO, m_GreyAlphaZeroTextureHandle );
// allocate a black single texel texture with an alpha of zero ( for paintmap not allocated or not enabled )
m_BlackAlphaZeroTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlags, "[BLACKALPHAZERO_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_BlackAlphaZeroTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = texel[1] = texel[2] = texel[3] = 0; pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, outTexel ); texel[3] = 255; // set back to default value so we don't affect the rest of this code.
g_pShaderAPI->SetStandardTextureHandle( TEXTURE_GREY_ALPHA_ZERO, m_BlackAlphaZeroTextureHandle );
// allocate a white, single texel texture for the fullbright lightmap
// note: make sure and redo this when changing gamma, etc.
// don't mipmap lightmaps
// 360 expects RGBE encoded lightmaps, PC does not
ImageFormat targetFormat = IsX360() ? IMAGE_FORMAT_BGRA8888 : IMAGE_FORMAT_BGRX8888; m_FullbrightLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, targetFormat, 1, 1, tcFlagsSRGB, "[FULLBRIGHT_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP ); g_pShaderAPI->ModifyTexture( m_FullbrightLightmapTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); if ( HardwareConfig()->GetHDREnabled() ) { // We use 4.12 fixed point lightmaps on all platforms currently.
// Since we are using an eight-bit texture, here, the closest representation to one is:
// ~( 1.0/16.0 * 255 )
texel[0] = texel[1] = texel[2] = clamp( 256.0f / g_pShaderAPI->GetLightMapScaleFactor(), 0, 255 ); } else { float tmpVect[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value }; ColorSpace::LinearToLightmap( texel, tmpVect ); } pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, targetFormat, 0, 1, 1, targetFormat, false, outTexel );
// allocate a single texel flat normal texture
m_FlatNormalTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FLAT_NORMAL_TEXTURE]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_FlatNormalTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = 127; // R
texel[1] = 127; // G
texel[2] = 255; // B
// using pixel writer to hide platform endian issues
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_NORMALMAP_FLAT, m_FlatNormalTextureHandle );
// allocate a single texel flat normal ssbump texture
m_FlatSSBumpTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_BGRX8888, 1, 1, tcFlags, "[FLAT_SSBUMP_TEXTURE]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_FlatSSBumpTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); texel[0] = 85; // 1/3*255
texel[1] = 85; // 1/3*255
texel[2] = 85; // 1/3*255
// using pixel writer to hide platform endian issues
pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_BGRX8888, 0, 1, 1, IMAGE_FORMAT_BGRX8888, false, outTexel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_SSBUMP_FLAT, m_FlatSSBumpTextureHandle );
// allocate a single texel fullbright 1 lightmap for use with bump textures
targetFormat = IsX360() ? IMAGE_FORMAT_BGRA8888 : IMAGE_FORMAT_BGRX8888; m_FullbrightBumpedLightmapTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, targetFormat, 1, 1, tcFlags, "[FULLBRIGHT_BUMPED_LIGHTMAP_TEXID]", TEXTURE_GROUP_LIGHTMAP ); g_pShaderAPI->ModifyTexture( m_FullbrightBumpedLightmapTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); // using pixel writer to hide platform endian issues
if ( HardwareConfig()->GetHDREnabled() ) { // We use 4.12 fixed point lightmaps on all platforms currently.
// Since we are using an eight-bit texture, here, the closest representation to one is:
// ~( 1.0/16.0 * 255 )
texel[0] = texel[1] = texel[2] = clamp( 256.0f / g_pShaderAPI->GetLightMapScaleFactor(), 0, 255 ); } else { float linearColor[3] = { nominal_lightmap_value, nominal_lightmap_value, nominal_lightmap_value }; unsigned char dummy[3]; ColorSpace::LinearToBumpedLightmap( linearColor, linearColor, linearColor, linearColor, dummy, texel, dummy, dummy ); } pixelWriter.SetPixelMemory( IMAGE_FORMAT_BGRA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, targetFormat, 0, 1, 1, targetFormat, false, outTexel ); g_pShaderAPI->SetStandardTextureHandle( TEXTURE_LIGHTMAP_BUMPED_FULLBRIGHT, m_FullbrightBumpedLightmapTextureHandle );
#if defined( GAMMA_TEX1D_LOOKUP )
{ int iGammaLookupFlags = tcFlags; ImageFormat gammalookupfmt; gammalookupfmt = IMAGE_FORMAT_I8;
// generate the linear->gamma conversion table texture.
{ const int LINEAR_TO_GAMMA_TABLE_WIDTH = 512; m_LinearToGammaTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, iGammaLookupFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBON_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS ); g_pShaderAPI->ModifyTexture( m_LinearToGammaTableTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP );
float pixelData[LINEAR_TO_GAMMA_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8)
for( int i = 0; i != LINEAR_TO_GAMMA_TABLE_WIDTH; ++i ) { float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_TABLE_WIDTH - 1)); fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); //do an extra srgb conversion because we'll be converting back on texture read
fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult ); //that's right, linear->gamma->gamma2x so that that gamma->linear srgb read still ends up in gamma
int iColor = RoundFloatToInt( fLookupResult * 255.0f ); if( iColor > 255 ) iColor = 255;
((uint8 *)pixelData)[i] = (uint8)iColor; }
g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData ); }
// generate the identity conversion table texture.
{ const int LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH = 256; m_LinearToGammaIdentityTableTextureHandle = g_pShaderAPI->CreateTexture( LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, 1, gammalookupfmt, 1, 1, tcFlags, "[LINEAR_TO_GAMMA_LOOKUP_SRGBOFF_TEXID]", TEXTURE_GROUP_PIXEL_SHADERS ); g_pShaderAPI->ModifyTexture( m_LinearToGammaIdentityTableTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_S, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_T, SHADER_TEXWRAPMODE_CLAMP ); g_pShaderAPI->TexWrap( SHADER_TEXCOORD_U, SHADER_TEXWRAPMODE_CLAMP );
float pixelData[LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH]; //sometimes used as float, sometimes as uint8, sizeof(float) > sizeof(uint8)
for( int i = 0; i != LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH; ++i ) { float fLookupResult = ((float)i) / ((float)(LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH - 1)); //do an extra srgb conversion because we'll be converting back on texture read
fLookupResult = g_pShaderAPI->LinearToGamma_HardwareSpecific( fLookupResult );
int iColor = RoundFloatToInt( fLookupResult * 255.0f ); if ( iColor > 255 ) iColor = 255;
((uint8 *)pixelData)[i] = (uint8)iColor; }
g_pShaderAPI->TexImage2D( 0, 0, gammalookupfmt, 0, LINEAR_TO_GAMMA_IDENTITY_TABLE_WIDTH, 1, gammalookupfmt, false, (void *)pixelData ); } }
//only the shaderapi can handle switching between textures correctly, so pass off the textures to it.
g_pShaderAPI->SetLinearToGammaConversionTextures( m_LinearToGammaTableTextureHandle, m_LinearToGammaIdentityTableTextureHandle ); #endif
// create the maximum depth texture
m_MaxDepthTextureHandle = g_pShaderAPI->CreateTexture( 1, 1, 1, IMAGE_FORMAT_RGBA8888, 1, 1, tcFlags, "[MAXDEPTH_TEXID]", TEXTURE_GROUP_OTHER ); g_pShaderAPI->ModifyTexture( m_MaxDepthTextureHandle ); g_pShaderAPI->TexMinFilter( SHADER_TEXFILTERMODE_LINEAR ); g_pShaderAPI->TexMagFilter( SHADER_TEXFILTERMODE_LINEAR ); // 360 gets depth out of the red channel (which doubles as depth in D24S8) and may be 0/1 depending on REVERSE_DEPTH_ON_X360
// PC gets depth out of the alpha channel
texel[0] = texel[1] = texel[2] = ReverseDepthOnX360() ? 0 : 255; texel[3] = 255; pixelWriter.SetPixelMemory( IMAGE_FORMAT_RGBA8888, outTexel, 0 ); pixelWriter.WritePixelNoAdvance( texel[0], texel[1], texel[2], texel[3] ); g_pShaderAPI->TexImage2D( 0, 0, IMAGE_FORMAT_RGBA8888, 0, 1, 1, IMAGE_FORMAT_RGBA8888, false, outTexel ); }
void CMaterialSystem::ReleaseStandardTextures() { if ( m_StandardTexturesAllocated ) { g_pShaderAPI->DeleteTexture( m_WhiteTextureHandle ); g_pShaderAPI->DeleteTexture( m_BlackTextureHandle ); g_pShaderAPI->DeleteTexture( m_BlackAlphaZeroTextureHandle ); g_pShaderAPI->DeleteTexture( m_GreyTextureHandle ); g_pShaderAPI->DeleteTexture( m_GreyAlphaZeroTextureHandle );
#if defined( FEATURE_SUBD_SUPPORT )
g_pSubDMgr->FreeTextures(); #endif
g_pShaderAPI->DeleteTexture( m_FullbrightLightmapTextureHandle ); g_pShaderAPI->DeleteTexture( m_FlatNormalTextureHandle ); g_pShaderAPI->DeleteTexture( m_FlatSSBumpTextureHandle ); g_pShaderAPI->DeleteTexture( m_FullbrightBumpedLightmapTextureHandle );
#if defined( GAMMA_TEX1D_LOOKUP )
g_pShaderAPI->DeleteTexture( m_LinearToGammaTableTextureHandle ); g_pShaderAPI->DeleteTexture( m_LinearToGammaIdentityTableTextureHandle ); g_pShaderAPI->SetLinearToGammaConversionTextures( INVALID_SHADERAPI_TEXTURE_HANDLE, INVALID_SHADERAPI_TEXTURE_HANDLE ); #endif
g_pShaderAPI->DeleteTexture( m_MaxDepthTextureHandle );
m_StandardTexturesAllocated = false; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::BeginFrame( float frameTime ) { // Safety measure (calls should only come from the main thread, also check correct pairing)
if ( !ThreadInMainThread() || IsInFrame() ) return;
// check debug vars. we will use these to setup g_nDebugVarsSignature so that materials will
// rebuild their draw lists when debug modes changed.
g_nDebugVarsSignature = ( (mat_specular.GetInt() != 0 ) + ( mat_normalmaps.GetInt() << 1 ) + ( mat_fullbright.GetInt() << 2 ) + ( mat_fastnobump.GetInt() << 4 ) + ( mat_fastspecular.GetInt() << 5 ) ) << 24; Assert( m_bGeneratedConfig );
VPROF_BUDGET( "CMaterialSystem::BeginFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS );
IMatRenderContextInternal *pRenderContext = GetRenderContextInternal(); if ( mat_forcehardwaresync.GetBool() && (IsPC() || m_ThreadMode != MATERIAL_QUEUED_THREADED) ) { pRenderContext->ForceHardwareSync(); }
pRenderContext->MarkRenderDataUnused( true ); pRenderContext->BeginFrame(); pRenderContext->SetFrameTime( frameTime ); pRenderContext->SetToneMappingScaleLinear( Vector( 1,1,1) );
//g_pMDLCache->UpdateCombiner();
Assert( !m_bInFrame ); m_bInFrame = true; }
bool CMaterialSystem::IsInFrame( ) const { return m_bInFrame; }
void CMaterialSystem::ThreadExecuteQueuedContext( CMatQueuedRenderContext *pContext ) { #ifdef _PS3
#if GCM_ALLOW_NULL_FLIPS
extern void Ps3NullFlipsStartSceneTime(); Ps3NullFlipsStartSceneTime(); #endif
// This function takes up a lot of global thread pool time in GPU-bound levels, and it's convenient
// to have it as a bar in snTuner profiler. Making it PS3-only to avoid polluting X360 bars
VPROF_BUDGET( "ThreadExecuteQueuedContext", "All Threaded Rendering" ); #endif
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
OnFrameTimestampAvailableMST( 0.0f ); // signals frame start
#endif
m_nRenderThreadID = ThreadGetCurrentId(); IMatRenderContextInternal* pSavedRenderContext = m_pRenderContext; m_pRenderContext = &m_HardwareRenderContext; pContext->EndQueue( true );
for (int i = 0; i < m_EndFrameCleanupFunc.Count(); ++i) { m_EndFrameCleanupFunc[ i ](); }
m_pRenderContext = pSavedRenderContext; m_nRenderThreadID = 0xFFFFFFFF; }
IThreadPool *CMaterialSystem::CreateMatQueueThreadPool() { if( IsX360() ) { return g_pThreadPool; } else if( !m_pMatQueueThreadPool ) { ThreadPoolStartParams_t startParams;
startParams.nThreads = 1; startParams.nStackSize = 256*1024; startParams.fDistribute = TRS_TRUE;
// The rendering thread has the GL context and the main thread is coming in and
// "helping" finish jobs - that breaks OpenGL, which requires TLS. This flag states
// that only the threadpool threads should execute these jobs.
startParams.bExecOnThreadPoolThreadsOnly = true;
m_pMatQueueThreadPool = CreateNewThreadPool(); m_pMatQueueThreadPool->Start( startParams, "MatQueue" ); }
return m_pMatQueueThreadPool; }
void CMaterialSystem::DestroyMatQueueThreadPool() { if( m_pMatQueueThreadPool ) { m_pMatQueueThreadPool->Stop(); delete m_pMatQueueThreadPool; m_pMatQueueThreadPool = NULL; } }
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
static double s_flMainThreadBeginTimestampSec = 0.0f; #endif
//
// On OSX, Forced Single Threaded needs to last for more frames than windows that the window resizing/switch to
// and from fullscreen don't force GL calls at the same time as the render thread.
//
#if defined ( OSX )
static void CheckOsxForcedNextThreadMode( MaterialThreadMode_t* pNextThreadMode, bool* pbForcedSingleThreaded ) { const int nOsxFramesAtSingleThreaded = 2; static int nOsxFrames = nOsxFramesAtSingleThreaded; if ( *pbForcedSingleThreaded ) { *pNextThreadMode = MATERIAL_SINGLE_THREADED;
if ( nOsxFrames == 0 ) { *pbForcedSingleThreaded = false; nOsxFrames = nOsxFramesAtSingleThreaded; } else { nOsxFrames--; } } else { nOsxFrames = nOsxFramesAtSingleThreaded; } }
#endif
void CMaterialSystem::EndFrame( void ) {
SNPROF("CMaterialSystem::EndFrame");
// Safety measure (calls should only come from the main thread, also check correct pairing)
if ( !ThreadInMainThread() || !IsInFrame() ) return;
Assert( m_bGeneratedConfig ); VPROF_BUDGET( "CMaterialSystem::EndFrame", VPROF_BUDGETGROUP_SWAP_BUFFERS );
GetRenderContextInternal()->EndFrame(); //-------------------------------------------------------------
UpdateConfig( false );
int iConVarThreadMode = mat_queue_mode.GetInt(); MaterialThreadMode_t nextThreadMode = ( iConVarThreadMode >= 0 ) ? (MaterialThreadMode_t)iConVarThreadMode : m_IdealThreadMode; // note: This is a hack because there is no explicit query for the device being deactivated due to device lost.
// however, that is all the current implementation of CanDownloadTextures actually does.
bool bDeviceReady = g_pShaderAPI->CanDownloadTextures(); if ( !bDeviceReady || !m_bAllowQueuedRendering ) { nextThreadMode = MATERIAL_SINGLE_THREADED; }
#if !defined ( OSX )
if ( m_bForcedSingleThreaded ) { nextThreadMode = MATERIAL_SINGLE_THREADED; m_bForcedSingleThreaded = false; } #else
CheckOsxForcedNextThreadMode(&nextThreadMode, &m_bForcedSingleThreaded ); #endif
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{ // This is called on the main thread and here the main thread is finished
double flMainThreadEndTimestampSec = Plat_FloatTime(); double flMainThreadTimeInSeconds = flMainThreadEndTimestampSec - s_flMainThreadBeginTimestampSec; OnFrameTimestampAvailableMain( flMainThreadTimeInSeconds*1000.0f ); } #endif
switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: #if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{ double flCurrentTime = Plat_FloatTime(); OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f ); s_flTotalFrameBeginTimestamp = flCurrentTime; OnFrameTimestampAvailableMST( 0.0f ); // signals frame start
} #endif
ServiceEndFramePriorToNextContext(); g_pfnSwapBufferMarker(); break;
#ifndef _PS3
case MATERIAL_QUEUED_THREADED: { VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_ThreadedEndframe" ); { TM_ZONE_PLOT( TELEMETRY_LEVEL1, "Endframe_Wait", TELEMETRY_ZONE_PLOT_SLOT_3 ); PERF_STATS_BLOCK( "Endframe_Wait", PERF_STATS_SLOT_END_FRAME );
while ( m_pActiveAsyncJob && !m_pActiveAsyncJob->IsFinished() ) { // [jason]
// Potential fix for a deadlock on threaded rendering: we were occasionally seeing deadlocks on the main thread,
// waiting for work to be completed on the rendering job threads. Every time we break into this with the debugger,
// there are no job threads that are stalled - everything is waiting for new work to be sent down. I suspect that
// in the gap between the main thread determining there is still outstanding work and the main thread locking, we
// occasionally get a context switch to the job thread that completes its work. When we switch back to the main
// thread, we begin to wait on a thread that will never signal (because it's already done working) so we deadlock.
// The fix is to break this infinite wait into a busy loop of 1/2 second waits - either the worker thread will signal
// and we'll resume processing, or at worst we'll wait 1/2 second and then double-check there is actually work running
// on the job queue and find there is nothing left to wait for.
// [Michael Dorgan]
// Alas, the thread system ignores the timeout value passed in right now and always does a Sleep(0)
// Still, a Sleep(0) yield does seem to fix this, so removed the 500 param.
m_pActiveAsyncJob->WaitForFinish();
if ( !m_pActiveAsyncJob->IsFinished() ) DevMsg( "CMaterialSystem::EndFrame - waiting on additional threaded work for MatQueuedThreaded.\n" );
if ( !IsPC() && mat_forcehardwaresync.GetBool() ) { g_pShaderAPI->ForceHardwareSync(); } } } SafeRelease( m_pActiveAsyncJob );
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{ double flCurrentTime = Plat_FloatTime(); OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f ); s_flTotalFrameBeginTimestamp = flCurrentTime; } #endif
ServiceEndFramePriorToNextContext(); g_pfnSwapBufferMarker();
CMatQueuedRenderContext *pPrevContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
#ifdef MAT_QUEUED_OWN_THREADPOOL
// Needs to be done after calling ServiceEndFramePriorToNextContext to ensure the render thread
// will have ownership, as ServiceEndFramePriorToNextContext could locking the material system
// => RenderThread would then lose ownership
if ( !m_bThreadHasOwnership ) { ThreadAcquire(); } #endif
#ifndef MAT_QUEUED_OWN_THREADPOOL
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::ReleaseThreadOwnership ); #endif
m_iCurQueuedContext = ( ( m_iCurQueuedContext + 1 ) % ARRAYSIZE( m_QueuedRenderContexts) ); m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( pPrevContext ); #ifndef MAT_QUEUED_OWN_THREADPOOL
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::AcquireThreadOwnership ); #endif
m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
m_pActiveAsyncJob = new CFunctorJob( CreateFunctor( this, &CMaterialSystem::ThreadExecuteQueuedContext, pPrevContext ) ); if ( !IsPC() ) { if ( m_nServiceThread >= 0 ) { m_pActiveAsyncJob->SetServiceThread( m_nServiceThread ); } } if ( mat_queue_priority.GetBool() ) { m_pActiveAsyncJob->SetFlags( m_pActiveAsyncJob->GetFlags() | JF_QUEUE ); } #ifdef MAT_QUEUED_OWN_THREADPOOL
IThreadPool *pThreadPool = CreateMatQueueThreadPool(); #else
IThreadPool *pThreadPool = g_pThreadPool; #endif
pThreadPool->AddJob( m_pActiveAsyncJob ); break; }
#else
case MATERIAL_QUEUED_THREADED: { // Wait for previous submitted QMS run
if (m_bQMSJobSubmitted) { g_pGcmSharedData->WaitForQMS(); m_bQMSJobSubmitted = 0;
if ( !IsPC() && mat_forcehardwaresync.GetBool() ) { g_pShaderAPI->ForceHardwareSync(); } }
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
{ double flCurrentTime = Plat_FloatTime(); OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f ); s_flTotalFrameBeginTimestamp = flCurrentTime; } #endif
ServiceEndFramePriorToNextContext(); g_pfnSwapBufferMarker();
// Switch Render Contexts
CMatQueuedRenderContext *pPrevContext = &m_QueuedRenderContexts[m_iCurQueuedContext];
m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::ReleaseThreadOwnership ); m_iCurQueuedContext = ( ( m_iCurQueuedContext + 1 ) % ARRAYSIZE( m_QueuedRenderContexts) ); m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( pPrevContext ); m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::AcquireThreadOwnership ); m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext]; // Run QMS on prevContext
g_pGcmSharedData->RunQMS(&RunQMS, (void*)this, (void*)pPrevContext); m_bQMSJobSubmitted = 1;
break; }
#endif
case MATERIAL_QUEUED_SINGLE_THREADED: { VPROF_BUDGET( "Mat_ThreadedEndframe", "Mat_QueuedEndframe" );
g_pShaderAPI->SetDisallowAccess( false ); m_pRenderContext = &m_HardwareRenderContext; #if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
OnFrameTimestampAvailableMST( 0.0f ); // signals frame start
#endif
m_QueuedRenderContexts[m_iCurQueuedContext].CallQueued();
// Set up for next frame, we don't cycle through m_iCurQueuedContext though
m_QueuedRenderContexts[m_iCurQueuedContext].CycleDynamicBuffers(); m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext]; g_pShaderAPI->SetDisallowAccess( true ); #if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
double flCurrentTime = Plat_FloatTime(); OnFrameTimestampAvailableTotal( (flCurrentTime-s_flTotalFrameBeginTimestamp)*1000.0f ); s_flTotalFrameBeginTimestamp = flCurrentTime; #endif
ServiceEndFramePriorToNextContext(); g_pfnSwapBufferMarker(); break; } }
// Tick perfstats. We measure the main thread time from the point just after we finish waiting
// for the render thread.
g_PerfStats.Tick();
#if GCM_ALLOW_TIMESTAMPS || X360_ALLOW_TIMESTAMPS
s_flMainThreadBeginTimestampSec = Plat_FloatTime(); #endif
bool bRelease = false; if ( !bDeviceReady ) { if ( nextThreadMode != MATERIAL_SINGLE_THREADED ) { Assert( nextThreadMode == MATERIAL_SINGLE_THREADED ); bRelease = true; nextThreadMode = MATERIAL_SINGLE_THREADED; if( mat_debugalttab.GetBool() ) { Warning("Handling alt-tab in queued mode!\n"); } } }
if ( m_threadEvents.Count() ) { nextThreadMode = MATERIAL_SINGLE_THREADED; }
if ( m_ThreadMode != nextThreadMode ) { // Shut down the current mode & set new mode
switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: break;
case MATERIAL_QUEUED_THREADED: { #ifndef _PS3
if ( m_pActiveAsyncJob ) { m_pActiveAsyncJob->WaitForFinish(); SafeRelease( m_pActiveAsyncJob ); } #else
if (m_bQMSJobSubmitted) { g_pGcmSharedData->WaitForQMS(); m_bQMSJobSubmitted = 0; } #endif
// We have a queued context set here, need hardware to flush the queue if the job isn't active
m_pRenderContext = &m_HardwareRenderContext;
m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true ); #ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadRelease(); #else
g_pShaderAPI->AcquireThreadOwnership(); #endif
} break;
case MATERIAL_QUEUED_SINGLE_THREADED: { g_pShaderAPI->SetDisallowAccess( false ); // We have a queued context set here, need hardware to flush the queue if the job isn't active
m_pRenderContext = &m_HardwareRenderContext; m_QueuedRenderContexts[m_iCurQueuedContext].EndQueue( true ); break; } }
m_ThreadMode = nextThreadMode; #ifndef DX_TO_GL_ABSTRACTION
Assert( g_MatSysMutex.GetOwnerId() == 0 ); #endif
g_pShaderAPI->EnableShaderShaderMutex( m_ThreadMode != MATERIAL_SINGLE_THREADED ); // use mutex even for queued to allow "disalow access" to function properly
g_pShaderAPI->EnableBuffer2FramesAhead( true );
switch ( m_ThreadMode ) { case MATERIAL_SINGLE_THREADED: m_pRenderContext = &m_HardwareRenderContext; for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { Assert( m_QueuedRenderContexts[i].IsInitialized() ); m_QueuedRenderContexts[i].Shutdown(); } g_pScaleformUI->SetSingleThreadedMode(true); break;
case MATERIAL_QUEUED_SINGLE_THREADED: case MATERIAL_QUEUED_THREADED: for ( int i = 0; i < ARRAYSIZE( m_QueuedRenderContexts ); i++ ) { if ( !m_QueuedRenderContexts[i].IsInitialized() ) { m_QueuedRenderContexts[i].Init( this, &m_HardwareRenderContext ); } } m_iCurQueuedContext = 0; m_QueuedRenderContexts[m_iCurQueuedContext].BeginQueue( &m_HardwareRenderContext ); m_pRenderContext = &m_QueuedRenderContexts[m_iCurQueuedContext]; if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( true ); g_pScaleformUI->SetSingleThreadedMode(true); } else { #ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadAcquire(); #else
g_pShaderAPI->ReleaseThreadOwnership(); m_QueuedRenderContexts[m_iCurQueuedContext].GetCallQueueInternal()->QueueCall( g_pShaderAPI, &IShaderAPI::AcquireThreadOwnership ); #endif
g_pScaleformUI->SetSingleThreadedMode(false); } break; } }
if ( m_ThreadMode == MATERIAL_SINGLE_THREADED ) { for ( int i = 0; i < m_threadEvents.Count(); i++ ) { g_pShaderDevice->HandleThreadEvent(m_threadEvents[i]); } m_threadEvents.RemoveAll(); }
if ( m_ThreadMode == MATERIAL_SINGLE_THREADED || m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { for (int i = 0; i < m_EndFrameCleanupFunc.Count(); ++i) { m_EndFrameCleanupFunc[ i ](); } }
Assert( m_bInFrame ); m_bInFrame = false; }
void CMaterialSystem::SetInStubMode( bool bInStubMode ) { m_bInStubMode = bInStubMode; }
bool CMaterialSystem::IsInStubMode() { return m_bInStubMode; }
void CMaterialSystem::Flush( bool flushHardware ) { GetRenderContextInternal()->Flush( flushHardware ); }
uint32 CMaterialSystem::GetCurrentFrameCount() { return g_FrameNum; }
//-----------------------------------------------------------------------------
// Flushes managed textures from the texture cacher
//-----------------------------------------------------------------------------
void CMaterialSystem::EvictManagedResources() { g_pShaderAPI->EvictManagedResources(); }
int __cdecl MaterialNameCompareFunc( const void *elem1, const void *elem2 ) { IMaterialInternal *pMaterialA = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem1 ); IMaterialInternal *pMaterialB = g_MaterialSystem.GetMaterialInternal( *(MaterialHandle_t *)elem2 );
// case insensitive to group similar named materials
return stricmp( pMaterialA->GetName(), pMaterialB->GetName() ); }
void CMaterialSystem::DebugPrintUsedMaterials( const char *pSearchSubString, bool bVerbose ) { MaterialHandle_t h; int i; int nNumCached; int nRefCount; int nSortedMaterials; int nNumErrors; // build a mapping to sort the material names
MaterialHandle_t *pSorted = (MaterialHandle_t*)stackalloc( GetNumMaterials() * sizeof(MaterialHandle_t) ); nSortedMaterials = 0; for (h = FirstMaterial(); h != InvalidMaterial(); h = NextMaterial(h) ) { pSorted[nSortedMaterials++] = h; } qsort( pSorted, nSortedMaterials, sizeof(MaterialHandle_t), MaterialNameCompareFunc );
nNumCached = 0; nNumErrors = 0; for (i = 0; i < nSortedMaterials; i++) { // iterate using sort mapping
IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]);
nRefCount = pMaterial->GetReferenceCount(); if ( nRefCount < 0 ) { nNumErrors++; continue; } if (!nRefCount) { if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars()) { nNumErrors++; } continue; }
// nonzero reference count
// tally the valid ones
nNumCached++;
if( pSearchSubString ) { if( !Q_stristr( pMaterial->GetName(), pSearchSubString ) && (!pMaterial->GetShader() || !Q_stristr( pMaterial->GetShader()->GetName(), pSearchSubString )) ) { continue; } }
DevMsg( "%s (shader: %s) refCount: %d.\n", pMaterial->GetName(), pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "unknown\n", nRefCount );
if( !bVerbose ) continue;
if( !pMaterial->IsPrecached() ) continue;
if( !pMaterial->GetShader() ) continue;
for( int j = 0; j < pMaterial->GetShader()->GetParamCount(); j++ ) { IMaterialVar *var; var = pMaterial->GetShaderParams()[j]; if( !var ) continue;
switch( var->GetType() ) { case MATERIAL_VAR_TYPE_TEXTURE: { ITextureInternal *texture = static_cast<ITextureInternal *>( var->GetTextureValue() ); if( !texture ) { DevWarning( "Programming error: CMaterialSystem::DebugPrintUsedMaterialsCallback: NULL texture\n" ); continue; } if( IsTextureInternalEnvCubemap( texture ) ) { DevMsg( " \"%s\" \"env_cubemap\"\n", var->GetName() ); } else { DevMsg( " \"%s\" \"%s\"\n", var->GetName(), texture->GetName() ); DevMsg( " %dx%d refCount: %d numframes: %d\n", texture->GetActualWidth(), texture->GetActualHeight(), texture->GetReferenceCount(), texture->GetNumAnimationFrames() ); } } break; case MATERIAL_VAR_TYPE_UNDEFINED: break; default: DevMsg( " \"%s\" \"%s\"\n", var->GetName(), var->GetStringValue() ); break; } } }
// list the critical errors after, otherwise the console log scrolls them away
if (nNumErrors) { for (i = 0; i < nSortedMaterials; i++) { // iterate using sort mapping
IMaterialInternal *pMaterial = GetMaterialInternal(pSorted[i]);
nRefCount = pMaterial->GetReferenceCount();
if ( nRefCount < 0 ) { // reference counts should not be negative
DevWarning( "DebugPrintUsedMaterials: refCount (%d) < 0 for material: \"%s\"\n", nRefCount, pMaterial->GetName() ); } else if (!nRefCount) { // ensure that it stayed uncached after the post loading uncache
// this is effectively a coding bug thats needs to be fixed
// a material is being precached without incrementing its reference
if (pMaterial->IsPrecached() || pMaterial->IsPrecachedVars()) { DevWarning( "DebugPrintUsedMaterials: material: \"%s\" didn't unache\n", pMaterial->GetName() ); } } } DevWarning( "%d Errors\n", nNumErrors ); }
if (!pSearchSubString) { DevMsg( "%d Cached, %d Total Materials\n", nNumCached, GetNumMaterials() ); } }
void CMaterialSystem::DebugPrintUsedTextures( void ) { TextureManager()->DebugPrintUsedTextures(); }
#if defined( _X360 ) || defined( _PS3 )
void CMaterialSystem::ListUsedMaterials( void ) { int numMaterials = GetNumMaterials(); xMaterialList_t* pMaterialList = (xMaterialList_t *)stackalloc( numMaterials * sizeof( xMaterialList_t ) );
numMaterials = 0; for ( MaterialHandle_t hMaterial = FirstMaterial(); hMaterial != InvalidMaterial(); hMaterial = NextMaterial( hMaterial ) ) { IMaterialInternal *pMaterial = GetMaterialInternal( hMaterial ); pMaterialList[numMaterials].pName = pMaterial->GetName(); pMaterialList[numMaterials].pShaderName = pMaterial->GetShader() ? pMaterial->GetShader()->GetName() : "???"; pMaterialList[numMaterials].refCount = pMaterial->GetReferenceCount(); numMaterials++; }
XBX_rMaterialList( numMaterials, pMaterialList ); } #endif
void CMaterialSystem::ToggleSuppressMaterial( char const* pMaterialName ) { /*
// This version suppresses all but the material
IMaterial *pMaterial = GetFirstMaterial(); while (pMaterial) { if (stricmp(pMaterial->GetName(), pMaterialName)) { IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial); pMatInt->ToggleSuppression(); } pMaterial = GetNextMaterial(); } */
// Note: if we use this function a lot, we'll want to do something else, like have them
// pass in a texture group or reuse whatever texture group the material already had.
// As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in
// TEXTURE_GROUP_SHARED.
IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, true, NULL ); if ( !IsErrorMaterial( pMaterial ) ) { IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial); pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally
pMatInt->ToggleSuppression(); } }
void CMaterialSystem::ToggleDebugMaterial( char const* pMaterialName ) { // Note: if we use this function a lot, we'll want to do something else, like have them
// pass in a texture group or reuse whatever texture group the material already had.
// As it is, this is rarely used, so if it's not in TEXTURE_GROUP_OTHER, it'll go in
// TEXTURE_GROUP_SHARED.
IMaterial* pMaterial = FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER, false, NULL ); if ( !IsErrorMaterial( pMaterial ) ) { IMaterialInternal* pMatInt = static_cast<IMaterialInternal*>(pMaterial); pMatInt = pMatInt->GetRealTimeVersion(); //always work with the realtime material internally
pMatInt->ToggleDebugTrace(); } else { Warning("Unknown material %s\n", pMaterialName ); } }
//-----------------------------------------------------------------------------
// Used to iterate over all shaders for editing purposes
//-----------------------------------------------------------------------------
int CMaterialSystem::ShaderCount() const { return ShaderSystem()->ShaderCount(); }
int CMaterialSystem::GetShaders( int nFirstShader, int nMaxCount, IShader **ppShaderList ) const { return ShaderSystem()->GetShaders( nFirstShader, nMaxCount, ppShaderList ); }
//-----------------------------------------------------------------------------
// FIXME: Is there a better way of doing this?
// Returns shader flag names for editors to be able to edit them
//-----------------------------------------------------------------------------
int CMaterialSystem::ShaderFlagCount() const { return ShaderSystem()->ShaderStateCount( ); }
const char *CMaterialSystem::ShaderFlagName( int nIndex ) const { return ShaderSystem()->ShaderStateString( nIndex ); }
//-----------------------------------------------------------------------------
// Returns the currently active shader fallback for a particular shader
//-----------------------------------------------------------------------------
void CMaterialSystem::GetShaderFallback( const char *pShaderName, char *pFallbackShader, int nFallbackLength ) { // FIXME: This is pretty much a hack. We need a better way for the
// editor to get ahold of shader fallbacks
int nCount = ShaderCount(); IShader** ppShaderList = (IShader**)stackalloc( nCount * sizeof(IShader) ); GetShaders( 0, nCount, ppShaderList );
do { int i; for ( i = 0; i < nCount; ++i ) { if ( !Q_stricmp( pShaderName, ppShaderList[i]->GetName() ) ) break; }
// Didn't find a match!
if ( i == nCount ) { Q_strncpy( pFallbackShader, "wireframe", nFallbackLength ); return; }
// Found a match
// FIXME: Theoretically, getting fallbacks should require a param list
// In practice, it looks rare or maybe even neved done
const char *pFallback = ppShaderList[i]->GetFallbackShader( NULL ); if ( !pFallback ) { Q_strncpy( pFallbackShader, pShaderName, nFallbackLength ); return; } else { pShaderName = pFallback; } } while (true); }
//-----------------------------------------------------------------------------
// Triggers OpenGL shader preloading at game startup
//-----------------------------------------------------------------------------
#if defined( DX_TO_GL_ABSTRACTION ) && !defined( _GAMECONSOLE )
void CMaterialSystem::DoStartupShaderPreloading( void ) { GetRenderContextInternal()->DoStartupShaderPreloading(); } #endif
void CMaterialSystem::SwapBuffers( void ) { VPROF_BUDGET( "CMaterialSystem::SwapBuffers", VPROF_BUDGETGROUP_SWAP_BUFFERS ); GetRenderContextInternal()->SwapBuffers(); g_FrameNum++; }
bool CMaterialSystem::InEditorMode() const { Assert( m_bGeneratedConfig ); return g_config.bEditMode && CanUseEditorMaterials(); }
void CMaterialSystem::NoteAnisotropicLevel( int currentLevel ) { Assert( m_bGeneratedConfig ); g_config.m_nForceAnisotropicLevel = currentLevel; }
// Get the current config for this video card (as last set by control panel or the default if not)
const MaterialSystem_Config_t &CMaterialSystem::GetCurrentConfigForVideoCard() const { Assert( m_bGeneratedConfig ); return g_config; }
// Does the device support the given MSAA level?
bool CMaterialSystem::SupportsMSAAMode( int nNumSamples ) { return g_pShaderAPI->SupportsMSAAMode( nNumSamples ); }
void CMaterialSystem::ReloadFilesInList( IFileList *pFilesToReload ) { if ( IsPC() ) { // We have to flush the materials in 2 steps because they have recursive dependencies. The problem case
// is if you have two materials, A and B, that depend on C. You tell A to reload and it also reloads C. Then
// the filesystem thinks C doesn't need to be reloaded anymore. So when you get to B, it decides not to reload
// either since C doesn't need to be reloaded. To fix this, we ask all materials if they want to reload in
// one stage, then in the next stage we actually reload the appropriate ones.
MaterialHandle_t hNext; for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext ) { hNext = m_MaterialDict.NextMaterial( h ); IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h );
pMat->DecideShouldReloadFromWhitelist( pFilesToReload ); }
// Now reload the materials that wanted to be reloaded.
for ( MaterialHandle_t h=m_MaterialDict.FirstMaterial(); h != m_MaterialDict.InvalidMaterial(); h=hNext ) { hNext = m_MaterialDict.NextMaterial( h ); IMaterialInternal *pMat = m_MaterialDict.GetMaterialInternal( h );
pMat->ReloadFromWhitelistIfMarked(); }
// Flush out necessary textures.
TextureManager()->ReloadFilesInList( pFilesToReload ); } }
// Does the device support the given CSAA level?
bool CMaterialSystem::SupportsCSAAMode( int nNumSamples, int nQualityLevel ) { return g_pShaderAPI->SupportsCSAAMode( nNumSamples, nQualityLevel ); }
void CMaterialSystem::SetShadowDepthBiasFactors( float fShadowSlopeScaleDepthBias, float fShadowDepthBias ) { g_pShaderAPI->SetShadowDepthBiasFactors( fShadowSlopeScaleDepthBias, fShadowDepthBias ); }
void CMaterialSystem::FlipCulling( bool bFlipCulling ) { g_pShaderAPI->FlipCulling( bFlipCulling ); }
bool CMaterialSystem::SupportsHDRMode( HDRType_t nHDRMode ) { return HardwareConfig()->SupportsHDRMode( nHDRMode ); }
bool CMaterialSystem::UsesSRGBCorrectBlending( void ) const { return HardwareConfig()->UsesSRGBCorrectBlending(); }
// Get video card identitier
const MaterialSystemHardwareIdentifier_t &CMaterialSystem::GetVideoCardIdentifier( void ) const { static MaterialSystemHardwareIdentifier_t foo; Assert( 0 ); return foo; }
void CMaterialSystem::AddModeChangeCallBack( ModeChangeCallbackFunc_t func ) { g_pShaderDeviceMgr->AddModeChangeCallback( func ); }
void CMaterialSystem::RemoveModeChangeCallBack( ModeChangeCallbackFunc_t func ) { g_pShaderDeviceMgr->RemoveModeChangeCallback( func ); }
//-----------------------------------------------------------------------------
// Gets configuration information associated with the display card.
// It will return a list of key values to set.
//-----------------------------------------------------------------------------
bool CMaterialSystem::GetRecommendedVideoConfig( KeyValues *pKeyValues ) { MaterialLock_t hLock = Lock(); bool bResult = g_pShaderDeviceMgr->GetRecommendedVideoConfig( m_nAdapter, pKeyValues ); Unlock( hLock ); return bResult; }
//-----------------------------------------------------------------------------
// Gets configuration information associated with a particular DX level.
// It will return a list of key values to set.
//-----------------------------------------------------------------------------
bool CMaterialSystem::GetRecommendedConfigurationInfo( int nDXLevel, KeyValues *pKeyValues ) { MaterialLock_t hLock = Lock(); bool bResult = g_pShaderDeviceMgr->GetRecommendedConfigurationInfo( m_nAdapter, nDXLevel, pKeyValues ); Unlock( hLock ); return bResult; }
//-----------------------------------------------------------------------------
// For dealing with device lost in cases where SwapBuffers isn't called all the time (Hammer)
//-----------------------------------------------------------------------------
void CMaterialSystem::HandleDeviceLost() { if ( IsGameConsole() ) return;
g_pShaderAPI->HandleDeviceLost(); } bool CMaterialSystem::UsingFastClipping( void ) { return (HardwareConfig()->UseFastClipping() || (HardwareConfig()->MaxUserClipPlanes() < 1)); };
int CMaterialSystem::StencilBufferBits( void ) { return HardwareConfig()->StencilBufferBits(); }
ITexture* CMaterialSystem::CreateRenderTargetTexture( int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth ) { return CreateNamedRenderTargetTextureEx( NULL, w, h, sizeMode, format, depth, TEXTUREFLAGS_CLAMPS|TEXTUREFLAGS_CLAMPT, 0 ); }
ITexture* CMaterialSystem::CreateNamedRenderTargetTexture( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth, bool bClampTexCoords, bool bAutoMipMap ) { unsigned int textureFlags = 0; if ( bClampTexCoords ) { textureFlags |= TEXTUREFLAGS_CLAMPS | TEXTUREFLAGS_CLAMPT; }
unsigned int renderTargetFlags = 0; if ( bAutoMipMap ) { renderTargetFlags |= CREATERENDERTARGETFLAGS_AUTOMIPMAP; }
return CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags ); }
inline RenderTargetType_t DepthTypeToRenderTargetType( MaterialRenderTargetDepth_t depth ) { // GR - determine RT type based on depth buffer requirements
switch ( depth ) { case MATERIAL_RT_DEPTH_SEPARATE: // using own depth buffer
return RENDER_TARGET_WITH_DEPTH;
case MATERIAL_RT_DEPTH_NONE: // no depth buffer
return RENDER_TARGET_NO_DEPTH;
case MATERIAL_RT_DEPTH_ONLY: // only depth buffer
return RENDER_TARGET_ONLY_DEPTH;
case MATERIAL_RT_DEPTH_SHARED: default: // using shared depth buffer
return RENDER_TARGET; } }
ITexture* CMaterialSystem::CreateNamedRenderTargetTextureEx( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth, unsigned int textureFlags, unsigned int renderTargetFlags ) { if ( !m_nAllocatingRenderTargets ) { Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" ); return NULL; }
RenderTargetType_t rtType = DepthTypeToRenderTargetType( depth );
ITextureInternal* pTex = TextureManager()->CreateRenderTargetTexture( pRTName, w, h, sizeMode, format, rtType, textureFlags, renderTargetFlags, false ); pTex->IncrementReferenceCount();
#if defined( _X360 )
if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) ) { // create the EDRAM surface that is bound to the RT Texture
pTex->CreateRenderTargetSurface( 0, 0, IMAGE_FORMAT_UNKNOWN, true ); } #endif
return pTex; }
//-----------------------------------------------------------------------------------------------------
// New version which must be called inside BeginRenderTargetAllocation-EndRenderTargetAllocation block
//-----------------------------------------------------------------------------------------------------
ITexture *CMaterialSystem::CreateNamedRenderTargetTextureEx2( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth, unsigned int textureFlags, unsigned int renderTargetFlags ) { // Only proceed if we are between BeginRenderTargetAllocation and EndRenderTargetAllocation
if ( !m_nAllocatingRenderTargets ) { Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" ); return NULL; }
ITexture* pTexture = CreateNamedRenderTargetTextureEx( pRTName, w, h, sizeMode, format, depth, textureFlags, renderTargetFlags );
pTexture->DecrementReferenceCount(); // Follow the same convention as CTextureManager::LoadTexture (return refcount of 0).
return pTexture; }
ITexture *CMaterialSystem::CreateNamedMultiRenderTargetTexture( const char *pRTName, int w, int h, RenderTargetSizeMode_t sizeMode, // Controls how size is generated (and regenerated on video mode change).
ImageFormat format, MaterialRenderTargetDepth_t depth, unsigned int textureFlags, unsigned int renderTargetFlags ) { // Only proceed if we are between BeginRenderTargetAllocation and EndRenderTargetAllocation
if ( !m_nAllocatingRenderTargets ) { Warning( "Tried to create render target outside of CMaterialSystem::BeginRenderTargetAllocation/EndRenderTargetAllocation block\n" ); return NULL; }
RenderTargetType_t rtType = DepthTypeToRenderTargetType( depth );
ITextureInternal* pTex =TextureManager()->CreateRenderTargetTexture( pRTName, w, h, sizeMode, format, rtType, textureFlags, renderTargetFlags, true );
#if defined( _X360 )
if ( !( renderTargetFlags & CREATERENDERTARGETFLAGS_NOEDRAM ) ) { // create the EDRAM surface that is bound to the RT Texture
pTex->CreateRenderTargetSurface( 0, 0, IMAGE_FORMAT_UNKNOWN, true ); } #endif
return pTex; //ref count is 0
}
void CMaterialSystem::BeginRenderTargetAllocation( void ) { if ( m_bDisableRenderTargetAllocationForever ) { Warning( "Tried BeginRenderTargetAllocation after game startup. If I let you do this, all users would suffer.\n" ); return; } m_nAllocatingRenderTargets++; }
void CMaterialSystem::EndRenderTargetAllocation( void ) { if ( m_bDisableRenderTargetAllocationForever ) return; m_nAllocatingRenderTargets--;
if ( ! m_nAllocatingRenderTargets ) { if ( IsPC() && CanDownloadTextures() ) { // Simulate an Alt-Tab...will cause RTs to be allocated first
g_pShaderDevice->ReleaseResources(); g_pShaderDevice->ReacquireResources(); } TextureManager()->CacheExternalStandardRenderTargets(); } }
void CMaterialSystem::FinishRenderTargetAllocation( void ) { // disable all future render target allocation to prevent re-load bugs from creeping in.
if ( ( CommandLine()->CheckParm( "-tools" ) == NULL ) && ( ! m_bRequestedEditorMaterials ) ) { m_bDisableRenderTargetAllocationForever = true; } } void CMaterialSystem::ReEnableRenderTargetAllocation_IRealizeIfICallThisAllTexturesWillBeUnloadedAndLoadTimeWillSufferHorribly( void ) { m_bDisableRenderTargetAllocationForever = false; }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::UpdateLightmap( int lightmapPageID, int lightmapSize[2], int offsetIntoLightmapPage[2], float *pFloatImage, float *pFloatImageBump1, float *pFloatImageBump2, float *pFloatImageBump3 ) { CMatCallQueue *pCallQueue = GetRenderCallQueue(); if ( !pCallQueue ) { m_Lightmaps.UpdateLightmap( lightmapPageID, lightmapSize, offsetIntoLightmapPage, pFloatImage, pFloatImageBump1, pFloatImageBump2, pFloatImageBump3 ); } else { ExecuteOnce( DebuggerBreakIfDebugging() ); } }
void CMaterialSystem::UpdatePaintmap( int paintmap, BYTE* pPaintData, int numRects, Rect_t* pRects ) { CMatCallQueue *pCallQueue = GetRenderCallQueue(); if ( !pCallQueue ) { m_Paintmaps.UpdatePaintmap( paintmap, pPaintData, numRects, pRects ); } else { ExecuteOnce( DebuggerBreakIfDebugging() ); } }
//-----------------------------------------------------------------------------------------------------
// NVIDIA stereo
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::NVStereoUpdate() { g_pShaderAPI->UpdateStereoTexture( TextureManager()->StereoParamTexture()->GetTextureHandle( 0 ), &m_bIsStereoActiveThisFrame ); }
bool CMaterialSystem::IsStereoSupported() { if ( !m_bStereoBoolsInitialized ) { m_bIsStereoSupported = g_pShaderAPI->IsStereoSupported(); m_bStereoBoolsInitialized = true; }
return m_bIsStereoSupported; }
bool CMaterialSystem::IsStereoActiveThisFrame() const { // NOTE: This is updated in NVStereoUpdate above
return m_bIsStereoActiveThisFrame; }
//-----------------------------------------------------------------------------------------------------
// 360 TTF Font Support
//-----------------------------------------------------------------------------------------------------
#if defined( _X360 )
HXUIFONT CMaterialSystem::OpenTrueTypeFont( const char *pFontname, int tall, int style ) { MaterialLock_t hLock = Lock(); HXUIFONT result = g_pShaderAPI->OpenTrueTypeFont( pFontname, tall, style ); Unlock( hLock ); return result; } void CMaterialSystem::CloseTrueTypeFont( HXUIFONT hFont ) { MaterialLock_t hLock = Lock(); g_pShaderAPI->CloseTrueTypeFont( hFont ); Unlock( hLock ); } bool CMaterialSystem::GetTrueTypeFontMetrics( HXUIFONT hFont, wchar_t wchFirst, wchar_t wchLast, XUIFontMetrics *pFontMetrics, XUICharMetrics *pCharMetrics ) { MaterialLock_t hLock = Lock(); bool result = g_pShaderAPI->GetTrueTypeFontMetrics( hFont, wchFirst, wchLast, pFontMetrics, pCharMetrics ); Unlock( hLock ); return result; } bool CMaterialSystem::GetTrueTypeGlyphs( HXUIFONT hFont, int numChars, wchar_t *pWch, int *pOffsetX, int *pOffsetY, int *pWidth, int *pHeight, unsigned char *pRGBA, int *pRGBAOffset ) { MaterialLock_t hLock = Lock(); bool result = g_pShaderAPI->GetTrueTypeGlyphs( hFont, numChars, pWch, pOffsetX, pOffsetY, pWidth, pHeight, pRGBA, pRGBAOffset ); Unlock( hLock ); return result; } #endif
//-----------------------------------------------------------------------------------------------------
// 360 Back Buffer access. Due to hardware, RT data must be blitted from EDRAM
// and converted.
//-----------------------------------------------------------------------------------------------------
#if defined( _X360 )
void CMaterialSystem::ReadBackBuffer( Rect_t *pSrcRect, Rect_t *pDstRect, unsigned char *pDstData, ImageFormat dstFormat, int dstStride ) { Assert( pSrcRect && pDstRect && pDstData );
int fbWidth, fbHeight; g_pShaderAPI->GetBackBufferDimensions( fbWidth, fbHeight );
if ( pDstRect->width > fbWidth || pDstRect->height > fbHeight ) { Assert( 0 ); return; }
// intermediate results will be placed at (0,0)
Rect_t rect; rect.x = 0; rect.y = 0; rect.width = pDstRect->width; rect.height = pDstRect->height;
ITexture *pTempRT; bool bStretch = ( pSrcRect->width != pDstRect->width || pSrcRect->height != pDstRect->height ); if ( !bStretch ) { // hijack an unused RT (no surface required) for 1:1 resolve work, fastest path
pTempRT = FindTexture( "_rt_FullFrameFB", TEXTURE_GROUP_RENDER_TARGET ); } else { // hijack an unused RT (with surface abilities) for stretch work, slower path
pTempRT = FindTexture( "_rt_WaterReflection", TEXTURE_GROUP_RENDER_TARGET ); }
Assert( !pTempRT->IsError() && pDstRect->width <= pTempRT->GetActualWidth() && pDstRect->height <= pTempRT->GetActualHeight() ); GetRenderContextInternal()->CopyRenderTargetToTextureEx( pTempRT, 0, pSrcRect, &rect );
// access the RT bits
CPixelWriter writer; g_pShaderAPI->ModifyTexture( ((ITextureInternal*)pTempRT)->GetTextureHandle( 0 ) ); if ( !g_pShaderAPI->TexLock( 0, 0, 0, 0, pTempRT->GetActualWidth(), pTempRT->GetActualHeight(), writer ) ) return;
// this will be adequate for non-block formats
int srcStride = pTempRT->GetActualWidth() * ImageLoader::SizeInBytes( pTempRT->GetImageFormat() );
// untile intermediate RT in place to achieve linear access
XGUntileTextureLevel( pTempRT->GetActualWidth(), pTempRT->GetActualHeight(), 0, XGGetGpuFormat( ImageLoader::ImageFormatToD3DFormat( pTempRT->GetImageFormat() ) ), 0, (char*)writer.GetPixelMemory(), srcStride, NULL, writer.GetPixelMemory(), NULL );
// swap back to x86 order as expected by image conversion
ImageLoader::ByteSwapImageData( (unsigned char*)writer.GetPixelMemory(), srcStride*pTempRT->GetActualHeight(), pTempRT->GetImageFormat() );
// convert to callers format
Assert( dstFormat == IMAGE_FORMAT_RGB888 ); ImageLoader::ConvertImageFormat( (unsigned char*)writer.GetPixelMemory(), pTempRT->GetImageFormat(), pDstData, dstFormat, pDstRect->width, pDstRect->height, srcStride, dstStride );
g_pShaderAPI->TexUnlock(); } #endif
#if defined( _X360 )
void CMaterialSystem::PersistDisplay() { g_pShaderAPI->PersistDisplay(); } #endif
#if defined( _X360 )
void *CMaterialSystem::GetD3DDevice() { return g_pShaderAPI->GetD3DDevice(); } #endif
#if defined( _X360 )
bool CMaterialSystem::OwnGPUResources( bool bEnable ) { return g_pShaderAPI->OwnGPUResources( bEnable ); } #endif
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
class CThreadRelease : public CJob { virtual JobStatus_t DoExecute() { g_pShaderAPI->ReleaseThreadOwnership();
return JOB_OK; } };
void CMaterialSystem::ThreadRelease( ) { if ( !m_bThreadHasOwnership ) { return; }
double flStartTime, flEndThreadRelease, flEndTime;
if ( mat_queue_report.GetInt() ) { flStartTime = Plat_FloatTime(); }
CJob *pActiveAsyncJob = new CThreadRelease(); CreateMatQueueThreadPool()->AddJob( pActiveAsyncJob ); pActiveAsyncJob->WaitForFinish();
SafeRelease( pActiveAsyncJob );
if ( mat_queue_report.GetInt() ) { flEndThreadRelease = Plat_FloatTime(); }
g_pShaderAPI->AcquireThreadOwnership();
m_bThreadHasOwnership = false;
if ( mat_queue_report.GetInt() ) { flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( mat_queue_report.GetInt() == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "CMaterialSystem::ThreadRelease: %0.2fms = Release:%0.2fms + Acquire:%0.2fms\n", flResult, ( flEndThreadRelease - flStartTime ) * 1000.0, ( flEndTime - flEndThreadRelease ) * 1000.0 ); } } }
class CThreadAcquire : public CJob { virtual JobStatus_t DoExecute() { g_pShaderAPI->AcquireThreadOwnership();
return JOB_OK; } };
void CMaterialSystem::ThreadAcquire( ) { double flStartTime, flEndTime;
if ( mat_queue_report.GetInt() ) { flStartTime = Plat_FloatTime(); }
g_pShaderAPI->ReleaseThreadOwnership();
CJob *pActiveAsyncJob = new CThreadAcquire(); CreateMatQueueThreadPool()->AddJob( pActiveAsyncJob ); // while we could wait for this job to finish, there's no reason too
// pActiveAsyncJob->WaitForFinish();
SafeRelease( pActiveAsyncJob );
m_bThreadHasOwnership = true;
if ( mat_queue_report.GetInt() ) { flEndTime = Plat_FloatTime(); double flResult = ( flEndTime - flStartTime ) * 1000.0;
if ( mat_queue_report.GetInt() == -1 || flResult > mat_queue_report.GetFloat() ) { Color red( 200, 20, 20, 255 ); ConColorMsg( red, "CMaterialSystem::ThreadAcquire: %0.2fms\n", flResult ); } } }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
MaterialLock_t CMaterialSystem::Lock() { IMatRenderContextInternal *pCurContext = GetRenderContextInternal();
#ifdef _X360
// use this to help catch synchronization blocks in PIX timing captures
PIXEVENT( pCurContext, "CMaterialSystem::Lock" ); #endif
#ifndef _PS3
if ( pCurContext != &m_HardwareRenderContext && m_pActiveAsyncJob ) { m_pActiveAsyncJob->WaitForFinishAndRelease(); m_pActiveAsyncJob = NULL; } #else
if ( pCurContext != &m_HardwareRenderContext && m_bQMSJobSubmitted ) { g_pGcmSharedData->WaitForQMS(); m_bQMSJobSubmitted = 0; } #endif
g_MatSysMutex.Lock();
MaterialLock_t hMaterialLock = (MaterialLock_t)pCurContext; m_pRenderContext = &m_HardwareRenderContext;
if ( m_ThreadMode != MATERIAL_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( false ); if ( pCurContext->GetCallQueueInternal() ) { #ifdef MAT_QUEUED_OWN_THREADPOOL
ThreadRelease(); #else
g_pShaderAPI->AcquireThreadOwnership(); #endif
} }
g_pShaderAPI->ShaderLock();
return hMaterialLock; }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
void CMaterialSystem::Unlock( MaterialLock_t hMaterialLock ) { IMatRenderContextInternal *pRenderContext = (IMatRenderContextInternal *)hMaterialLock; m_pRenderContext = pRenderContext ; g_pShaderAPI->ShaderUnlock();
if ( m_ThreadMode == MATERIAL_QUEUED_SINGLE_THREADED ) { g_pShaderAPI->SetDisallowAccess( true ); } else if ( m_ThreadMode == MATERIAL_QUEUED_THREADED ) { if ( pRenderContext->GetCallQueueInternal() ) { #ifndef MAT_QUEUED_OWN_THREADPOOL
g_pShaderAPI->ReleaseThreadOwnership(); #endif
} } g_MatSysMutex.Unlock(); }
//-----------------------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------------------
CMatCallQueue *CMaterialSystem::GetRenderCallQueue() { IMatRenderContextInternal *pRenderContext = m_pRenderContext; return pRenderContext ? pRenderContext->GetCallQueueInternal() : NULL; }
void CMaterialSystem::UnbindMaterial( IMaterial *pMaterial ) { Assert( (pMaterial == NULL) || ((IMaterialInternal *)pMaterial)->IsRealTimeVersion() ); if ( m_HardwareRenderContext.GetCurrentMaterial() == pMaterial ) { m_HardwareRenderContext.Bind( g_pErrorMaterial, NULL ); } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CMaterialSystem::CompactMemory() { for ( int i = 0; i < ARRAYSIZE(m_QueuedRenderContexts); i++) { m_QueuedRenderContexts[i].CompactMemory(); } }
//-----------------------------------------------------------------------------
// Material + texture related commands
//-----------------------------------------------------------------------------
void CMaterialSystem::DebugPrintUsedMaterials( const CCommand &args ) { if( args.ArgC() == 1 ) { DebugPrintUsedMaterials( NULL, false ); } else { DebugPrintUsedMaterials( args[ 1 ], false ); } }
void CMaterialSystem::DebugPrintUsedMaterialsVerbose( const CCommand &args ) { if( args.ArgC() == 1 ) { DebugPrintUsedMaterials( NULL, true ); } else { DebugPrintUsedMaterials( args[ 1 ], true ); } }
void CMaterialSystem::DebugPrintAspectRatioInfo( const CCommand &args ) { int width, height; GetBackBufferDimensions( width, height );
const AspectRatioInfo_t &aspectRatioInfo = GetAspectRatioInfo();
DevMsg( "========================\n" ); DevMsg( "m_bIsWidescreen: %s\n", aspectRatioInfo.m_bIsWidescreen ? "true" : "false" ); DevMsg( "m_bIsHidef: %s\n", aspectRatioInfo.m_bIsHidef ? "true" : "false" ); DevMsg( "m_flFrameBufferAspectRatio: %f\n", aspectRatioInfo.m_flFrameBufferAspectRatio ); DevMsg( "m_flPhysicalAspectRatio: %f\n", aspectRatioInfo.m_flPhysicalAspectRatio ); DevMsg( "m_flFrameBuffertoPhysicalScalar: %f\n", aspectRatioInfo.m_flFrameBuffertoPhysicalScalar ); DevMsg( "fb width: %d fb height: %d\n", width, height ); DevMsg( "========================\n" ); }
void CMaterialSystem::DebugPrintUsedTextures( const CCommand &args ) { DebugPrintUsedTextures(); }
#if defined( _X360 ) || defined( _PS3 )
void CMaterialSystem::ListUsedMaterials( const CCommand &args ) { ListUsedMaterials(); } #endif // !_X360
void CMaterialSystem::ReloadAllMaterials( const CCommand &args ) { ReloadMaterials( NULL ); }
void CMaterialSystem::ReloadMaterials( const CCommand &args ) { if( args.ArgC() != 2 ) { Log_Warning( LOG_MaterialSystemConsole, "Usage: mat_reloadmaterial material_name_substring\n" " or mat_reloadmaterial substring1*substring2*...*substringN\n" ); return; } ReloadMaterials( args[ 1 ] ); }
void CMaterialSystem::ReloadTextures( const CCommand &args ) { ReloadTextures(); }
#ifdef _PS3
//void CMaterialSystem::GetVRAMScreenShotInfo( char **pointerToRawImageData, uint32 *uWidth, uint32 *uHeight, uint32 *uPitch, VRAMScreenShotInfoColor_t *colour )
void CMaterialSystem::TransmitScreenshotToVX() { extern char *GetScreenShotInfoForVX( IDirect3DDevice9 *pDevice, uint32 *uWidth, uint32 *uHeight, uint32 *uPitch, uint32 *colour ); uint32 uWidth, uHeight, uPitch, uColor; char *pFrameBuffer = GetScreenShotInfoForVX( Dx9Device(), &uWidth, &uHeight, &uPitch, &uColor ); if ( pFrameBuffer ) { g_pValvePS3Console->TransmitScreenshot( pFrameBuffer, uWidth, uHeight, uPitch, uColor ); } //return GetVRAMScreenShotInfoGCM( pointerToRawImageData, Dx9Device(), uWidth, uHeight, uPitch, colour);
}
void CMaterialSystem::CompactRsxLocalMemory( char const *szReason ) { extern void Ps3gcmLocalMemoryAllocator_CompactWithReason( char const *szReason ); Ps3gcmLocalMemoryAllocator_CompactWithReason( szReason ); }
void CMaterialSystem::SetFlipPresentFrequency( int nNumVBlanks ) { extern void Ps3gcmFlip_SetFlipPresentFrequency( int nNumVBlanks ); // 7ltodo Ps3gcmFlip_SetFlipPresentFrequency( nNumVBlanks );
} #endif
void CMaterialSystem::SpinPresent( uint nFrames ) { for( uint i = 0; i < nFrames; ++i ) { // BeginScene(); // do we need this?
g_pShaderAPI->ClearColor3ub( 0, 0, 0 ); g_pShaderAPI->ClearBuffers( true, true, true, -1, -1 ); g_pShaderDevice->Present(); // EndScene(); // do we need this?
} }
CON_COMMAND( mat_hdr_enabled, "Report if HDR is enabled for debugging" ) { if( HardwareConfig() && HardwareConfig()->GetHDREnabled() ) { Log_Warning( LOG_MaterialSystemConsole, "HDR Enabled\n" ); } else { Log_Warning( LOG_MaterialSystemConsole, "HDR Disabled\n" ); } }
#ifdef _PS3
#include "shaderutil_ps3nonvirt.inl"
#endif
|