|
|
//====== Copyright � 1996-2004, Valve Corporation, All rights reserved. =======
//
// Purpose:
//
//=============================================================================
// Standard includes
#include <limits.h>
// Valve includes
#include "movieobjects/dmemesh.h"
#include "movieobjects/dmevertexdata.h"
#include "movieobjects/dmefaceset.h"
#include "movieobjects/dmematerial.h"
#include "movieobjects/dmetransform.h"
#include "movieobjects/dmemodel.h"
#include "movieobjects_interfaces.h"
#include "movieobjects/dmecombinationoperator.h"
#include "movieobjects/dmeselection.h"
#include "movieobjects/dmedrawsettings.h"
#include "movieobjects/dmmeshcomp.h"
#include "tier3/tier3.h"
#include "tier1/keyvalues.h"
#include "tier0/dbg.h"
#include "datamodel/dmelementfactoryhelper.h"
#include "materialsystem/imaterialsystem.h"
#include "materialsystem/imorph.h"
#include "materialsystem/imesh.h"
#include "materialsystem/imaterialvar.h"
#include "istudiorender.h"
#include "studio.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// Normal rendering materials
//-----------------------------------------------------------------------------
bool CDmeMesh::s_bNormalMaterialInitialized; CMaterialReference CDmeMesh::s_NormalMaterial;
//-----------------------------------------------------------------------------
// Wireframe rendering materials
//-----------------------------------------------------------------------------
bool CDmeMesh::s_bWireframeMaterialInitialized; CMaterialReference CDmeMesh::s_WireframeMaterial;
//-----------------------------------------------------------------------------
// Computes a skin matrix
//-----------------------------------------------------------------------------
static const matrix3x4_t *ComputeSkinMatrix( int nBoneCount, const float *pJointWeight, const int *pJointIndices, const matrix3x4_t *pPoseToWorld, matrix3x4_t &result ) { float flWeight0, flWeight1, flWeight2, flWeight3;
switch( nBoneCount ) { default: case 1: return &pPoseToWorld[pJointIndices[0]];
case 2: { const matrix3x4_t &boneMat0 = pPoseToWorld[pJointIndices[0]]; const matrix3x4_t &boneMat1 = pPoseToWorld[pJointIndices[1]]; flWeight0 = pJointWeight[0]; flWeight1 = pJointWeight[1];
// NOTE: Inlining here seems to make a fair amount of difference
result[0][0] = boneMat0[0][0] * flWeight0 + boneMat1[0][0] * flWeight1; result[0][1] = boneMat0[0][1] * flWeight0 + boneMat1[0][1] * flWeight1; result[0][2] = boneMat0[0][2] * flWeight0 + boneMat1[0][2] * flWeight1; result[0][3] = boneMat0[0][3] * flWeight0 + boneMat1[0][3] * flWeight1; result[1][0] = boneMat0[1][0] * flWeight0 + boneMat1[1][0] * flWeight1; result[1][1] = boneMat0[1][1] * flWeight0 + boneMat1[1][1] * flWeight1; result[1][2] = boneMat0[1][2] * flWeight0 + boneMat1[1][2] * flWeight1; result[1][3] = boneMat0[1][3] * flWeight0 + boneMat1[1][3] * flWeight1; result[2][0] = boneMat0[2][0] * flWeight0 + boneMat1[2][0] * flWeight1; result[2][1] = boneMat0[2][1] * flWeight0 + boneMat1[2][1] * flWeight1; result[2][2] = boneMat0[2][2] * flWeight0 + boneMat1[2][2] * flWeight1; result[2][3] = boneMat0[2][3] * flWeight0 + boneMat1[2][3] * flWeight1; } return &result;
case 3: { const matrix3x4_t &boneMat0 = pPoseToWorld[pJointIndices[0]]; const matrix3x4_t &boneMat1 = pPoseToWorld[pJointIndices[1]]; const matrix3x4_t &boneMat2 = pPoseToWorld[pJointIndices[2]]; flWeight0 = pJointWeight[0]; flWeight1 = pJointWeight[1]; flWeight2 = pJointWeight[2];
result[0][0] = boneMat0[0][0] * flWeight0 + boneMat1[0][0] * flWeight1 + boneMat2[0][0] * flWeight2; result[0][1] = boneMat0[0][1] * flWeight0 + boneMat1[0][1] * flWeight1 + boneMat2[0][1] * flWeight2; result[0][2] = boneMat0[0][2] * flWeight0 + boneMat1[0][2] * flWeight1 + boneMat2[0][2] * flWeight2; result[0][3] = boneMat0[0][3] * flWeight0 + boneMat1[0][3] * flWeight1 + boneMat2[0][3] * flWeight2; result[1][0] = boneMat0[1][0] * flWeight0 + boneMat1[1][0] * flWeight1 + boneMat2[1][0] * flWeight2; result[1][1] = boneMat0[1][1] * flWeight0 + boneMat1[1][1] * flWeight1 + boneMat2[1][1] * flWeight2; result[1][2] = boneMat0[1][2] * flWeight0 + boneMat1[1][2] * flWeight1 + boneMat2[1][2] * flWeight2; result[1][3] = boneMat0[1][3] * flWeight0 + boneMat1[1][3] * flWeight1 + boneMat2[1][3] * flWeight2; result[2][0] = boneMat0[2][0] * flWeight0 + boneMat1[2][0] * flWeight1 + boneMat2[2][0] * flWeight2; result[2][1] = boneMat0[2][1] * flWeight0 + boneMat1[2][1] * flWeight1 + boneMat2[2][1] * flWeight2; result[2][2] = boneMat0[2][2] * flWeight0 + boneMat1[2][2] * flWeight1 + boneMat2[2][2] * flWeight2; result[2][3] = boneMat0[2][3] * flWeight0 + boneMat1[2][3] * flWeight1 + boneMat2[2][3] * flWeight2; } return &result;
case 4: { const matrix3x4_t &boneMat0 = pPoseToWorld[pJointIndices[0]]; const matrix3x4_t &boneMat1 = pPoseToWorld[pJointIndices[1]]; const matrix3x4_t &boneMat2 = pPoseToWorld[pJointIndices[2]]; const matrix3x4_t &boneMat3 = pPoseToWorld[pJointIndices[3]]; flWeight0 = pJointWeight[0]; flWeight1 = pJointWeight[1]; flWeight2 = pJointWeight[2]; flWeight3 = pJointWeight[3];
result[0][0] = boneMat0[0][0] * flWeight0 + boneMat1[0][0] * flWeight1 + boneMat2[0][0] * flWeight2 + boneMat3[0][0] * flWeight3; result[0][1] = boneMat0[0][1] * flWeight0 + boneMat1[0][1] * flWeight1 + boneMat2[0][1] * flWeight2 + boneMat3[0][1] * flWeight3; result[0][2] = boneMat0[0][2] * flWeight0 + boneMat1[0][2] * flWeight1 + boneMat2[0][2] * flWeight2 + boneMat3[0][2] * flWeight3; result[0][3] = boneMat0[0][3] * flWeight0 + boneMat1[0][3] * flWeight1 + boneMat2[0][3] * flWeight2 + boneMat3[0][3] * flWeight3; result[1][0] = boneMat0[1][0] * flWeight0 + boneMat1[1][0] * flWeight1 + boneMat2[1][0] * flWeight2 + boneMat3[1][0] * flWeight3; result[1][1] = boneMat0[1][1] * flWeight0 + boneMat1[1][1] * flWeight1 + boneMat2[1][1] * flWeight2 + boneMat3[1][1] * flWeight3; result[1][2] = boneMat0[1][2] * flWeight0 + boneMat1[1][2] * flWeight1 + boneMat2[1][2] * flWeight2 + boneMat3[1][2] * flWeight3; result[1][3] = boneMat0[1][3] * flWeight0 + boneMat1[1][3] * flWeight1 + boneMat2[1][3] * flWeight2 + boneMat3[1][3] * flWeight3; result[2][0] = boneMat0[2][0] * flWeight0 + boneMat1[2][0] * flWeight1 + boneMat2[2][0] * flWeight2 + boneMat3[2][0] * flWeight3; result[2][1] = boneMat0[2][1] * flWeight0 + boneMat1[2][1] * flWeight1 + boneMat2[2][1] * flWeight2 + boneMat3[2][1] * flWeight3; result[2][2] = boneMat0[2][2] * flWeight0 + boneMat1[2][2] * flWeight1 + boneMat2[2][2] * flWeight2 + boneMat3[2][2] * flWeight3; result[2][3] = boneMat0[2][3] * flWeight0 + boneMat1[2][3] * flWeight1 + boneMat2[2][3] * flWeight2 + boneMat3[2][3] * flWeight3; } return &result; }
Assert(0); return NULL; }
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CDmeMeshRenderInfo::CDmeMeshRenderInfo( CDmeVertexData *pBaseState ) : m_PositionIndices( pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_POSITION ) ), m_PositionData( pBaseState->GetPositionData() ), m_NormalIndices( pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_NORMAL ) ), m_NormalData( pBaseState->GetNormalData() ), m_TangentIndices( pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_TANGENT ) ), m_TangentData( pBaseState->GetTangentData() ) { m_pBaseState = pBaseState; m_bHasPositionData = m_PositionIndices.Count() > 0; m_bHasNormalData = m_NormalIndices.Count() > 0; m_bHasTangentData = m_TangentIndices.Count() > 0; m_nJointCount = pBaseState->JointCount(); m_bHasSkinningData = pBaseState->HasSkinningData() && m_nJointCount > 0; }
//-----------------------------------------------------------------------------
// Computes where a vertex is
//-----------------------------------------------------------------------------
void CDmeMeshRenderInfo::ComputePosition( int nPosIndex, const matrix3x4_t *pPoseToWorld, Vector *pDeltaPosition, Vector *pPosition ) { matrix3x4_t result; Vector vecMorphPosition; const matrix3x4_t *pSkinMatrix = pPoseToWorld;
if ( m_bHasSkinningData ) { const FieldIndex_t nJointWeightsFieldIndex = m_pBaseState->FindFieldIndex( CDmeVertexData::FIELD_JOINT_WEIGHTS ); if ( nJointWeightsFieldIndex >= 0 ) { const FieldIndex_t nJointIndicesFieldIndex = m_pBaseState->FindFieldIndex( CDmeVertexData::FIELD_JOINT_INDICES ); if ( nJointIndicesFieldIndex >= 0 ) { const CDmrArrayConst< float > jointWeights( m_pBaseState->GetVertexData( nJointWeightsFieldIndex ) ); const float *pJointWeight = &jointWeights[ nPosIndex * m_pBaseState->JointCount() ];
const CDmrArrayConst< int > jointIndices( m_pBaseState->GetVertexData( nJointIndicesFieldIndex ) ); const int *pJointIndices = &jointIndices[ nPosIndex * m_pBaseState->JointCount() ];
pSkinMatrix = ComputeSkinMatrix( m_nJointCount, pJointWeight, pJointIndices, pPoseToWorld, result ); } } }
const Vector *pPositionData = &m_PositionData[ nPosIndex ];
if ( pDeltaPosition ) { VectorAdd( *pPositionData, *( pDeltaPosition + nPosIndex ), vecMorphPosition ); pPositionData = &vecMorphPosition; }
VectorTransform( *pPositionData, *pSkinMatrix, *( pPosition + nPosIndex ) ); }
//-----------------------------------------------------------------------------
// Computes where a vertex is
//-----------------------------------------------------------------------------
void CDmeMeshRenderInfo::ComputePosition( int nPosIndex, const matrix3x4_t *pPoseToWorld, CDmeMesh::RenderVertexDelta_t *pDelta, Vector *pPosition ) { matrix3x4_t result; Vector vecMorphPosition, vecMorphNormal; const matrix3x4_t *pSkinMatrix = pPoseToWorld;
if ( m_bHasSkinningData ) { const FieldIndex_t nJointWeightsFieldIndex = m_pBaseState->FindFieldIndex( CDmeVertexData::FIELD_JOINT_WEIGHTS ); if ( nJointWeightsFieldIndex >= 0 ) { const FieldIndex_t nJointIndicesFieldIndex = m_pBaseState->FindFieldIndex( CDmeVertexData::FIELD_JOINT_INDICES ); if ( nJointIndicesFieldIndex >= 0 ) { const CDmrArrayConst< float > jointWeights( m_pBaseState->GetVertexData( nJointWeightsFieldIndex ) ); const float *pJointWeight = &jointWeights[ nPosIndex * m_pBaseState->JointCount() ];
const CUtlVector< int > &jointIndices = m_pBaseState->GetVertexIndexData( nJointIndicesFieldIndex ); const int *pJointIndices = &jointIndices[ nPosIndex * m_pBaseState->JointCount() ];
pSkinMatrix = ComputeSkinMatrix( m_nJointCount, pJointWeight, pJointIndices, pPoseToWorld, result ); } } }
const Vector *pPositionData = &m_PositionData[ nPosIndex ];
if ( pDelta ) { VectorAdd( *pPositionData, pDelta[ nPosIndex ].m_vecDeltaPosition, vecMorphPosition ); pPositionData = &vecMorphPosition; }
VectorTransform( *pPositionData, *pSkinMatrix, *pPosition ); }
//-----------------------------------------------------------------------------
// Computes where a vertex is
//-----------------------------------------------------------------------------
void CDmeMeshRenderInfo::ComputeVertex( int vi, const matrix3x4_t *pPoseToWorld, CDmeMesh::RenderVertexDelta_t *pDelta, Vector *pPosition, Vector *pNormal, Vector4D *pTangent ) { matrix3x4_t result; Vector vecMorphPosition, vecMorphNormal; const matrix3x4_t *pSkinMatrix = pPoseToWorld;
if ( m_bHasSkinningData ) { const float *pJointWeight = m_pBaseState->GetJointWeights( vi ); const int *pJointIndices = m_pBaseState->GetJointIndices( vi ); pSkinMatrix = ComputeSkinMatrix( m_nJointCount, pJointWeight, pJointIndices, pPoseToWorld, result ); }
int pi = m_PositionIndices[ vi ]; const Vector *pPositionData = &m_PositionData[ pi ]; if ( pDelta ) { VectorAdd( *pPositionData, pDelta[ pi ].m_vecDeltaPosition, vecMorphPosition ); pPositionData = &vecMorphPosition; } VectorTransform( *pPositionData, *pSkinMatrix, *pPosition );
if ( m_bHasNormalData ) { int ni = m_NormalIndices[ vi ]; const Vector *pNormalData = &m_NormalData[ ni ]; if ( pDelta ) { VectorAdd( *pNormalData, pDelta[ni].m_vecDeltaNormal, vecMorphNormal ); pNormalData = &vecMorphNormal; } VectorRotate( *pNormalData, *pSkinMatrix, *pNormal ); VectorNormalize( *pNormal ); } else { pNormal->Init( 0.0f, 0.0f, 1.0f ); }
if ( m_bHasTangentData ) { const Vector4D &tangentData = m_TangentData[ m_TangentIndices[ vi ] ]; VectorRotate( tangentData.AsVector3D(), *pSkinMatrix, pTangent->AsVector3D() ); VectorNormalize( pTangent->AsVector3D() ); pTangent->w = tangentData.w; } else { pTangent->Init( 1.0f, 0.0f, 0.0f, 1.0f ); } }
//-----------------------------------------------------------------------------
// Expose this class to the scene database
//-----------------------------------------------------------------------------
IMPLEMENT_ELEMENT_FACTORY( DmeMesh, CDmeMesh );
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CDmeMesh::OnConstruction() { m_BindBaseState.Init( this, "bindState" ); m_CurrentBaseState.Init( this, "currentState" ); m_BaseStates.Init( this, "baseStates", FATTRIB_MUSTCOPY ); m_DeltaStates.Init( this, "deltaStates", FATTRIB_MUSTCOPY | FATTRIB_HAS_CALLBACK ); m_FaceSets.Init( this, "faceSets", FATTRIB_MUSTCOPY ); m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Init( this, "deltaStateWeights" ); m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED].Init( this, "deltaStateWeightsLagged" ); }
void CDmeMesh::OnDestruction() { if ( g_pMaterialSystem ) { CleanupHWMesh(); } m_hwFaceSets.RemoveAll();
DeleteAttributeVarElementArray( m_BaseStates ); DeleteAttributeVarElementArray( m_DeltaStates ); DeleteAttributeVarElementArray( m_FaceSets ); }
//-----------------------------------------------------------------------------
// Cleans up the HW mesh in case of destruction or rebuild necessary
//-----------------------------------------------------------------------------
void CDmeMesh::CleanupHWMesh() { if ( !g_pMaterialSystem ) return;
CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); int nCount = m_hwFaceSets.Count(); for ( int i = 0; i < nCount; ++i ) { if ( !m_hwFaceSets[i].m_bBuilt ) continue;
if ( m_hwFaceSets[i].m_pMesh ) { pRenderContext->DestroyStaticMesh( m_hwFaceSets[i].m_pMesh ); m_hwFaceSets[i].m_pMesh = NULL; } m_hwFaceSets[i].m_bBuilt = false; } }
//-----------------------------------------------------------------------------
// Initializes the normal material
//-----------------------------------------------------------------------------
void CDmeMesh::InitializeNormalMaterial() { if ( !s_bNormalMaterialInitialized ) { s_bNormalMaterialInitialized = true;
KeyValues *pVMTKeyValues = new KeyValues( "wireframe" ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); pVMTKeyValues->SetInt( "$decal", 1 ); s_NormalMaterial.Init( "__DmeMeshNormalMaterial", pVMTKeyValues ); } }
//-----------------------------------------------------------------------------
// Initializes the normal material
//-----------------------------------------------------------------------------
void CDmeMesh::InitializeWireframeMaterial() { if ( !s_bWireframeMaterialInitialized ) { s_bWireframeMaterialInitialized = true;
KeyValues *pVMTKeyValues = new KeyValues( "wireframe" ); pVMTKeyValues->SetInt( "$vertexcolor", 1 ); s_WireframeMaterial.Init( "__DmeMeshWireframeMaterial", pVMTKeyValues ); } }
//-----------------------------------------------------------------------------
// resolve internal data from changed attributes
//-----------------------------------------------------------------------------
void CDmeMesh::OnAttributeChanged( CDmAttribute *pAttribute ) { BaseClass::OnAttributeChanged( pAttribute );
if ( pAttribute == m_DeltaStates.GetAttribute() ) { int nDeltaStateCount = m_DeltaStates.Count(); for ( int i = 0; i < MESH_DELTA_WEIGHT_TYPE_COUNT; ++i ) { // Make sure we have the correct number of weights
int nWeightCount = m_DeltaStateWeights[i].Count(); if ( nWeightCount < nDeltaStateCount ) { for ( int j = nWeightCount; j < nDeltaStateCount; ++j ) { m_DeltaStateWeights[i].AddToTail( Vector2D( 0.0f, 0.0f ) ); } } else if ( nDeltaStateCount > nWeightCount ) { m_DeltaStateWeights[i].RemoveMultiple( nWeightCount, nWeightCount - nDeltaStateCount ); } } } }
//-----------------------------------------------------------------------------
// Adds deltas into a delta mesh
//-----------------------------------------------------------------------------
template< class T > bool CDmeMesh::AddVertexDelta( CDmeVertexData *pBaseState, void *pVertexData, int nStride, CDmeVertexDataBase::StandardFields_t fieldId, int nIndex, bool bDoLag ) { CDmeVertexDeltaData *pDeltaState = GetDeltaState( nIndex );
if ( !pBaseState || !pDeltaState ) return false;
const FieldIndex_t nBaseFieldIndex = pBaseState->FindFieldIndex( fieldId == CDmeVertexData::FIELD_WRINKLE ? CDmeVertexData::FIELD_TEXCOORD : fieldId ); const FieldIndex_t nDeltaFieldIndex = pDeltaState->FindFieldIndex( fieldId ); if ( nBaseFieldIndex < 0 || nDeltaFieldIndex < 0 ) return false;
const CDmrArray<int> indices = pDeltaState->GetIndexData( nDeltaFieldIndex ); const CDmrArray<T> delta = pDeltaState->GetVertexData( nDeltaFieldIndex ); const int nDeltaCount = indices.Count();
const float flWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][nIndex].x;
const FieldIndex_t nSpeedFieldIndex = pBaseState->FindFieldIndex( CDmeVertexData::FIELD_MORPH_SPEED );
const int nVertexCount = pBaseState->VertexCount();
if ( !bDoLag || nSpeedFieldIndex < 0 ) { for ( int j = 0; j < nDeltaCount; ++j ) { int nDataIndex = indices.Get( j ); if ( nDataIndex < 0 || nDataIndex >= nVertexCount ) { Assert( nDataIndex >= 0 && nDataIndex < nVertexCount ); continue; }
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex ); *pDeltaData += delta.Get( j ) * flWeight; }
return true; }
const float flLaggedWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][nIndex].x;
const CDmrArrayConst<int> speedIndices = pBaseState->GetIndexData( nSpeedFieldIndex ); const CDmrArrayConst<float> speedDelta = pBaseState->GetVertexData( nSpeedFieldIndex ); for ( int j = 0; j < nDeltaCount; ++j ) { int nDataIndex = indices.Get( j ); const CUtlVector<int> &list = pBaseState->FindVertexIndicesFromDataIndex( nBaseFieldIndex, nDataIndex ); Assert( list.Count() > 0 ); // FIXME: Average everything in the list.. shouldn't be necessary though
float flSpeed = speedDelta.Get( speedIndices.Get( list[0] ) ); float flActualWeight = Lerp( flSpeed, flLaggedWeight, flWeight );
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex ); *pDeltaData += delta.Get( j ) * flActualWeight; } return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::AddTexCoordDelta( RenderVertexDelta_t *pRenderDelta, float flWeight, CDmeVertexDeltaData *pDeltaState ) { if ( !pDeltaState ) return;
FieldIndex_t nFieldIndex = pDeltaState->FindFieldIndex( CDmeVertexDeltaData::FIELD_TEXCOORD ); if ( nFieldIndex < 0 ) return;
bool bIsVCoordinateFlipped = pDeltaState->IsVCoordinateFlipped(); const CDmrArray<int> indices = pDeltaState->GetIndexData( nFieldIndex ); const CDmrArray<Vector2D> delta = pDeltaState->GetVertexData( nFieldIndex ); int nDeltaCount = indices.Count(); for ( int j = 0; j < nDeltaCount; ++j ) { Vector2D uvDelta = delta.Get( j ); if ( bIsVCoordinateFlipped ) { uvDelta.y = -uvDelta.y; } Vector2D &vec2D = pRenderDelta[ indices.Get( j ) ].m_vecDeltaUV; Vector2DMA( vec2D, flWeight, uvDelta, vec2D ); } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::AddColorDelta( RenderVertexDelta_t *pRenderDelta, float flWeight, CDmeVertexDeltaData *pDeltaState ) { if ( !pDeltaState ) return;
FieldIndex_t nFieldIndex = pDeltaState->FindFieldIndex( CDmeVertexDeltaData::FIELD_COLOR ); if ( nFieldIndex < 0 ) return;
const CDmrArray<int> indices = pDeltaState->GetIndexData( nFieldIndex ); const CDmrArray<Color> delta = pDeltaState->GetVertexData( nFieldIndex ); int nDeltaCount = indices.Count(); for ( int j = 0; j < nDeltaCount; ++j ) { const Color &srcDeltaColor = delta[ j ]; Vector4D &vecDelta = pRenderDelta[ indices[ j ] ].m_vecDeltaColor; vecDelta[0] += flWeight * srcDeltaColor.r(); vecDelta[1] += flWeight * srcDeltaColor.g(); vecDelta[2] += flWeight * srcDeltaColor.b(); vecDelta[3] += flWeight * srcDeltaColor.a(); } }
template< class T > bool CDmeMesh::AddStereoVertexDelta( CDmeVertexData *pBaseState, void *pVertexData, int nStride, CDmeVertexDataBase::StandardFields_t fieldId, int nIndex, bool bDoLag ) { CDmeVertexDeltaData *pDeltaState = GetDeltaState( nIndex ); if ( !pBaseState || !pDeltaState ) return false;
const FieldIndex_t nBaseFieldIndex = pBaseState->FindFieldIndex( fieldId == CDmeVertexData::FIELD_WRINKLE ? CDmeVertexData::FIELD_TEXCOORD : fieldId ); const FieldIndex_t nDeltaFieldIndex = pDeltaState->FindFieldIndex( fieldId ); if ( nBaseFieldIndex < 0 || nDeltaFieldIndex < 0 ) return false;
float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][nIndex].x; float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][nIndex].y;
const CDmrArray<int> indices = pDeltaState->GetIndexData( nDeltaFieldIndex ); const CDmrArray<T> delta = pDeltaState->GetVertexData( nDeltaFieldIndex ); const CUtlVector<int>& balanceIndices = pBaseState->GetVertexIndexData( CDmeVertexData::FIELD_BALANCE ); const CUtlVector<float> &balanceDelta = pBaseState->GetBalanceData(); const int nDeltaCount = indices.Count();
const FieldIndex_t nSpeedFieldIndex = pBaseState->FindFieldIndex( CDmeVertexData::FIELD_MORPH_SPEED );
if ( !bDoLag || nSpeedFieldIndex < 0 ) { for ( int j = 0; j < nDeltaCount; ++j ) { int nDataIndex = indices.Get( j ); const CUtlVector<int> &list = pBaseState->FindVertexIndicesFromDataIndex( nBaseFieldIndex, nDataIndex ); Assert( list.Count() > 0 ); // FIXME: Average everything in the list.. shouldn't be necessary though
float flRightAmount = balanceDelta[ balanceIndices[ list[0] ] ]; float flWeight = Lerp( flRightAmount, flLeftWeight, flRightWeight );
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex ); *pDeltaData += delta.Get( j ) * flWeight; }
return true; }
float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][nIndex].x; float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][nIndex].y;
const CDmrArray<int> pSpeedIndices = pBaseState->GetIndexData( nSpeedFieldIndex ); const CDmrArray<float> pSpeedDelta = pBaseState->GetVertexData( nSpeedFieldIndex ); for ( int j = 0; j < nDeltaCount; ++j ) { int nDataIndex = indices.Get( j ); const CUtlVector<int> &list = pBaseState->FindVertexIndicesFromDataIndex( nBaseFieldIndex, nDataIndex ); Assert( list.Count() > 0 ); // FIXME: Average everything in the list.. shouldn't be necessary though
float flRightAmount = balanceDelta[ balanceIndices[ list[0] ] ]; float flWeight = Lerp( flRightAmount, flLeftWeight, flRightWeight ); float flLaggedWeight = Lerp( flRightAmount, flLeftWeightLagged, flRightWeightLagged ); float flSpeed = pSpeedDelta.Get( pSpeedIndices.Get( list[0] ) ); float flActualWeight = Lerp( flSpeed, flLaggedWeight, flWeight );
T* pDeltaData = (T*)( (char*)pVertexData + nStride * nDataIndex ); *pDeltaData += delta.Get( j ) * flActualWeight; } return true; }
//-----------------------------------------------------------------------------
// Build a color map of one value for each position data value. The color
// is the length of the delta normalized by the maximum delta length
// if delta state is tagged to be highlighted
//-----------------------------------------------------------------------------
Color *BuildDeltaColorMap( CUtlVector< Color > &colorMapDelta, CDmeMesh *pDmeMesh, const Color &cHighlight ) { CDmeVertexData *pDmeBind = pDmeMesh->GetBindBaseState(); if ( !pDmeBind ) return NULL;
const FieldIndex_t nBasePosField = pDmeBind->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); if ( nBasePosField < 0 ) return NULL;
const CUtlVector< Vector > &basePosData = CDmrArrayConst< Vector >( pDmeBind->GetVertexData( nBasePosField ) ).Get();
const int nBasePosCount = basePosData.Count(); if ( nBasePosCount <= 0 ) return NULL;
float *pflDeltaLengths = reinterpret_cast< float * >( stackalloc( nBasePosCount * sizeof( float ) ) ); Q_memset( pflDeltaLengths, 0, nBasePosCount * sizeof( float ) );
float flMaxDeltaLen = 0.0f;
const int nDeltaCount = pDmeMesh->DeltaStateCount(); for ( int i = 0; i < nDeltaCount; ++i ) { CDmeVertexDeltaData *pDmeDelta = pDmeMesh->GetDeltaState( i ); if ( !pDmeDelta || !pDmeDelta->m_bRenderVerts ) continue;
const FieldIndex_t nDeltaPosField = pDmeDelta->FindFieldIndex( CDmeVertexDeltaData::FIELD_POSITION ); if ( nDeltaPosField < 0 ) continue;
const CUtlVector< Vector > &posData = CDmrArrayConst< Vector >( pDmeDelta->GetVertexData( nDeltaPosField ) ).Get(); const CUtlVector< int > &posIndices = pDmeDelta->GetVertexIndexData( CDmeVertexDeltaData::FIELD_POSITION );
const int nDeltaPosCount = MIN( posData.Count(), posIndices.Count() ); for ( int j = 0; j < nDeltaPosCount; ++j ) { const float flDeltaLen = posData[j].Length(); if ( flDeltaLen > flMaxDeltaLen ) { flMaxDeltaLen = flDeltaLen; } pflDeltaLengths[posIndices[j]] = MAX( pflDeltaLengths[posIndices[j]], flDeltaLen ); } }
if ( flMaxDeltaLen <= 0.0f ) return NULL;
flMaxDeltaLen = 1.0f / flMaxDeltaLen;
colorMapDelta.SetCount( nBasePosCount );
color32 c32; c32.a = 0xff; const color32 cHighlight32 = cHighlight.ToColor32(); float flLerp = 0.0f;
for ( int i = 0; i < nBasePosCount; ++i ) { flLerp = pflDeltaLengths[i] * flMaxDeltaLen; c32.r = Lerp< byte >( flLerp, 0xff, cHighlight32.r ); c32.g = Lerp< byte >( flLerp, 0xff, cHighlight32.g ); c32.b = Lerp< byte >( flLerp, 0xff, cHighlight32.b ); colorMapDelta[i] = c32; }
return colorMapDelta.Base(); }
//-----------------------------------------------------------------------------
// Draws the mesh when it uses too many bones
//-----------------------------------------------------------------------------
bool CDmeMesh::BuildDeltaMesh( int nVertices, RenderVertexDelta_t *pRenderDelta ) { bool bHasWrinkleDelta = false;
memset( pRenderDelta, 0, nVertices * sizeof( RenderVertexDelta_t ) ); int nCount = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count(); Assert( m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count() == m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED].Count() );
CDmeVertexData *pBindState = GetBindBaseState();
const FieldIndex_t nBalanceFieldIndex = pBindState->FindFieldIndex( CDmeVertexDeltaData::FIELD_BALANCE ); const FieldIndex_t nSpeedFieldIndex = pBindState->FindFieldIndex( CDmeVertexDeltaData::FIELD_MORPH_SPEED ); const bool bDoLag = nSpeedFieldIndex >= 0; if ( nBalanceFieldIndex < 0 ) { for ( int i = 0; i < nCount; ++i ) { float flWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x; float flLaggedWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x; if ( flWeight <= 0.0f && flLaggedWeight <= 0.0f ) continue;
// prepare vertices
CDmeVertexDeltaData *pDeltaState = GetDeltaState(i); AddVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaPosition, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag ); AddVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaNormal, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_NORMAL, i, bDoLag ); AddTexCoordDelta( pRenderDelta, flWeight, pDeltaState ); AddColorDelta( pRenderDelta, flWeight, pDeltaState ); bool bWrinkle = AddVertexDelta<float>( pBindState, &pRenderDelta->m_flDeltaWrinkle, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_WRINKLE, i, bDoLag ); bHasWrinkleDelta = bHasWrinkleDelta || bWrinkle; }
return bHasWrinkleDelta; }
for ( int i = 0; i < nCount; ++i ) { float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x; float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].y; float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x; float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].y; if ( flLeftWeight <= 0.0f && flRightWeight <= 0.0f && flLeftWeightLagged <= 0.0f && flRightWeightLagged <= 0.0f ) continue;
// FIXME: Need to make balanced versions of texcoord + color
bool bWrinkle; CDmeVertexDeltaData *pDeltaState = GetDeltaState(i); AddStereoVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaPosition, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag ); AddStereoVertexDelta<Vector>( pBindState, &pRenderDelta->m_vecDeltaNormal, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_NORMAL, i, bDoLag ); bWrinkle = AddStereoVertexDelta<float>( pBindState, &pRenderDelta->m_flDeltaWrinkle, sizeof(RenderVertexDelta_t), CDmeVertexDeltaData::FIELD_WRINKLE, i, bDoLag); bHasWrinkleDelta = bHasWrinkleDelta || bWrinkle; AddTexCoordDelta( pRenderDelta, flLeftWeight, pDeltaState ); AddColorDelta( pRenderDelta, flLeftWeight, pDeltaState ); }
return bHasWrinkleDelta; }
//-----------------------------------------------------------------------------
// Writes triangulated indices for a face set into a meshbuilder
//-----------------------------------------------------------------------------
void CDmeMesh::WriteTriangluatedIndices( const CDmeVertexData *pBaseState, CDmeFaceSet *pFaceSet, CMeshBuilder &meshBuilder ) { int indices[ 256 ];
// prepare indices
int nFirstIndex = 0; int nIndexCount = pFaceSet->NumIndices(); while ( nFirstIndex < nIndexCount ) { int nVertexCount = pFaceSet->GetNextPolygonVertexCount( nFirstIndex ); if ( nVertexCount >= 3 ) { int nOutCount = ( nVertexCount-2 ) * 3; int *pIndices = ( nOutCount > ARRAYSIZE( indices ) ) ? new int[ nOutCount ] : indices; ComputeTriangulatedIndices( pBaseState, pFaceSet, nFirstIndex, pIndices, nOutCount ); for ( int ii = 0; ii < nOutCount; ++ii ) { meshBuilder.FastIndex( pIndices[ii] ); } if ( pIndices != indices ) { delete[] pIndices; } } nFirstIndex += nVertexCount + 1; } }
//-----------------------------------------------------------------------------
// Draws the mesh when it uses too many bones
//-----------------------------------------------------------------------------
void CDmeMesh::DrawDynamicMesh( CDmeFaceSet *pFaceSet, matrix3x4_t *pPoseToWorld, bool bHasActiveDeltaStates, CDmeDrawSettings *pDrawSettings /* = NULL */ ) { CDmeVertexData *pBindBase = GetCurrentBaseState(); if ( !pBindBase ) return;
// NOTE: This is inherently inefficient; we re-skin the *entire* mesh,
// even if it's not being used by the entire model. This is because we can't
// guarantee the various materials from the various face sets use the
// same vertex format (even though they should), and we don't want to
// spend the work to detemine the sub-part of the mesh used by this face set.
// Compute vertex deltas for rendering
const int nVertices = pBindBase->VertexCount();
// NOTE: The Delta Data is actually indexed by the pPositionIndices, pNormalIndices, etc.
// The fact that we're storing one delta per final vertex nVertices
// is a waste of memory and simply implementational convenience.
CUtlVector< RenderVertexDelta_t > vertexDelta( 0, nVertices ); CUtlVector< Color > deltaColorMap; Color *pDeltaColorMap = NULL; if ( pDrawSettings && pDrawSettings->GetDeltaHighlight() ) { pDeltaColorMap = BuildDeltaColorMap( deltaColorMap, this, pDrawSettings->m_cHighlightColor ); }
bool bHasActiveWrinkle = false; RenderVertexDelta_t *pVertexDelta = vertexDelta.Base(); if ( bHasActiveDeltaStates ) { bHasActiveWrinkle = BuildDeltaMesh( nVertices, pVertexDelta ); } else { pVertexDelta = NULL; }
CDmeMeshRenderInfo renderInfo( pBindBase ); Assert( renderInfo.HasPositionData() );
// prepare vertices
FieldIndex_t uvField = pBindBase->FindFieldIndex( CDmeVertexData::FIELD_TEXCOORD ); FieldIndex_t colorField = pBindBase->FindFieldIndex( CDmeVertexData::FIELD_COLOR );
bool bHasTexCoords = ( uvField >= 0 ); bool bHasColors = ( colorField >= 0 );
CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); IMesh *pMesh = pRenderContext->GetDynamicMesh( );
const CDmrArrayConst<int> pUVIndices = bHasTexCoords ? pBindBase->GetIndexData( uvField ) : NULL;
if ( bHasActiveWrinkle && bHasTexCoords ) { // Create the wrinkle flex mesh
IMesh *pFlexDelta = pRenderContext->GetFlexMesh(); int nFlexVertexOffset = 0;
CMeshBuilder meshBuilder; meshBuilder.Begin( pFlexDelta, MATERIAL_HETEROGENOUS, nVertices, 0, &nFlexVertexOffset ); for ( int j=0; j < nVertices; j++ ) { // NOTE: The UV indices are also used to index into wrinkle data
int nUVIndex = pUVIndices.Get( j ); meshBuilder.Position3f( 0.0f, 0.0f, 0.0f ); meshBuilder.NormalDelta3f( 0.0f, 0.0f, 0.0f ); meshBuilder.Wrinkle1f( pVertexDelta[nUVIndex].m_flDeltaWrinkle ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVENORMAL, 0>(); } meshBuilder.End( false, false ); pMesh->SetFlexMesh( pFlexDelta, nFlexVertexOffset ); }
// build the mesh
int nIndices = pFaceSet->GetTriangulatedIndexCount(); CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertices, nIndices );
const CDmrArrayConst<Vector2D> pUVData = bHasTexCoords ? pBindBase->GetVertexData( uvField ) : NULL; const CDmrArrayConst<int> pColorIndices = bHasColors ? pBindBase->GetIndexData( colorField ) : NULL; const CDmrArrayConst<Color> pColorData = bHasColors ? pBindBase->GetVertexData( colorField ) : NULL; const CUtlVector< int > &basePosIndices = pBindBase->GetVertexIndexData( CDmeVertexData::FIELD_POSITION );
Vector vecPosition, vecNormal; Vector4D vecTangent; for ( int vi = 0; vi < nVertices; ++vi ) { renderInfo.ComputeVertex( vi, pPoseToWorld, pVertexDelta, &vecPosition, &vecNormal, &vecTangent ); meshBuilder.Position3fv( vecPosition.Base() ); meshBuilder.Normal3fv( vecNormal.Base() ); meshBuilder.UserData( vecTangent.Base() );
if ( pUVData.IsValid() ) { int uvi = pUVIndices.Get( vi ); Vector2D uv = pUVData.Get( uvi ); if ( pBindBase->IsVCoordinateFlipped() ) { uv.y = 1.0f - uv.y; }
if ( bHasActiveDeltaStates ) { uv += pVertexDelta[uvi].m_vecDeltaUV; } meshBuilder.TexCoord2fv( 0, uv.Base() ); } else { meshBuilder.TexCoord2f( 0, 0.0f, 0.0f ); }
if ( pDeltaColorMap ) { int cColor = pDeltaColorMap[ basePosIndices[ vi ] ].GetRawColor(); meshBuilder.Color4ubv( (unsigned char*)&cColor ); } else { if ( pColorIndices.IsValid() ) { int ci = pColorIndices.Get( vi ); int color = pColorData.Get( ci ).GetRawColor(); meshBuilder.Color4ubv( (unsigned char*)&color ); } else { meshBuilder.Color4ub( 255, 255, 255, 255 ); } }
meshBuilder.AdvanceVertexF<VTX_HAVEALL, 1>(); }
WriteTriangluatedIndices( pBindBase, pFaceSet, meshBuilder );
meshBuilder.End();
pMesh->Draw();
if ( pDrawSettings && pDrawSettings->GetNormals() ) { RenderNormals( pPoseToWorld, bHasActiveDeltaStates ? pVertexDelta : NULL ); }
// CacheHighlightVerts( pPoseToWorld, bHasActiveDeltaStates ? pVertexDelta : NULL, pDrawSettings );
}
//-----------------------------------------------------------------------------
// Renders normals
//-----------------------------------------------------------------------------
#define NORMAL_LINE_SIZE 0.25f
void CDmeMesh::RenderNormals( matrix3x4_t *pPoseToWorld, RenderVertexDelta_t *pDelta ) { CDmeVertexData *pBind = GetBindBaseState(); if ( !pBind ) return;
CDmeMeshRenderInfo renderInfo( pBind );
Assert( renderInfo.HasPositionData() ); if ( !renderInfo.HasNormalData() ) return; bool bHasTangents = renderInfo.HasTangentData();
// build the mesh
InitializeNormalMaterial(); CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); pRenderContext->Bind( s_NormalMaterial ); IMesh *pMesh = pRenderContext->GetDynamicMesh( );
int nMaxIndices, nMaxVertices; pRenderContext->GetMaxToRender( pMesh, false, &nMaxVertices, &nMaxIndices ); int nFirstVertex = 0; int nVerticesRemaining = pBind->VertexCount();; int nFactor = bHasTangents ? 6 : 2;
while ( nVerticesRemaining > 0 ) { int nVertices = nVerticesRemaining; if ( nVertices > nMaxVertices / nFactor ) { nVertices = nMaxVertices / nFactor; } if ( nVertices > nMaxIndices / nFactor ) { nVertices = nMaxIndices / nFactor; } nVerticesRemaining -= nVertices;
CMeshBuilder meshBuilder; meshBuilder.Begin( pMesh, MATERIAL_LINES, bHasTangents ? nVertices * 3 : nVertices );
Vector vecPosition, vecNormal, vecEndPoint, vecTangentS, vecTangentT; Vector4D vecTangent; for ( int vi = nFirstVertex; vi < nVertices; ++vi ) { renderInfo.ComputeVertex( vi, pPoseToWorld, pDelta, &vecPosition, &vecNormal, &vecTangent );
meshBuilder.Position3fv( vecPosition.Base() ); meshBuilder.Color4ub( 0, 0, 255, 255 ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>();
VectorMA( vecPosition, NORMAL_LINE_SIZE, vecNormal, vecEndPoint ); meshBuilder.Position3fv( vecEndPoint.Base() ); meshBuilder.Color4ub( 0, 0, 255, 255 ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>();
continue;
if ( !bHasTangents ) continue;
CrossProduct( vecNormal, vecTangent.AsVector3D(), vecTangentT ); VectorNormalize( vecTangentT ); // NOTE: This is the new, desired tangentS morphing behavior
// CrossProduct( vecTangentT, vecNormal, vecTangentS );
VectorCopy( vecTangent.AsVector3D(), vecTangentS ); vecTangentT *= vecTangent.w;
meshBuilder.Position3fv( vecPosition.Base() ); meshBuilder.Color4ub( 255, 0, 0, 255 ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>();
VectorMA( vecPosition, NORMAL_LINE_SIZE, vecTangentS, vecEndPoint ); meshBuilder.Position3fv( vecEndPoint.Base() ); meshBuilder.Color4ub( 255, 0, 0, 255 ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>();
meshBuilder.Position3fv( vecPosition.Base() ); meshBuilder.Color4ub( 0, 255, 0, 255 ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>();
VectorMA( vecPosition, NORMAL_LINE_SIZE, vecTangentT, vecEndPoint ); meshBuilder.Position3fv( vecEndPoint.Base() ); meshBuilder.Color4ub( 0, 255, 0, 255 ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>(); }
meshBuilder.End(); pMesh->Draw();
nFirstVertex += nVertices; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::CacheHighlightVerts( matrix3x4_t *pPoseToWorld, RenderVertexDelta_t *pDelta, CDmeDrawSettings *pDmeDrawSettings ) { if ( !pDmeDrawSettings ) return;
CDmeVertexData *pBind = GetBindBaseState(); if ( !pBind ) return;
const CUtlVector< Vector > &posData = pBind->GetPositionData(); const int nPosCount = posData.Count(); bool *pbHighlight = reinterpret_cast< bool * >( stackalloc( nPosCount * sizeof( bool ) ) ); Q_memset( pbHighlight, 0, nPosCount * sizeof( bool ) );
for ( int i = 0; i < m_DeltaStates.Count(); ++i ) { CDmeVertexDeltaData *pDmeDelta = m_DeltaStates[i]; if ( !pDmeDelta || !pDmeDelta->m_bRenderVerts ) continue;
const CUtlVector< int > &deltaIndices = pDmeDelta->GetVertexIndexData( CDmeVertexDeltaData::FIELD_POSITION ); for ( int j = 0; j < deltaIndices.Count(); ++j ) { pbHighlight[deltaIndices[j]] = true; } }
CDmeMeshRenderInfo renderInfo( pBind ); Assert( renderInfo.HasPositionData() );
CUtlVector< Vector > &highlightPoints = pDmeDrawSettings->GetHighlightPoints(); Vector vPosition;
for ( int i = 0; i < nPosCount; ++i ) { if ( !pbHighlight[i] ) continue;
renderInfo.ComputePosition( i, pPoseToWorld, pDelta, &vPosition ); highlightPoints.AddToTail( vPosition ); } }
//-----------------------------------------------------------------------------
// Draws the passed DmeFaceSet in wireframe mode
//-----------------------------------------------------------------------------
void CDmeMesh::DrawWireframeFaceSet( CDmeFaceSet *pDmeFaceSet, matrix3x4_t *pPoseToWorld, bool bHasActiveDeltaStates, CDmeDrawSettings *pDmeDrawSettings ) { CDmeVertexData *pBind = GetBindBaseState(); if ( !pBind ) return;
const FieldIndex_t posField = pBind->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); if ( posField < 0 ) return;
const CUtlVector< Vector > &posData( CDmrArrayConst< Vector >( pBind->GetVertexData( posField ) ).Get() ); const int nPosCount = posData.Count();
const CUtlVector< int > &posIndices( CDmrArrayConst< int >( pBind->GetIndexData( posField ) ).Get() );
Vector *pDeltaVertices = bHasActiveDeltaStates ? pDeltaVertices = reinterpret_cast< Vector * >( alloca( nPosCount * sizeof( Vector ) ) ) : NULL;
if ( bHasActiveDeltaStates ) { memset( pDeltaVertices, 0, sizeof( Vector ) * nPosCount ); const int nCount = m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ].Count();
const FieldIndex_t nBalanceFieldIndex = pBind->FindFieldIndex( CDmeVertexDeltaData::FIELD_BALANCE ); const FieldIndex_t nSpeedFieldIndex = pBind->FindFieldIndex( CDmeVertexDeltaData::FIELD_MORPH_SPEED ); const bool bDoLag = ( nSpeedFieldIndex >= 0 );
if ( nBalanceFieldIndex < 0 ) { for ( int i = 0; i < nCount; ++i ) { float flWeight = m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ][ i ].x; float flLaggedWeight = m_DeltaStateWeights[ MESH_DELTA_WEIGHT_LAGGED ][ i ].x; if ( flWeight <= 0.0f && ( !bDoLag || flLaggedWeight <= 0.0f ) ) continue;
AddVertexDelta< Vector >( pBind, pDeltaVertices, sizeof( Vector ), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag ); } } else { for ( int i = 0; i < nCount; ++i ) { float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x; float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].y; float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x; float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].y; if ( flLeftWeight <= 0.0f && flRightWeight <= 0.0f && ( !bDoLag || ( flLeftWeightLagged <= 0.0f && flRightWeightLagged <= 0.0f ) ) ) continue;
AddStereoVertexDelta< Vector >( pBind, pDeltaVertices, sizeof( Vector ), CDmeVertexDeltaData::FIELD_POSITION, i, bDoLag ); } } }
Vector *pVertices = reinterpret_cast< Vector * >( alloca( nPosCount * sizeof( Vector ) ) ); bool *pbHighlight = reinterpret_cast< bool * >( stackalloc( nPosCount * sizeof( bool ) ) ); Q_memset( pbHighlight, 0, nPosCount * sizeof( bool ) );
for ( int i = 0; i < m_DeltaStates.Count(); ++i ) { CDmeVertexDeltaData *pDmeDelta = m_DeltaStates[i]; if ( !pDmeDelta || !pDmeDelta->m_bRenderVerts ) continue;
const CUtlVector< int > &deltaIndices = pDmeDelta->GetVertexIndexData( CDmeVertexDeltaData::FIELD_POSITION ); for ( int j = 0; j < deltaIndices.Count(); ++j ) { pbHighlight[deltaIndices[j]] = true; } }
CDmeMeshRenderInfo renderInfo( pBind ); Assert( renderInfo.HasPositionData() );
if ( false && pDmeDrawSettings ) { CUtlVector< Vector > &highlightPoints = pDmeDrawSettings->GetHighlightPoints(); for ( int pi = 0; pi < nPosCount; ++pi ) { renderInfo.ComputePosition( pi, pPoseToWorld, pDeltaVertices, pVertices );
if ( !pbHighlight[pi] ) continue;
highlightPoints.AddToTail( pVertices[pi] ); } } else { for ( int pi = 0; pi < nPosCount; ++pi ) { renderInfo.ComputePosition( pi, pPoseToWorld, pDeltaVertices, pVertices ); } }
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
if ( !pDmeDrawSettings || !pDmeDrawSettings->IsAMaterialBound() ) { InitializeWireframeMaterial(); pRenderContext->Bind( s_WireframeMaterial ); }
IMesh *pMesh = pRenderContext->GetDynamicMesh();
// build the mesh
CMeshBuilder meshBuilder;
// Draw the polygons in the face set
const int nFaceSetIndices = pDmeFaceSet->NumIndices(); const int *pFaceSetIndices = pDmeFaceSet->GetIndices();
int vR = 0; int vG = 0; int vB = 0;
if ( pDmeDrawSettings ) { const Color &vColor = pDmeDrawSettings->GetColor(); vR = vColor.r(); vG = vColor.g(); vB = vColor.b(); }
int nFaceIndices; for ( int i = 0; i < nFaceSetIndices; ) { nFaceIndices = pDmeFaceSet->GetNextPolygonVertexCount( i ); meshBuilder.Begin( pMesh, MATERIAL_LINES, nFaceIndices );
for ( int j = 0; j < nFaceIndices; ++j ) { Assert( i < nFaceSetIndices );
int vIndex0 = posIndices[ pFaceSetIndices[ i + j ] ]; Assert( vIndex0 < nPosCount ); meshBuilder.Position3fv( reinterpret_cast< float * >( pVertices + vIndex0 ) ); meshBuilder.Color3ub( vR, vG, vB ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>();
int vIndex1 = posIndices[ pFaceSetIndices[ i + ( ( j + 1 ) % nFaceIndices ) ] ]; Assert( vIndex1 < nPosCount ); meshBuilder.Position3fv( reinterpret_cast< float * >( pVertices + vIndex1) ); meshBuilder.Color3ub( vR, vG, vB ); meshBuilder.AdvanceVertexF<VTX_HAVEPOS | VTX_HAVECOLOR, 0>(); }
meshBuilder.End();
i += nFaceIndices + 1; }
pMesh->Draw(); }
//-----------------------------------------------------------------------------
// Do we have active delta state data?
//-----------------------------------------------------------------------------
bool CDmeMesh::HasActiveDeltaStates() const { for ( int t = 0; t < MESH_DELTA_WEIGHT_TYPE_COUNT; ++t ) { int nCount = m_DeltaStateWeights[t].Count(); for ( int i = 0; i < nCount; ++i ) { if ( m_DeltaStateWeights[t][i].x != 0.0f || m_DeltaStateWeights[t][i].y != 0.0f ) return true; } }
return false; }
//-----------------------------------------------------------------------------
// Draws the mesh
//-----------------------------------------------------------------------------
void CDmeMesh::Draw( const matrix3x4_t &shapeToWorld, CDmeDrawSettings *pDrawSettings /* = NULL */ ) { CDmeVertexData *pBind = GetBindBaseState();
if ( !pBind || !g_pMaterialSystem || !g_pMDLCache || !g_pStudioRender ) return;
CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
const bool bHasActiveDeltaStates = HasActiveDeltaStates(); const bool bDrawNormals = pDrawSettings ? pDrawSettings->GetNormals() : false; const CDmeDrawSettings::DrawType_t drawType = pDrawSettings ? pDrawSettings->GetDrawType() : CDmeDrawSettings::DRAW_SMOOTH;
const bool bShaded = ( drawType == CDmeDrawSettings::DRAW_SMOOTH || drawType == CDmeDrawSettings::DRAW_FLAT ); const bool bWireframe = ( drawType == CDmeDrawSettings::DRAW_WIREFRAME ); // const bool bBoundingBox = ( drawType == CDmeDrawSettings::DRAW_BOUNDINGBOX );
const bool bDeltaHighlight = pDrawSettings ? pDrawSettings->GetDeltaHighlight() : false; const bool bSoftwareSkinning = bHasActiveDeltaStates | bDrawNormals | bWireframe | bDeltaHighlight;
matrix3x4_t *pPoseToWorld = CDmeModel::SetupModelRenderState( shapeToWorld, pBind->HasSkinningData(), bSoftwareSkinning );
pRenderContext->SetNumBoneWeights( pPoseToWorld ? 0 : pBind->JointCount() );
int nFaceSets = FaceSetCount(); m_hwFaceSets.EnsureCount( nFaceSets );
const bool bindMaterial = pDrawSettings ? !pDrawSettings->IsAMaterialBound() : true;
for ( int fi = 0; fi < nFaceSets; ++fi ) { CDmeFaceSet *pFaceSet = GetFaceSet( fi );
if ( bWireframe ) { DrawWireframeFaceSet( pFaceSet, pPoseToWorld, bHasActiveDeltaStates, pDrawSettings ); continue; }
if ( bindMaterial ) { pRenderContext->Bind( pFaceSet->GetMaterial()->GetCachedMTL() ); }
if ( pPoseToWorld || ( bShaded && bSoftwareSkinning ) ) { DrawDynamicMesh( pFaceSet, pPoseToWorld, bHasActiveDeltaStates, pDrawSettings ); continue; }
// TODO: figure out how to tell the mesh when the faceset's indices change
if ( !m_hwFaceSets[fi].m_bBuilt ) { m_hwFaceSets[fi].m_pMesh = CreateHwMesh( pFaceSet ); m_hwFaceSets[fi].m_bBuilt = true; }
if ( m_hwFaceSets[fi].m_pMesh ) { m_hwFaceSets[fi].m_pMesh->Draw(); } }
pRenderContext->SetNumBoneWeights( 0 ); CDmeModel::CleanupModelRenderState(); }
//-----------------------------------------------------------------------------
// Face sets
//-----------------------------------------------------------------------------
int CDmeMesh::FaceSetCount() const { return m_FaceSets.Count(); }
CDmeFaceSet *CDmeMesh::GetFaceSet( int faceSetIndex ) { return m_FaceSets[ faceSetIndex ]; }
const CDmeFaceSet *CDmeMesh::GetFaceSet( int faceSetIndex ) const { return m_FaceSets[ faceSetIndex ]; }
void CDmeMesh::AddFaceSet( CDmeFaceSet *faceSet ) { m_FaceSets.AddToTail( faceSet ); }
void CDmeMesh::RemoveFaceSet( int faceSetIndex ) { m_FaceSets.Remove( faceSetIndex ); }
//-----------------------------------------------------------------------------
// Find a base state by name
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::FindBaseState( const char *pStateName ) const { const int nBaseStateCount = BaseStateCount(); for ( int i = 0; i < nBaseStateCount; ++i ) { CDmeVertexData *pBaseState = GetBaseState( i ); if ( !Q_stricmp( pStateName, pBaseState->GetName() ) ) return pBaseState; }
return NULL; }
//-----------------------------------------------------------------------------
// Find a base state by name, add a new one if not found
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::FindOrCreateBaseState( const char *pStateName ) { CDmeVertexData *pBaseState = FindBaseState( pStateName ); if ( pBaseState ) return pBaseState;
pBaseState = CreateElement< CDmeVertexData >( pStateName, GetFileId() ); m_BaseStates.AddToTail( pBaseState );
return pBaseState; }
//-----------------------------------------------------------------------------
// Remove a base state by name
//-----------------------------------------------------------------------------
bool CDmeMesh::DeleteBaseState( const char *pStateName ) { const int nBaseStateCount = BaseStateCount(); for ( int i = 0; i < nBaseStateCount; ++i ) { const CDmeVertexData *pBaseState = GetBaseState( i ); if ( !Q_stricmp( pStateName, pBaseState->GetName() ) ) { m_BaseStates.Remove( i ); g_pDataModel->DestroyElement( pBaseState->GetHandle() );
// TODO: Fix up all dependent states
return true; } }
return false; }
//-----------------------------------------------------------------------------
// Selects a particular base state to be current state
//-----------------------------------------------------------------------------
void CDmeMesh::SetCurrentBaseState( const char *pStateName ) { m_CurrentBaseState = FindBaseState( pStateName ); }
//-----------------------------------------------------------------------------
// Selects a particular base state to be current state
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::GetCurrentBaseState() { return m_CurrentBaseState; }
//-----------------------------------------------------------------------------
// Selects a particular base state to be current state
//-----------------------------------------------------------------------------
const CDmeVertexData *CDmeMesh::GetCurrentBaseState() const { return m_CurrentBaseState; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::SetBindBaseState( CDmeVertexData *pBaseState ) { if ( !pBaseState ) return false;
CDmeVertexData *pCheckState = FindBaseState( pBaseState->GetName() ); if ( pCheckState != pBaseState ) return false;
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::GetBindBaseState() { if ( m_BindBaseState.GetElement() ) return m_BindBaseState;
// Backwards compatibility
return FindBaseState( "bind" ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
const CDmeVertexData *CDmeMesh::GetBindBaseState() const { if ( m_BindBaseState.GetElement() ) return m_BindBaseState;
// Backwards compatibility
return FindBaseState( "bind" ); }
//-----------------------------------------------------------------------------
// Delta states
//-----------------------------------------------------------------------------
int CDmeMesh::DeltaStateCount() const { return m_DeltaStates.Count(); }
//-----------------------------------------------------------------------------
// Returns the delta
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::GetDeltaState( int nDeltaIndex ) const { if ( nDeltaIndex < 0 || nDeltaIndex >= m_DeltaStates.Count() ) return NULL;
return m_DeltaStates[ nDeltaIndex ]; }
//-----------------------------------------------------------------------------
// Finds a delta state by name. If it isn't found, return NULL
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::FindDeltaState( const char *pDeltaName, bool bSortDeltaName /* = true */ ) const { return GetDeltaState( FindDeltaStateIndex( pDeltaName, bSortDeltaName ) ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int SortDeltaNameFunc( const void *a, const void *b ) { return Q_strcmp( *( const char ** )( a ), *( const char ** )( b ) ); }
//-----------------------------------------------------------------------------
// If the name doe
//-----------------------------------------------------------------------------
static const char *SortDeltaName( CUtlString &sDeltaName, const char *pszInDeltaName ) { if ( !pszInDeltaName || !strchr( pszInDeltaName, '_' ) ) return pszInDeltaName;
CUtlVector< char *, CUtlMemory< char *, int > > nameComponents; V_SplitString( pszInDeltaName, "\\", nameComponents );
if ( nameComponents.Count() > 0 ) { CUtlVector< char * > deltaNames; for ( int i = 0; i < nameComponents.Count(); ++i ) { deltaNames.AddToTail( nameComponents[ i ] ); }
qsort( deltaNames.Base(), deltaNames.Count(), sizeof( char * ), SortDeltaNameFunc );
sDeltaName.Clear();
for ( int i = 0; i < deltaNames.Count(); ++i ) { if ( V_strlen( deltaNames[i] ) <= 0 ) continue;
if ( sDeltaName.Length() > 0 ) { sDeltaName += "_"; }
sDeltaName += deltaNames[i]; } }
nameComponents.PurgeAndDeleteElements();
return sDeltaName.Get(); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::FindOrCreateDeltaState( const char *pInDeltaName, bool bSortDeltaName /* = true */ ) { CDmeVertexDeltaData *pDeltaState = FindDeltaState( pInDeltaName, bSortDeltaName ); if ( pDeltaState ) return pDeltaState;
CUtlString sDeltaName( pInDeltaName ); if ( bSortDeltaName ) { SortDeltaName( sDeltaName, pInDeltaName ); }
pDeltaState = CreateElement< CDmeVertexDeltaData >( sDeltaName.Get(), GetFileId() ); if ( pDeltaState ) { m_DeltaStates.AddToTail( pDeltaState ); }
return pDeltaState; }
//-----------------------------------------------------------------------------
// Finds a delta state index by comparing names, if it can't be found
// searches for all permutations of the delta name
//-----------------------------------------------------------------------------
int CDmeMesh::FindDeltaStateIndex( const char *pInDeltaName, bool bSortDeltaName /* = true */ ) const { CUtlString sDeltaName( pInDeltaName );
const int nDeltaStateCount = DeltaStateCount(); for ( int i = 0; i < nDeltaStateCount; ++i ) { CDmeVertexDeltaData *pDeltaState = GetDeltaState( i ); if ( !V_stricmp( sDeltaName.Get(), pDeltaState->GetName() ) ) return i; }
if ( bSortDeltaName && strchr( sDeltaName.Get(), '_' ) ) { SortDeltaName( sDeltaName, pInDeltaName ); }
for ( int i = 0; i < nDeltaStateCount; ++i ) { CDmeVertexDeltaData *pDeltaState = GetDeltaState( i ); if ( !V_stricmp( sDeltaName.Get(), pDeltaState->GetName() ) ) return i; }
return -1; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaStateWeight( int nDeltaIndex, MeshDeltaWeightType_t type, float flMorphWeight ) { if ( nDeltaIndex < m_DeltaStateWeights[type].Count() ) { m_DeltaStateWeights[type].Set( nDeltaIndex, Vector2D( flMorphWeight, flMorphWeight ) ); } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaStateWeight( int nDeltaIndex, MeshDeltaWeightType_t type, float flLeftWeight, float flRightWeight ) { if ( nDeltaIndex < m_DeltaStateWeights[type].Count() ) { m_DeltaStateWeights[type].Set( nDeltaIndex, Vector2D( flLeftWeight, flRightWeight ) ); } }
//-----------------------------------------------------------------------------
// Determines the appropriate vertex format for hardware meshes
//-----------------------------------------------------------------------------
VertexFormat_t CDmeMesh::ComputeHwMeshVertexFormat( void ) { VertexFormat_t vertexFormat = VERTEX_POSITION | VERTEX_COLOR | VERTEX_NORMAL | VERTEX_TEXCOORD_SIZE(0,2) | VERTEX_BONEWEIGHT(2) | VERTEX_BONE_INDEX | VERTEX_USERDATA_SIZE(4);
// FIXME: set VERTEX_FORMAT_COMPRESSED if there are no artifacts and if it saves enough memory (use 'mem_dumpvballocs')
// vertexFormat |= VERTEX_FORMAT_COMPRESSED;
// FIXME: check for and strip unused vertex elements (see 'bHasNormals', etc, in CreateHwMesh below)
return vertexFormat; }
//-----------------------------------------------------------------------------
// Builds a hardware mesh
//-----------------------------------------------------------------------------
IMesh *CDmeMesh::CreateHwMesh( CDmeFaceSet *pFaceSet ) { const CDmeVertexData *pBind = GetBindBaseState(); if ( !pBind ) return NULL;
// NOTE: This is memory inefficient. We create a copy of all vertices
// for each face set, even if those vertices aren't used by the face set
// Mostly chose to do this for code simplicity, although it also is faster to generate meshes
CMatRenderContextPtr pRenderContext( g_pMaterialSystem ); VertexFormat_t vertexFormat = ComputeHwMeshVertexFormat( ); IMesh *pMesh = pRenderContext->CreateStaticMesh( vertexFormat, "dmemesh" );
CMeshBuilder meshBuilder;
// prepare vertices
FieldIndex_t posField = pBind->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); FieldIndex_t normalField = pBind->FindFieldIndex( CDmeVertexData::FIELD_NORMAL ); FieldIndex_t tangentField = pBind->FindFieldIndex( CDmeVertexData::FIELD_TANGENT ); FieldIndex_t uvField = pBind->FindFieldIndex( CDmeVertexData::FIELD_TEXCOORD ); FieldIndex_t colorField = pBind->FindFieldIndex( CDmeVertexData::FIELD_COLOR );
Assert( posField >= 0 ); bool bHasNormals = ( normalField >= 0 ); bool bHasTangent = ( tangentField >= 0 ); bool bHasTexCoords = ( uvField >= 0 ); bool bHasColors = ( colorField >= 0 );
// build the mesh
int nIndices = pFaceSet->GetTriangulatedIndexCount(); int nVertices = pBind->VertexCount(); int nJointCount = pBind->JointCount(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertices, nIndices );
const CDmrArrayConst<int> pPositionIndices = pBind->GetIndexData( posField ); const CDmrArrayConst<Vector> pPositionData = pBind->GetVertexData( posField ); const CDmrArrayConst<int> pNormalIndices = bHasNormals ? pBind->GetIndexData( normalField ) : NULL; const CDmrArrayConst<Vector> pNormalData = bHasNormals ? pBind->GetVertexData( normalField ) : NULL; const CDmrArrayConst<int> pTangentIndices = bHasTangent ? pBind->GetIndexData( tangentField ) : NULL; const CDmrArrayConst<Vector4D> pTangentData = bHasTangent ? pBind->GetVertexData( tangentField ) : NULL; const CDmrArrayConst<int> pUVIndices = bHasTexCoords ? pBind->GetIndexData( uvField ) : NULL; const CDmrArrayConst<Vector2D> pUVData = bHasTexCoords ? pBind->GetVertexData( uvField ) : NULL; const CDmrArrayConst<int> pColorIndices = bHasColors ? pBind->GetIndexData( colorField ) : NULL; const CDmrArrayConst<Color> pColorData = bHasColors ? pBind->GetVertexData( colorField ) : NULL;
Vector4D defaultTangentS( 1.0f, 0.0f, 0.0f, 1.0f ); for ( int vi = 0; vi < nVertices; ++vi ) { meshBuilder.Position3fv( pPositionData.Get( pPositionIndices.Get( vi ) ).Base() ); if ( pNormalData.IsValid() ) { meshBuilder.Normal3fv( pNormalData.Get( pNormalIndices.Get( vi ) ).Base() ); } else { meshBuilder.Normal3f( 0.0f, 0.0f, 1.0f ); } if ( pTangentData.IsValid() ) { meshBuilder.UserData( pTangentData.Get( pTangentIndices.Get( vi ) ).Base() ); } else { meshBuilder.UserData( defaultTangentS.Base() ); } if ( pUVData.IsValid() ) { const Vector2D &uv = pUVData.Get( pUVIndices.Get( vi ) ); if ( !pBind->IsVCoordinateFlipped() ) { meshBuilder.TexCoord2fv( 0, uv.Base() ); } else { meshBuilder.TexCoord2f( 0, uv.x, 1.0f - uv.y ); } } else { meshBuilder.TexCoord2f( 0, 0.0f, 0.0f ); } if ( pColorIndices.IsValid() ) { int color = pColorData.Get( pColorIndices.Get( vi ) ).GetRawColor(); meshBuilder.Color4ubv( (unsigned char*)&color ); } else { meshBuilder.Color4ub( 255, 255, 255, 255 ); }
// FIXME: Note that this will break once we exceeed the max joint count
// that the hardware can handle
const float *pJointWeight = pBind->GetJointWeights( vi ); const int *pJointIndices = pBind->GetJointIndices( vi ); for ( int i = 0; i < nJointCount; ++i ) { meshBuilder.BoneWeight( i, pJointWeight[i] ); meshBuilder.BoneMatrix( i, pJointIndices[i] ); }
for ( int i = nJointCount; i < 4; ++i ) { meshBuilder.BoneWeight( i, ( i == 0 ) ? 1.0f : 0.0f ); meshBuilder.BoneMatrix( i, 0 ); }
meshBuilder.AdvanceVertexF<VTX_HAVEALL, 1>(); }
WriteTriangluatedIndices( pBind, pFaceSet, meshBuilder );
meshBuilder.End();
return pMesh; }
//-----------------------------------------------------------------------------
// Compute triangulated indices
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeTriangulatedIndices( const CDmeVertexData *pBaseState, const CDmeFaceSet *pFaceSet, int nFirstIndex, int *pIndices, int nOutCount ) const { // FIXME: Come up with a more efficient way of computing this
// This involves a bunch of recomputation of distances
float flMinDistance = FLT_MAX; int nMinIndex = 0; int nVertexCount = pFaceSet->GetNextPolygonVertexCount( nFirstIndex );
// Optimization for quads + triangles.. it's totally symmetric
int nLoopCount = nVertexCount; if ( nVertexCount <= 3 ) { nLoopCount = 0; } else if ( nVertexCount == 4 ) { nLoopCount = 2; }
for ( int i = 0; i < nLoopCount; ++i ) { float flDistance = 0.0f; const Vector &vecCenter = pBaseState->GetPosition( pFaceSet->GetIndex( nFirstIndex+i ) ); for ( int j = 2; j < nVertexCount-1; ++j ) { int vi = ( i + j ) % nVertexCount; const Vector &vecEdge = pBaseState->GetPosition( pFaceSet->GetIndex( nFirstIndex+vi ) ); flDistance += vecEdge.DistTo( vecCenter ); }
if ( flDistance < flMinDistance ) { nMinIndex = i; flMinDistance = flDistance; } } // Compute the triangulation indices
Assert( nOutCount == ( nVertexCount - 2 ) * 3 ); int nOutIndex = 0; for ( int i = 1; i < nVertexCount - 1; ++i ) { pIndices[nOutIndex++] = pFaceSet->GetIndex( nFirstIndex + nMinIndex ); pIndices[nOutIndex++] = pFaceSet->GetIndex( nFirstIndex + ((nMinIndex + i) % nVertexCount) ); pIndices[nOutIndex++] = pFaceSet->GetIndex( nFirstIndex + ((nMinIndex + i + 1) % nVertexCount) ); } }
//-----------------------------------------------------------------------------
// Build a map from vertex index to a list of triangles that share the vert.
//-----------------------------------------------------------------------------
void CDmeMesh::BuildTriangleMap( const CDmeVertexData *pBaseState, CDmeFaceSet* pFaceSet, CUtlVector<Triangle_t>& triangles, CUtlVector< CUtlVector<int> >* pVertToTriMap ) { int indices[ 256 ];
// prepare indices
int nFirstIndex = 0; int nIndexCount = pFaceSet->NumIndices(); while ( nFirstIndex < nIndexCount ) { int nVertexCount = pFaceSet->GetNextPolygonVertexCount( nFirstIndex ); if ( nVertexCount >= 3 ) { int nOutCount = ( nVertexCount-2 ) * 3; int *pIndices = ( nOutCount > ARRAYSIZE( indices ) ) ? new int[ nOutCount ] : indices; ComputeTriangulatedIndices( pBaseState, pFaceSet, nFirstIndex, pIndices, nOutCount ); for ( int ii = 0; ii < nOutCount; ii += 3 ) { int t = triangles.AddToTail(); Triangle_t& triangle = triangles[t];
triangle.m_nIndex[0] = pIndices[ii]; triangle.m_nIndex[1] = pIndices[ii+1]; triangle.m_nIndex[2] = pIndices[ii+2];
if ( pVertToTriMap ) { (*pVertToTriMap)[ pIndices[ii] ].AddToTail( t ); (*pVertToTriMap)[ pIndices[ii+1] ].AddToTail( t ); (*pVertToTriMap)[ pIndices[ii+2] ].AddToTail( t ); } } if ( pIndices != indices ) { delete[] pIndices; } } nFirstIndex += nVertexCount + 1; } }
//-----------------------------------------------------------------------------
// Computes tangent space data for triangles
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeTriangleTangets( const CDmeVertexData *pVertexData, CUtlVector<Triangle_t>& triangles ) { // Calculate the tangent space for each triangle.
int nTriangleCount = triangles.Count(); for ( int triID = 0; triID < nTriangleCount; triID++ ) { Triangle_t &triangle = triangles[triID];
const Vector &p0 = pVertexData->GetPosition( triangle.m_nIndex[0] ); const Vector &p1 = pVertexData->GetPosition( triangle.m_nIndex[1] ); const Vector &p2 = pVertexData->GetPosition( triangle.m_nIndex[2] ); const Vector2D &t0 = pVertexData->GetTexCoord( triangle.m_nIndex[0] ); const Vector2D &t1 = pVertexData->GetTexCoord( triangle.m_nIndex[1] ); const Vector2D &t2 = pVertexData->GetTexCoord( triangle.m_nIndex[2] ); CalcTriangleTangentSpace( p0, p1, p2, t0, t1, t2, triangle.m_vecTangentS, triangle.m_vecTangentT ); } }
//-----------------------------------------------------------------------------
// Build a map from vertex index to a list of triangles that share the vert.
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeAverageTangent( CDmeVertexData *pVertexData, bool bSmoothTangents, CUtlVector< CUtlVector<int> >& vertToTriMap, CUtlVector<Triangle_t>& triangles ) { FieldIndex_t posField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); FieldIndex_t normalField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL ); FieldIndex_t tangentField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_TANGENT );
const CDmrArray<int> pPositionIndices = pVertexData->GetIndexData( posField ); const CDmrArray<Vector> pPositionData = pVertexData->GetVertexData( posField ); const CDmrArray<int> pNormalIndices = pVertexData->GetIndexData( normalField ); const CDmrArray<Vector> pNormalData = pVertexData->GetVertexData( normalField );
// calculate an average tangent space for each vertex.
int nVertexCount = pVertexData->VertexCount(); Vector4D finalSVect; for( int vertID = 0; vertID < nVertexCount; vertID++ ) { CUtlVector<int> &triangleList = vertToTriMap[vertID];
Vector sVect, tVect; sVect.Init( 0.0f, 0.0f, 0.0f ); tVect.Init( 0.0f, 0.0f, 0.0f ); int nTriangleCount = triangleList.Count(); for ( int triID = 0; triID < nTriangleCount; triID++ ) { Triangle_t &tri = triangles[ triangleList[triID] ]; sVect += tri.m_vecTangentS; tVect += tri.m_vecTangentT; }
// In the case of zbrush, everything needs to be treated as smooth.
if ( bSmoothTangents ) { const Vector &vertPos1 = pPositionData.Get( pPositionIndices.Get( vertID ) ); for( int vertID2 = 0; vertID2 < nVertexCount; vertID2++ ) { if ( vertID2 == vertID ) continue;
const Vector &vertPos2 = pPositionData.Get( pPositionIndices.Get( vertID2 ) ); if ( vertPos1 != vertPos2 ) continue;
CUtlVector<int> &triangleList2 = vertToTriMap[vertID2]; int nTriangleCount2 = triangleList2.Count(); for ( int triID2 = 0; triID2 < nTriangleCount2; triID2++ ) { Triangle_t &tri2 = triangles[ triangleList2[triID2] ]; sVect += tri2.m_vecTangentS; tVect += tri2.m_vecTangentT; } } }
// make an orthonormal system.
// need to check if we are left or right handed.
Vector tmpVect; CrossProduct( sVect, tVect, tmpVect ); const Vector &normal = pNormalData.Get( pNormalIndices.Get( vertID ) ); bool bLeftHanded = DotProduct( tmpVect, normal ) < 0.0f; if ( !bLeftHanded ) { CrossProduct( normal, sVect, tVect ); CrossProduct( tVect, normal, sVect ); VectorNormalize( sVect ); VectorNormalize( tVect ); finalSVect[0] = sVect[0]; finalSVect[1] = sVect[1]; finalSVect[2] = sVect[2]; finalSVect[3] = 1.0f; } else { CrossProduct( sVect, normal, tVect ); CrossProduct( normal, tVect, sVect ); VectorNormalize( sVect ); VectorNormalize( tVect ); finalSVect[0] = sVect[0]; finalSVect[1] = sVect[1]; finalSVect[2] = sVect[2]; finalSVect[3] = -1.0f; }
pVertexData->SetVertexData( tangentField, vertID, 1, AT_VECTOR4, &finalSVect ); pVertexData->SetVertexIndices( tangentField, vertID, 1, &vertID ); } }
//-----------------------------------------------------------------------------
// Builds a map from vertex index to all triangles that use it
//-----------------------------------------------------------------------------
void CDmeMesh::BuildVertToTriMap( const CDmeVertexData *pVertexData, CUtlVector<Triangle_t> &triangles, CUtlVector< CUtlVector<int> > &vertToTriMap ) { vertToTriMap.AddMultipleToTail( pVertexData->VertexCount() );
int nCount = FaceSetCount(); for ( int i = 0; i < nCount; ++i ) { CDmeFaceSet *pFaceSet = GetFaceSet( i ); BuildTriangleMap( pVertexData, pFaceSet, triangles, &vertToTriMap ); } }
//-----------------------------------------------------------------------------
// Compute a default per-vertex tangent given normal data + uv data
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDefaultTangentData( CDmeVertexData *pVertexData, bool bSmoothTangents ) { if ( !pVertexData ) return;
// Need to have valid pos, uv, and normal to perform this operation
FieldIndex_t posField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); FieldIndex_t normalField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL ); FieldIndex_t uvField = pVertexData->FindFieldIndex( CDmeVertexData::FIELD_TEXCOORD ); if ( posField < 0 || uvField < 0 || normalField < 0 ) return;
// FIXME: Need to do a pass to make sure no vertex is referenced by
// multiple facesets that have different materials in them.
// In that case, we need to add extra copies of that vertex and modify
// the face set data to refer to the new vertices
// Build a map from vertex to a list of triangles that share the vert.
CUtlVector<Triangle_t> triangles( 0, 1024 ); CUtlVector< CUtlVector<int> > vertToTriMap; vertToTriMap.AddMultipleToTail( pVertexData->VertexCount() );
int nCount = FaceSetCount(); for ( int i = 0; i < nCount; ++i ) { CDmeFaceSet *pFaceSet = GetFaceSet( i ); BuildTriangleMap( pVertexData, pFaceSet, triangles, &vertToTriMap ); }
ComputeTriangleTangets( pVertexData, triangles );
// FIXME: We could do a pass to determine the unique combinations of
// position + tangent indices in the vertex data. We only need to have
// a unique tangent for each of these unique vertices. For simplicity
// (and speed), I'll assume all tangents are unique per vertex.
FieldIndex_t tangent = pVertexData->CreateField<Vector4D>( "tangents" ); pVertexData->RemoveAllVertexData( tangent ); pVertexData->AddVertexData( tangent, pVertexData->VertexCount() );
ComputeAverageTangent( pVertexData, bSmoothTangents, vertToTriMap, triangles ); }
//-----------------------------------------------------------------------------
// Compute a default per-vertex tangent given normal data + uv data for all vertex data referenced by this mesh
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDefaultTangentData( bool bSmoothTangents ) { const int nBaseStateCount = m_BaseStates.Count(); for ( int i = 0; i < nBaseStateCount; ++i ) { if ( m_BaseStates[i] && m_BaseStates[i]->NeedsTangentData() ) { ComputeDefaultTangentData( m_BaseStates[i], bSmoothTangents ); } } }
//-----------------------------------------------------------------------------
// Utility method to compute default tangent data on all meshes in the sub-dag hierarchy
//-----------------------------------------------------------------------------
void ComputeDefaultTangentData( CDmeDag *pDag, bool bSmoothTangents ) { if ( !pDag ) return;
CDmeMesh *pMesh = CastElement< CDmeMesh >( pDag->GetShape() ); if ( pMesh ) { pMesh->ComputeDefaultTangentData( bSmoothTangents ); }
int nChildCount = pDag->GetChildCount(); for ( int i = 0; i < nChildCount; ++i ) { ComputeDefaultTangentData( pDag->GetChild( i ), bSmoothTangents ); } }
//-----------------------------------------------------------------------------
// Compute the dimensionality of the delta state (how many inputs affect it)
//-----------------------------------------------------------------------------
int CDmeMesh::ComputeDeltaStateDimensionality( int nDeltaIndex ) { CDmeVertexDeltaData *pDeltaState = GetDeltaState( nDeltaIndex ); const char *pDeltaStateName = pDeltaState->GetName();
const char *pUnderBar = pDeltaStateName; int nDimensions = 0; while ( pUnderBar ) { ++nDimensions; pUnderBar = strchr( pUnderBar, '_' ); if ( pUnderBar ) { ++pUnderBar; } }
return nDimensions; }
//-----------------------------------------------------------------------------
// Computes the aggregate position for all vertices after applying a set of delta states
//-----------------------------------------------------------------------------
void CDmeMesh::AddDelta( CDmeVertexData *pBaseState, Vector *pDeltaPosition, int nDeltaStateIndex, CDmeVertexData::StandardFields_t fieldId ) { CDmeVertexDeltaData *pDeltaState = GetDeltaState( nDeltaStateIndex ); FieldIndex_t nFieldIndex = pDeltaState->FindFieldIndex( fieldId ); if ( nFieldIndex < 0 ) return;
if ( pBaseState->FindFieldIndex( CDmeVertexData::FIELD_BALANCE ) != -1 ) { AddStereoVertexDelta<Vector>( pBaseState, pDeltaPosition, sizeof(Vector), fieldId, nDeltaStateIndex, true ); } else { AddVertexDelta<Vector>( pBaseState, pDeltaPosition, sizeof(Vector), fieldId, nDeltaStateIndex, true ); } }
//-----------------------------------------------------------------------------
// Computes correctly averaged vertex normals from position data
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeNormalsFromPositions( CDmeVertexData *pBase, const Vector *pPosition, const CUtlVector<Triangle_t> &triangles, int nNormalCount, Vector *pNormals ) { Assert( nNormalCount == pBase->GetNormalData().Count() ); int *pNormalsAdded = (int*)_alloca( nNormalCount * sizeof(int) ); memset( pNormalsAdded, 0, nNormalCount * sizeof(int) ); memset( pNormals, 0, nNormalCount * sizeof(Vector) );
const CUtlVector<int> &positionIndices = pBase->GetVertexIndexData( CDmeVertexData::FIELD_POSITION ); const CUtlVector<int> &normalIndices = pBase->GetVertexIndexData( CDmeVertexData::FIELD_NORMAL );
int nTriangleCount = triangles.Count(); for ( int i = 0; i < nTriangleCount; ++i ) { const Triangle_t &tri = triangles[i]; int p1 = positionIndices[ tri.m_nIndex[0] ]; int p2 = positionIndices[ tri.m_nIndex[1] ]; int p3 = positionIndices[ tri.m_nIndex[2] ];
int n1 = normalIndices[ tri.m_nIndex[0] ]; int n2 = normalIndices[ tri.m_nIndex[1] ]; int n3 = normalIndices[ tri.m_nIndex[2] ];
Vector vecDelta, vecDelta2, vecNormal; VectorSubtract( pPosition[p2], pPosition[p1], vecDelta ); VectorSubtract( pPosition[p3], pPosition[p1], vecDelta2 ); CrossProduct( vecDelta, vecDelta2, vecNormal ); VectorNormalize( vecNormal );
pNormals[n1] += vecNormal; pNormals[n2] += vecNormal; pNormals[n3] += vecNormal;
++pNormalsAdded[n1]; ++pNormalsAdded[n2]; ++pNormalsAdded[n3]; }
for ( int i = 0; i < nNormalCount; ++i ) { if ( pNormalsAdded[i] > 0 ) { pNormals[i] /= pNormalsAdded[i]; VectorNormalize( pNormals[i] ); } else { pNormals[i].Init( 0, 1, 0 ); } } }
//-----------------------------------------------------------------------------
// Converts pose-space normals into deltas appropriate for correction delta states
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeCorrectedNormalsFromActualNormals( const CUtlVector<int> &deltaStateList, int nNormalCount, Vector *pNormals ) { CDmeVertexData *pBind = GetBindBaseState(); if ( !pBind ) return;
Assert( nNormalCount == pBind->GetNormalData().Count() );
// Subtract out all other normal contributions
Vector *pUncorrectedNormals = (Vector*)_alloca( nNormalCount * sizeof(Vector) ); memcpy( pUncorrectedNormals, pBind->GetNormalData().Base(), nNormalCount * sizeof( Vector ) ); int nDeltaStateCount = deltaStateList.Count(); for ( int i = 0; i < nDeltaStateCount; ++i ) { AddDelta( pBind, pUncorrectedNormals, deltaStateList[i], CDmeVertexData::FIELD_NORMAL ); }
for ( int i = 0; i < nNormalCount; ++i ) { pNormals[i] -= pUncorrectedNormals[i]; } }
//-----------------------------------------------------------------------------
// Copies the corrected normal data into a delta state
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaNormalData( int nDeltaIndex, int nNormalCount, Vector *pNormals ) { // pNormals represents the correct normal delta state for this combination
// Copy it into the delta state for this combination.
// Use tolerance to deal with precision errors introduced by the various computations
CDmeVertexDeltaData *pDeltaState = GetDeltaState( nDeltaIndex ); FieldIndex_t nNormalField = pDeltaState->FindFieldIndex( CDmeVertexDeltaData::FIELD_NORMAL ); if ( nNormalField >= 0 ) { pDeltaState->RemoveAllVertexData( nNormalField ); } else { nNormalField = pDeltaState->CreateField( CDmeVertexDeltaData::FIELD_NORMAL ); }
for ( int i = 0; i < nNormalCount; ++i ) { if ( pNormals[i].LengthSqr() < 1e-4 ) continue;
int nNormalIndex = pDeltaState->AddVertexData( nNormalField, 1 ); pDeltaState->SetVertexData( nNormalField, nNormalIndex, 1, AT_VECTOR3, &pNormals[i] ); pDeltaState->SetVertexIndices( nNormalField, nNormalIndex, 1, &i ); } }
//-----------------------------------------------------------------------------
// Discovers the atomic controls used by the various delta states
//-----------------------------------------------------------------------------
static int DeltaStateUsageLessFunc( const int * lhs, const int * rhs ) { return *lhs - *rhs; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::BuildAtomicControlLists( int nCount, DeltaComputation_t *pInfo, CUtlVector< CUtlVector< int > > &deltaStateUsage ) { CUtlVector< CUtlString > atomicControls; deltaStateUsage.SetCount( nCount );
// Build a list of atomic controls
int nCurrentDelta; for ( nCurrentDelta = 0; nCurrentDelta < nCount; ++nCurrentDelta ) { if ( pInfo[nCurrentDelta].m_nDimensionality != 1 ) break; int j = atomicControls.AddToTail( GetDeltaState( pInfo[nCurrentDelta].m_nDeltaIndex )->GetName() ); deltaStateUsage[ nCurrentDelta ].AddToTail( j ); }
char tempBuf[ 256 ];
for ( ; nCurrentDelta < nCount; ++nCurrentDelta ) { CDmeVertexDeltaData *pDeltaState = GetDeltaState( pInfo[nCurrentDelta].m_nDeltaIndex ); int nLen = Q_strlen( pDeltaState->GetName() ) + 1; char *pTempBuf = ( nLen > ARRAYSIZE( tempBuf ) ) ? new char[ nLen ] : tempBuf; memcpy( pTempBuf, pDeltaState->GetName(), nLen ); char *pNext; for ( char *pUnderBar = pTempBuf; pUnderBar; pUnderBar = pNext ) { pNext = strchr( pUnderBar, '_' ); if ( pNext ) { *pNext = 0; ++pNext; }
// Find this name in the list of strings
int j; int nControlCount = atomicControls.Count(); for ( j = 0; j < nControlCount; ++j ) { if ( !Q_stricmp( pUnderBar, atomicControls[j] ) ) break; } if ( j == nControlCount ) { j = atomicControls.AddToTail( pUnderBar ); } deltaStateUsage[ nCurrentDelta ].AddToTail( j ); } deltaStateUsage[ nCurrentDelta ].Sort( DeltaStateUsageLessFunc );
if ( pTempBuf != tempBuf ) { delete[] pTempBuf; } } }
//-----------------------------------------------------------------------------
// Construct list of all n-1 -> 1 dimensional delta states
// that will be active when this delta state is active
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDependentDeltaStateList( CUtlVector< DeltaComputation_t > &compList ) { if ( compList.Count() == 0 ) { ComputeDeltaStateComputationList( compList ); }
CUtlVector< CUtlVector< int > > deltaStateUsage; const int nCount( compList.Count() ); BuildAtomicControlLists( nCount, compList.Base(), deltaStateUsage );
// Now build up a list of dependent delta states based on usage
// NOTE: Usage is sorted in ascending order.
for ( int i = 1; i < nCount; ++i ) { int nUsageCount1 = deltaStateUsage[i].Count(); for ( int j = 0; j < i; ++j ) { // At the point they have the same dimensionality, no more need to check
if ( compList[j].m_nDimensionality == compList[i].m_nDimensionality ) break;
int ii = 0; bool bSubsetFound = true; int nUsageCount2 = deltaStateUsage[j].Count(); for ( int ji = 0; ji < nUsageCount2; ++ji ) { for ( bSubsetFound = false; ii < nUsageCount1; ++ii ) { if ( deltaStateUsage[j][ji] == deltaStateUsage[i][ii] ) { ++ii; bSubsetFound = true; break; }
if ( deltaStateUsage[j][ji] < deltaStateUsage[i][ii] ) break; }
if ( !bSubsetFound ) break; }
if ( bSubsetFound ) { compList[i].m_DependentDeltas.AddToTail( compList[j].m_nDeltaIndex ); } } } }
//-----------------------------------------------------------------------------
// Sorts DeltaComputation_t's by dimensionality
//-----------------------------------------------------------------------------
int CDmeMesh::DeltaStateLessFunc( const void * lhs, const void * rhs ) { DeltaComputation_t &info1 = *(DeltaComputation_t*)lhs; DeltaComputation_t &info2 = *(DeltaComputation_t*)rhs; return info1.m_nDimensionality - info2.m_nDimensionality; }
//-----------------------------------------------------------------------------
// Generates a sorted list in order of dimensionality of the delta states
// NOTE: This assumes a naming scheme where delta state names have _ that separate control names
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDeltaStateComputationList( CUtlVector< DeltaComputation_t > &compList ) { // Do all combinations in order of dimensionality, lowest dimension first
const int nCount = DeltaStateCount(); compList.EnsureCount( nCount ); // Resets the CUtlVector
for ( int i = 0; i < nCount; ++i ) { compList[i].m_nDeltaIndex = i; compList[i].m_nDimensionality = ComputeDeltaStateDimensionality( i ); } qsort( compList.Base(), nCount, sizeof(DeltaComputation_t), DeltaStateLessFunc ); }
//-----------------------------------------------------------------------------
// Computes normal deltas for all delta states based on position deltas
// NOTE: This assumes a naming scheme where delta state names have _ that separate control names
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeDeltaStateNormals() { CDmeVertexData *pBind = GetBindBaseState(); if ( !pBind ) return;
const FieldIndex_t nBindNormalIndex = pBind->CreateField( CDmeVertexData::FIELD_NORMAL );
const CUtlVector< Vector > &basePosData = pBind->GetPositionData(); const int nPosCount = basePosData.Count();
// Build a map from vertex to a list of triangles that share the vert.
CUtlVector< Triangle_t > triangles( 0, 1024 ); CUtlVector< CUtlVector<int> > vertToTriMap; vertToTriMap.AddMultipleToTail( pBind->VertexCount() );
const int nFaceSetCount = FaceSetCount(); for ( int i = 0; i < nFaceSetCount; ++i ) { CDmeFaceSet *pFaceSet = GetFaceSet( i ); BuildTriangleMap( pBind, pFaceSet, triangles, &vertToTriMap ); }
// Temporary storage for normals
Vector *pNormals = reinterpret_cast< Vector * >( alloca( nPosCount * sizeof( Vector ) ) );
// Make all of the normals in the bind pose smooth
{ const CUtlVector< int > &basePosIndices = pBind->GetVertexIndexData( CDmeVertexData::FIELD_POSITION );
pBind->SetVertexIndices( nBindNormalIndex, 0, basePosIndices.Count(), basePosIndices.Base() ); pBind->RemoveAllVertexData( nBindNormalIndex ); pBind->AddVertexData( nBindNormalIndex, nPosCount );
ComputeNormalsFromPositions( pBind, basePosData.Base(), triangles, nPosCount, pNormals ); pBind->SetVertexData( nBindNormalIndex, 0, nPosCount, AT_VECTOR3, pNormals );
// Fix up the current state to have smooth normals if current is not bind
CDmeVertexData *pCurrent = GetCurrentBaseState(); if ( pCurrent != pBind ) { const FieldIndex_t nCurrentNormalIndex = pCurrent->CreateField( CDmeVertexData::FIELD_NORMAL ); pCurrent->SetVertexIndices( nCurrentNormalIndex, 0, basePosIndices.Count(), basePosIndices.Base() ); pCurrent->RemoveAllVertexData( nCurrentNormalIndex ); pCurrent->AddVertexData( nCurrentNormalIndex, nPosCount );
const CUtlVector< Vector > &currPosData = pCurrent->GetPositionData(); ComputeNormalsFromPositions( pCurrent, currPosData.Base(), triangles, nPosCount, pNormals ); pCurrent->SetVertexData( nCurrentNormalIndex, 0, nPosCount, AT_VECTOR3, pNormals ); } }
// Temporary storage for the positions
Vector *pPosData = reinterpret_cast< Vector * >( alloca( nPosCount * sizeof( Vector ) ) );
// Compute the dependent delta state list like thing
CUtlVector< DeltaComputation_t > computationOrder; ComputeDependentDeltaStateList( computationOrder );
const int nDeltaStateCount = computationOrder.Count(); for ( int i = 0; i < nDeltaStateCount; ++i ) { const DeltaComputation_t &deltaComputation = computationOrder[ i ];
memcpy( pPosData, basePosData.Base(), nPosCount * sizeof( Vector ) );
const CUtlVector< int > &depDeltas = deltaComputation.m_DependentDeltas; const int nDepStateCount = depDeltas.Count(); for ( int j = 0; j < nDepStateCount; ++j ) { AddDelta( GetDeltaState( depDeltas[ j ] ), pPosData, nPosCount, CDmeVertexData::FIELD_POSITION ); }
AddDelta( GetDeltaState( deltaComputation.m_nDeltaIndex ), pPosData, nPosCount, CDmeVertexData::FIELD_POSITION );
ComputeNormalsFromPositions( pBind, pPosData, triangles, nPosCount, pNormals );
SetDeltaNormalDataFromActualNormals( computationOrder[ i ].m_nDeltaIndex, depDeltas, nPosCount, pNormals ); } }
//-----------------------------------------------------------------------------
// Computes normal deltas for all delta states based on position deltas
// NOTE: This assumes a naming scheme where delta state names have _ that separate control names
//-----------------------------------------------------------------------------
void CDmeMesh::SetDeltaNormalDataFromActualNormals( int nDeltaIndex, const CUtlVector<int> &deltaStateList, int nNormalCount, Vector *pNormals ) { // Store off the current state values
CUtlVector< Vector2D > deltaStateWeights[MESH_DELTA_WEIGHT_TYPE_COUNT]; for ( int i = 0; i < MESH_DELTA_WEIGHT_TYPE_COUNT; ++i ) { deltaStateWeights[i] = m_DeltaStateWeights[i].Get();
// Turn on the current weights to all be 1 to get max effect of morphs
int nCount = m_DeltaStateWeights[i].Count(); for ( int j = 0; j < nCount; ++j ) { m_DeltaStateWeights[i].Set( j, Vector2D( 1.0f, 1.0f ) ); } }
ComputeCorrectedNormalsFromActualNormals( deltaStateList, nNormalCount, pNormals );
// Finally, store the corrected normals into the delta state
SetDeltaNormalData( nDeltaIndex, nNormalCount, pNormals );
// Restore weights to their current value
for ( int i = 0; i < MESH_DELTA_WEIGHT_TYPE_COUNT; ++i ) { m_DeltaStateWeights[i] = deltaStateWeights[i]; } }
//-----------------------------------------------------------------------------
// A recursive algorithm to compute nCk, i.e. the number of order independent
// Combinations without any repeats of k items taking n at a time
// The size of the returned array is:
//
// n!
// -------------
// k! ( n - r )!
//
// e.g. 4C4 = { 0 1 2 3 }
// e.g. 3C4 = { 0 1 2 }, { 0 1 3 }, { 0 2 3 }, { 1 2 3 }
// e.g. 2C4 = { 0 1 }, { 0 2 }, { 0 3 }, { 1 2 }, { 1 3 }, { 2 3 }
// e.g. 1C4 = { 0 }, { 1 }, { 2 }, { 3 }
//
// It's recursive and meant to be called by the user with just n, k and combos
// the other default arguments are for the recursive steps
//-----------------------------------------------------------------------------
void CDmeMesh::Combinations( int n, int k, CUtlVector< CUtlVector< int > > &combos, int *pTmpArray, int start, int currentK ) { if ( !pTmpArray ) { pTmpArray = reinterpret_cast< int * >( alloca( k * sizeof( int ) ) ); memset( pTmpArray, 0, k * sizeof( int ) ); }
if ( currentK >= k ) { combos[ combos.AddToTail() ].CopyArray( pTmpArray, k ); return; }
for ( int i( start ); i < n; ++i ) { pTmpArray[ currentK ] = i;
Combinations( n, k, combos, pTmpArray, i + 1, currentK + 1 ); } }
//-----------------------------------------------------------------------------
// Takes an incoming Delta state, splits it's name '_' and then finds the
// control delta (a state without a '_' in its name) and adds the index
// of that control delta to the referenced array
//
// Returns true if all of the control states exist, false otherwise
//-----------------------------------------------------------------------------
bool CDmeMesh::GetControlDeltaIndices( CDmeVertexDeltaData *pDeltaState, CUtlVector< int > &controlDeltaIndices ) const { Assert( pDeltaState ); return GetControlDeltaIndices( pDeltaState->GetName(), controlDeltaIndices ); }
//-----------------------------------------------------------------------------
// Same as above but just uses the name of a delta
//-----------------------------------------------------------------------------
bool CDmeMesh::GetControlDeltaIndices( const char *pDeltaStateName, CUtlVector< int > &controlDeltaIndices ) const { Assert( pDeltaStateName ); controlDeltaIndices.RemoveAll();
const int nDeltaStateName( Q_strlen( pDeltaStateName ) ); char *pTmpBuf( reinterpret_cast< char * >( alloca( nDeltaStateName + 1 ) ) ); Q_strncpy( pTmpBuf, pDeltaStateName, nDeltaStateName + 1 ); char *pNext; for ( char *pCurr = pTmpBuf; pCurr; pCurr = pNext ) { pNext = strchr( pCurr, '_' ); if ( pNext ) { *pNext = '\0'; ++pNext; }
if ( Q_strlen( pCurr ) ) { const int controlDeltaIndex( FindDeltaStateIndex( pCurr ) ); if ( controlDeltaIndex >= 0 ) { controlDeltaIndices.AddToTail( controlDeltaIndex ); } else { controlDeltaIndices.RemoveAll(); return false; } } }
return true; }
//-----------------------------------------------------------------------------
// Builds a list of all of the underlying control delta indices for each
// delta state in the mesh
//
// e.g. Say the delta states are (in this order): A, B, C, A_C, A_B_C
//
// Will build: {
// { 0 },
// { 1 },
// { 2 },
// { 0, 2 },
// { 0, 1, 2 }
// }
//
// Returns true if all of the control states exist, false otherwise
//-----------------------------------------------------------------------------
bool CDmeMesh::BuildCompleteDeltaStateControlList( CUtlVector< CUtlVector< int > > &deltaStateControlList ) const { deltaStateControlList.RemoveAll();
CUtlVector< int > tmpControlDeltaIndices;
const int nDeltas( m_DeltaStates.Count() ); for ( int i = 0; i < nDeltas; ++i ) { if ( !GetControlDeltaIndices( m_DeltaStates[ i ], tmpControlDeltaIndices ) ) return false;
deltaStateControlList[ deltaStateControlList.AddToTail() ].CopyArray( tmpControlDeltaIndices.Base(), tmpControlDeltaIndices.Count() ); }
return true; }
//-----------------------------------------------------------------------------
// Searches controlList for a sub array that has exactly the same indices as
// controlIndices. The order of the indices do not have to match but all of
// them must be present and no extras can be present.
// It assumes that the controlList is in the same order as m_deltaStates
//-----------------------------------------------------------------------------
int CDmeMesh::FindDeltaIndexFromControlIndices( const CUtlVector< int > &controlIndices, const CUtlVector< CUtlVector< int > > &controlList ) const { const int nControlIndices( controlIndices.Count() ); const int nControlList( controlList.Count() );
int nControlListIndices; int foundCount;
for ( int i = 0; i < nControlList; ++i ) { const CUtlVector< int > &controlListIndices( controlList[ i ] ); nControlListIndices = controlListIndices.Count(); if ( nControlListIndices == nControlIndices ) { foundCount = 0;
for ( int j( 0 ); j < nControlListIndices; ++j ) { for ( int k( 0 ); k < nControlIndices; ++k ) { if ( controlListIndices[ j ] == controlIndices[ k ] ) { ++foundCount; break; } } }
if ( foundCount == nControlIndices ) return i; } }
return -1; }
//-----------------------------------------------------------------------------
// Builds a list of all of the required underlying deltas that make up this
// state whether that do not exist. All of the control deltas must exist
// though (Deltas without '_' in their name).
//
// e.g. Say only Delta states A, B, C, D, A_B_C_D exist and A_B_C_D is
// passed in. This function will return:
//
// A_B_C, A_B_D, A_C_D, B_C_D, A_B, A_C, A_D, B_C, B_D, C_D
//
// Returns true if all of the control states exist, false otherwise
//-----------------------------------------------------------------------------
bool CDmeMesh::BuildMissingDependentDeltaList( CDmeVertexDeltaData *pDeltaState, CUtlVector< int > &controlIndices, CUtlVector< CUtlVector< int > > &dependentStates ) const { dependentStates.RemoveAll();
CUtlVector< CUtlVector< int > > deltaStateControlList; BuildCompleteDeltaStateControlList( deltaStateControlList );
if ( !GetControlDeltaIndices( pDeltaState, controlIndices ) ) return false;
const int nControlIndices( controlIndices.Count() );
CUtlVector< int > comboControls;
for ( int i( nControlIndices - 1 ); i > 0; --i ) { CUtlVector< CUtlVector< int > > combos; Combinations( nControlIndices, i, combos ); const int nCombos( combos.Count() ); for ( int j( 0 ); j < nCombos; ++j ) { const CUtlVector< int > &comboIndices( combos[ j ] ); const int nComboIndices( comboIndices.Count() ); if ( comboIndices.Count() ) { comboControls.RemoveAll(); comboControls.EnsureCapacity( nComboIndices );
for ( int k( 0 ); k < nComboIndices; ++k ) { comboControls.AddToTail( controlIndices[ comboIndices[ k ] ] ); }
if ( FindDeltaIndexFromControlIndices( comboControls, deltaStateControlList) < 0 ) { dependentStates[ dependentStates.AddToTail() ].CopyArray( comboControls.Base(), comboControls.Count() ); } } } }
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t > int CDmeMesh::GenerateCompleteDataForDelta( const CDmeVertexDeltaData *pDelta, T_t *pFullData, int nFullData, CDmeVertexData::StandardFields_t standardField ) { memset( pFullData, 0, nFullData * sizeof( T_t ) );
const FieldIndex_t fIndex( pDelta->FindFieldIndex( standardField ) ); if ( fIndex >= 0 ) { CDmrArrayConst< T_t > fDataArray( pDelta->GetVertexData( fIndex ) ); const CUtlVector< T_t > &fData( fDataArray.Get() ); const CUtlVector< int > &fIndexData( pDelta->GetVertexIndexData( fIndex ) ); const int nIndexData( fIndexData.Count() );
Assert( nIndexData <= nFullData );
int index;
int i( 0 );
for ( int j( 0 ); j < nIndexData; ++j ) { index = fIndexData[ j ]; while ( index > i ) { ++i; }
Assert( i < nFullData ); pFullData[ i ] = fData[ j ]; }
return nIndexData; }
return 0; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t > void CDmeMesh::AddDelta( const CDmeVertexDeltaData *pDelta, T_t *pFullData, int nFullData, FieldIndex_t fieldIndex, float weight, const CDmeSingleIndexedComponent *pMask ) { if ( fieldIndex >= 0 ) { CDmrArrayConst< T_t > fDataArray( pDelta->GetVertexData( fieldIndex ) ); const CUtlVector< T_t > &fData( fDataArray.Get() ); const CUtlVector< int > &fIndexData( pDelta->GetVertexIndexData( fieldIndex ) ); const int nIndexData( fIndexData.Count() );
T_t t;
Assert( nIndexData <= nFullData );
int index;
int i( 0 );
if ( pMask ) { float cWeight;
for ( int j( 0 ); j < nIndexData; ++j ) { index = fIndexData[ j ];
if ( !pMask->GetWeight( index, cWeight ) ) continue;
while ( index > i ) { ++i; }
Assert( i < nFullData );
t = fData[ j ]; t *= ( weight * cWeight ); pFullData[ i ] += t; } } else { for ( int j( 0 ); j < nIndexData; ++j ) { index = fIndexData[ j ]; while ( index > i ) { ++i; }
Assert( i < nFullData ); t = fData[ j ]; t *= weight; pFullData[ i ] += t; } } } }
template void CDmeMesh::AddDelta< float >( const CDmeVertexDeltaData *, float *, int, FieldIndex_t, float, const CDmeSingleIndexedComponent * ); template void CDmeMesh::AddDelta< Vector2D >( const CDmeVertexDeltaData *, Vector2D *, int, FieldIndex_t, float, const CDmeSingleIndexedComponent * ); template void CDmeMesh::AddDelta< Vector >( const CDmeVertexDeltaData *, Vector *, int, FieldIndex_t, float, const CDmeSingleIndexedComponent * );
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t > void CDmeMesh::AddDelta( const CDmeVertexDeltaData *pDelta, T_t *pFullData, int nFullData, CDmeVertexData::StandardFields_t standardField, float weight, const CDmeSingleIndexedComponent *pMask ) { const FieldIndex_t fIndex( pDelta->FindFieldIndex( standardField ) ); AddDelta( pDelta, pFullData, nFullData, fIndex, weight, pMask ); }
template void CDmeMesh::AddDelta< float >( const CDmeVertexDeltaData *, float *, int, CDmeVertexData::StandardFields_t, float, const CDmeSingleIndexedComponent * ); template void CDmeMesh::AddDelta< Vector2D >( const CDmeVertexDeltaData *, Vector2D *, int, CDmeVertexData::StandardFields_t, float, const CDmeSingleIndexedComponent * ); template void CDmeMesh::AddDelta< Vector >( const CDmeVertexDeltaData *, Vector *, int, CDmeVertexData::StandardFields_t, float, const CDmeSingleIndexedComponent * );
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::ComputeAllCorrectedPositionsFromActualPositions() { const CDmeVertexData *pBase = GetBindBaseState(); if ( !pBase ) return;
CUtlVector< DeltaComputation_t > deltaList; ComputeDependentDeltaStateList( deltaList );
const int nDeltas( deltaList.Count() );
const int nPositions( pBase->GetPositionData().Count() );
Vector *pPositions( reinterpret_cast< Vector * >( alloca( nPositions * sizeof( Vector ) ) ) ); int *pIndices( reinterpret_cast< int * >( alloca( nPositions * sizeof( int ) ) ) );
int pCount;
for ( int i = 0; i < nDeltas; ++i ) { const DeltaComputation_t &deltaComputation( deltaList[ i ] ); CDmeVertexDeltaData *pDelta( m_DeltaStates[ deltaComputation.m_nDeltaIndex ] ); if ( !pDelta->GetValue< bool >( "corrected" ) ) { const FieldIndex_t pIndex( pDelta->FindFieldIndex( CDmeVertexDeltaData::FIELD_POSITION ) ); if ( pIndex < 0 ) continue;
GenerateCompleteDataForDelta( pDelta, pPositions, nPositions, CDmeVertexData::FIELD_POSITION );
const CUtlVector< int > &dependentDeltas( deltaComputation.m_DependentDeltas ); const int nDependentDeltas( dependentDeltas.Count() ); for ( int j( 0 ); j < nDependentDeltas; ++j ) { const CDmeVertexDeltaData *pDependentDelta( m_DeltaStates[ dependentDeltas[ j ] ] ); const CUtlVector< Vector > &dPositions( pDependentDelta->GetPositionData() ); const CUtlVector<int> &dIndices( pDependentDelta->GetVertexIndexData( CDmeVertexData::FIELD_POSITION ) ); Assert( dPositions.Count() == dIndices.Count() ); const int nIndices( dIndices.Count() );
int index;
int k( 0 ); for ( int l( 0 ); l < nIndices; ++l ) { index = dIndices[ l ]; while ( index > k ) { ++k; }
Assert( k < nPositions ); pPositions[ k ] -= dPositions[ l ]; } }
pCount = 0; for ( int j( 0 ); j < nPositions; ++j ) { const Vector &v( pPositions[ j ] ); // Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v.x ) >= ( 1 / 4096.0f ) || fabs( v.y ) >= ( 1 / 4096.0f ) || fabs( v.z ) >= ( 1 / 4096.0f ) ) { pPositions[ pCount ] = v; pIndices[ pCount ] = j; ++pCount; } }
pDelta->RemoveAllVertexData( pIndex );
if ( pCount ) { pDelta->AddVertexData( pIndex, pCount ); pDelta->SetVertexData( pIndex, 0, pCount, AT_VECTOR3, pPositions ); pDelta->SetVertexIndices( pIndex, 0, pCount, pIndices ); } pDelta->SetValue( "corrected", true ); } } }
//-----------------------------------------------------------------------------
// There's no guarantee that fields are added in any order, nor that only
// standard fields exist...
//-----------------------------------------------------------------------------
template < class T_t > void CDmeMesh::AddCorrectedDelta( CDmrArray< T_t > &baseDataArray, const CUtlVector< int > &baseIndices, const DeltaComputation_t &deltaComputation, const char *pFieldName, float weight, const CDmeSingleIndexedComponent *pMask ) { const CUtlVector< T_t > &baseData( baseDataArray.Get() ); const int nData( baseData.Count() ); T_t *pData( reinterpret_cast< T_t * >( alloca( nData * sizeof( T_t ) ) ) ); Q_memcpy( pData, baseData.Base(), nData * sizeof( T_t ) );
CDmeVertexDeltaData *pDelta( GetDeltaState( deltaComputation.m_nDeltaIndex ) );
const int deltaFieldIndex( pDelta->FindFieldIndex( pFieldName ) ); if ( deltaFieldIndex < 0 ) return;
AddDelta( pDelta, pData, nData, deltaFieldIndex, weight, pMask );
const CUtlVector< int > &depDeltas( deltaComputation.m_DependentDeltas ); const int nDepDeltas( depDeltas.Count() ); for ( int j( 0 ); j < nDepDeltas; ++j ) { pDelta = GetDeltaState( depDeltas[ j ] );
int depFieldIndex = pDelta->FindFieldIndex( pFieldName ); if ( depFieldIndex < 0 ) continue;
AddDelta( pDelta, pData, nData, depFieldIndex, weight, pMask ); }
baseDataArray.CopyArray( pData, nData ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t > void CDmeMesh::AddCorrectedDelta( CUtlVector< T_t > &baseData, const CUtlVector< int > &baseIndices, const DeltaComputation_t &deltaComputation, const char *pFieldName, float weight, const CDmeSingleIndexedComponent *pMask ) { const int nData( baseData.Count() );
CDmeVertexDeltaData *pDelta( GetDeltaState( deltaComputation.m_nDeltaIndex ) );
const int deltaFieldIndex( pDelta->FindFieldIndex( pFieldName ) ); if ( deltaFieldIndex < 0 ) return;
AddDelta( pDelta, baseData.Base(), nData, deltaFieldIndex, weight, pMask );
const CUtlVector< int > &depDeltas( deltaComputation.m_DependentDeltas ); const int nDepDeltas( depDeltas.Count() ); for ( int j( 0 ); j < nDepDeltas; ++j ) { pDelta = GetDeltaState( depDeltas[ j ] );
int depFieldIndex = pDelta->FindFieldIndex( pFieldName ); if ( depFieldIndex < 0 ) continue;
AddDelta( pDelta, baseData.Base(), nData, depFieldIndex, weight, pMask ); } }
//-----------------------------------------------------------------------------
// There's no guarantee that fields are added in any order, nor that only
// standard fields exist...
//-----------------------------------------------------------------------------
template < class T_t > void CDmeMesh::AddRawDelta( CDmeVertexDeltaData *pDelta, CDmrArray< T_t > &baseDataArray, FieldIndex_t nDeltaFieldIndex, float weight, const CDmeSingleIndexedComponent *pMask ) { if ( !pDelta || nDeltaFieldIndex < 0 ) return;
const CUtlVector< T_t > &baseData( baseDataArray.Get() ); const int nData( baseData.Count() ); T_t *pData( reinterpret_cast< T_t * >( alloca( nData * sizeof( T_t ) ) ) ); Q_memcpy( pData, baseData.Base(), nData * sizeof( T_t ) );
AddDelta( pDelta, pData, nData, nDeltaFieldIndex, weight, pMask );
baseDataArray.CopyArray( pData, nData ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t > void CDmeMesh::AddRawDelta( CDmeVertexDeltaData *pDelta, CUtlVector< T_t > &baseData, FieldIndex_t nDeltaFieldIndex, float weight, const CDmeSingleIndexedComponent *pMask ) { if ( !pDelta || nDeltaFieldIndex < 0 ) return;
const int nData( baseData.Count() );
AddDelta( pDelta, baseData.Base(), nData, nDeltaFieldIndex, weight, pMask ); }
//-----------------------------------------------------------------------------
// Sets the specified base state to the specified delta
// If no delta is specified then the current state is copied from the bind state
// If no base state is specified then the current base state is used
// The specified base state or the current base state cannot be the bind state
//-----------------------------------------------------------------------------
bool CDmeMesh::SetBaseStateToDelta( const CDmeVertexDeltaData *pDelta, CDmeVertexData *pPassedBase /* = NULL */ ) { CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState(); const CDmeVertexData *pBind = GetBindBaseState();
if ( !pBase || !pBind || pBase == pBind ) return false;
pBind->CopyTo( pBase );
if ( !pDelta ) return true;
// This should be cached and recomputed only when states are added
CUtlVector< DeltaComputation_t > compList; ComputeDependentDeltaStateList( compList );
const int nDeltas( compList.Count() ); for ( int i = 0; i < nDeltas; ++i ) { if ( pDelta != GetDeltaState( compList[ i ].m_nDeltaIndex ) ) continue;
const int nBaseField( pBase->FieldCount() ); const int nDeltaField( pDelta->FieldCount() );
for ( int j( 0 ); j < nBaseField; ++j ) { const CUtlString &baseFieldName( pBase->FieldName( j ) );
for ( int k( 0 ); k < nDeltaField; ++k ) { const CUtlString &deltaFieldName( pDelta->FieldName( k ) );
if ( baseFieldName != deltaFieldName ) continue;
const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( baseFieldName ) ); const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) ); if ( baseFieldIndex < 0 || deltaFieldIndex < 0 ) break;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) ); const CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pBaseData->GetType() != pDeltaData->GetType() ) break;
const CUtlVector< int > &baseIndices( pBase->GetVertexIndexData( baseFieldIndex ) );
switch ( pBaseData->GetType() ) { case AT_FLOAT_ARRAY: AddCorrectedDelta( CDmrArray< float >( pBaseData ), baseIndices, compList[ i ], baseFieldName ); break; case AT_COLOR_ARRAY: AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName ); break; case AT_VECTOR2_ARRAY: AddCorrectedDelta( CDmrArray< Vector2D >( pBaseData ), baseIndices, compList[ i ], baseFieldName ); break; case AT_VECTOR3_ARRAY: AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName ); break; default: break; } break; } } }
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SelectVerticesFromDelta( CDmeVertexDeltaData *pDelta, CDmeSingleIndexedComponent *pSelection ) { if ( !pSelection ) return;
pSelection->Clear();
if ( !pDelta ) return;
const FieldIndex_t pField( pDelta->FindFieldIndex( CDmeVertexData::FIELD_POSITION ) ); if ( pField < 0 ) return;
const CUtlVector< int > &pIndicies( pDelta->GetVertexIndexData( CDmeVertexData::FIELD_POSITION ) );
pSelection->AddComponents( pIndicies ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SelectAllVertices( CDmeSingleIndexedComponent *pSelection, CDmeVertexData *pPassedBase /* = NULL */ ) { const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase ) { pBase = GetBindBaseState(); }
if ( !pBase ) return;
if ( !pSelection ) return;
pSelection->Clear();
const FieldIndex_t pField( pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION ) ); if ( pField < 0 ) return;
CUtlVector< int > indices; indices.EnsureCount( CDmrArrayConst< Vector >( pBase->GetVertexData( pField ) ).Count() ); const int nIndices = indices.Count(); for ( int i = 0; i < nIndices; ++i ) { indices[ i ] = i; }
pSelection->AddComponents( indices ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::SelectHalfVertices( SelectHalfType_t selectHalfType, CDmeSingleIndexedComponent *pSelection, CDmeVertexData *pPassedBase /* = NULL */ ) { const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBase ) { pBase = GetBindBaseState(); }
if ( !pBase ) return;
if ( !pSelection ) return;
pSelection->Clear();
const FieldIndex_t pField( pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION ) ); if ( pField < 0 ) return;
const CDmrArrayConst< Vector > pos( pBase->GetVertexData( pField ) ); const int nPosCount = pos.Count();
CUtlVector< int > indices; indices.EnsureCapacity( nPosCount );
if ( selectHalfType == kRight ) { for ( int i = 0; i < nPosCount; ++i ) { if ( pos[ i ].x <= 0.0f ) { indices.AddToTail( i ); } } } else { for ( int i = 0; i < nPosCount; ++i ) { if ( pos[ i ].x >= 0.0f ) { indices.AddToTail( i ); } } }
pSelection->AddComponents( indices ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::CreateDeltaFieldFromBaseField( CDmeVertexData::StandardFields_t nStandardFieldIndex, const CDmrArrayConst< float > &baseArray, const CDmrArrayConst< float > &bindArray, CDmeVertexDeltaData *pDelta ) { const int nData( baseArray.Count() ); if ( nData != bindArray.Count() ) return false;
const float *pBaseData( baseArray.Get().Base() ); const float *pBindData( bindArray.Get().Base() );
float *pData( reinterpret_cast< float * >( nData * sizeof( float ) ) ); Q_memcpy( pData, pBaseData, nData * sizeof( float ) ); int *pIndices( reinterpret_cast< int * >( nData * sizeof( int ) ) );
float v;
int nDeltaCount( 0 ); for ( int i = 0; i < nData; ++i ) { v = pBaseData[ i ] - pBindData[ i ];
// Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v ) >= ( 1 / 4096.0f ) ) { pData[ nDeltaCount ] = v; pIndices[ nDeltaCount ] = i; ++nDeltaCount; } }
if ( nDeltaCount <= 0 ) return true;
FieldIndex_t fieldIndex( pDelta->CreateField( nStandardFieldIndex ) ); if ( fieldIndex < 0 ) return false;
pDelta->AddVertexData( fieldIndex, nDeltaCount ); pDelta->SetVertexData( fieldIndex, 0, nDeltaCount, AT_FLOAT, pData ); pDelta->SetVertexIndices( fieldIndex, 0, nDeltaCount, pIndices );
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::CreateDeltaFieldFromBaseField( CDmeVertexData::StandardFields_t nStandardFieldIndex, const CDmrArrayConst< Vector2D > &baseArray, const CDmrArrayConst< Vector2D > &bindArray, CDmeVertexDeltaData *pDelta ) { const int nData( baseArray.Count() ); if ( nData != bindArray.Count() ) return false;
const Vector2D *pBaseData( baseArray.Get().Base() ); const Vector2D *pBindData( bindArray.Get().Base() );
Vector2D *pData( reinterpret_cast< Vector2D * >( nData * sizeof( Vector2D ) ) ); Q_memcpy( pData, pBaseData, nData * sizeof( Vector2D ) ); int *pIndices( reinterpret_cast< int * >( nData * sizeof( int ) ) );
Vector2D v;
int nDeltaCount( 0 ); for ( int i = 0; i < nData; ++i ) { v = pBaseData[ i ] - pBindData[ i ];
// Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v.x ) >= ( 1 / 4096.0f ) || fabs( v.y ) >= ( 1 / 4096.0f ) ) { pData[ nDeltaCount ] = v; pIndices[ nDeltaCount ] = i; ++nDeltaCount; } }
if ( nDeltaCount <= 0 ) return true;
FieldIndex_t fieldIndex( pDelta->CreateField( nStandardFieldIndex ) ); if ( fieldIndex < 0 ) return false;
pDelta->AddVertexData( fieldIndex, nDeltaCount ); pDelta->SetVertexData( fieldIndex, 0, nDeltaCount, AT_VECTOR2, pData ); pDelta->SetVertexIndices( fieldIndex, 0, nDeltaCount, pIndices );
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
bool CDmeMesh::CreateDeltaFieldFromBaseField( CDmeVertexData::StandardFields_t nStandardFieldIndex, const CDmrArrayConst< Vector > &baseArray, const CDmrArrayConst< Vector > &bindArray, CDmeVertexDeltaData *pDelta ) { const int nData( baseArray.Count() ); if ( nData != bindArray.Count() ) return false;
const Vector *pBaseData( baseArray.Get().Base() ); const Vector *pBindData( bindArray.Get().Base() );
Vector *pData( reinterpret_cast< Vector * >( alloca( nData * sizeof( Vector ) ) ) ); Q_memcpy( pData, pBaseData, nData * sizeof( Vector ) ); int *pIndices( reinterpret_cast< int * >( alloca( nData * sizeof( int ) ) ) );
Vector v;
int nDeltaCount( 0 ); for ( int i = 0; i < nData; ++i ) { v = pBaseData[ i ] - pBindData[ i ];
// Kind of a magic number but it's because of 16 bit compression of the delta values
if ( fabs( v.x ) >= ( 1 / 4096.0f ) || fabs( v.y ) >= ( 1 / 4096.0f ) || fabs( v.z ) >= ( 1 / 4096.0f ) ) { pData[ nDeltaCount ] = v; pIndices[ nDeltaCount ] = i; ++nDeltaCount; } }
if ( nDeltaCount <= 0 ) return true;
FieldIndex_t fieldIndex( pDelta->CreateField( nStandardFieldIndex ) ); if ( fieldIndex < 0 ) return false;
pDelta->AddVertexData( fieldIndex, nDeltaCount ); pDelta->SetVertexData( fieldIndex, 0, nDeltaCount, AT_VECTOR3, pData ); pDelta->SetVertexIndices( fieldIndex, 0, nDeltaCount, pIndices );
return true; }
//-----------------------------------------------------------------------------
// Creates a delta from the difference between the bind base state and the
// specified base state. If pBaseName is NULL the current base state is used
//-----------------------------------------------------------------------------
CDmeVertexDeltaData *CDmeMesh::ModifyOrCreateDeltaStateFromBaseState( const char *pDeltaName, CDmeVertexData *pPassedBase /* = NULL */, bool absolute /* = false */ ) { // Find All States Which Have This Guy
CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState(); if ( !pBase ) return NULL;
CDmeVertexData *pBind = GetBindBaseState(); if ( !pBind ) return NULL;
// It's ok if pBase == pBind
CUtlVector< int > superiorDeltaStates; ComputeSuperiorDeltaStateList( pDeltaName, superiorDeltaStates ); const int nSuperior = superiorDeltaStates.Count();
if ( nSuperior > 0 ) { UniqueId_t id; char idBuf[ MAX_PATH ];
CDmeVertexData *pTmpBaseState = NULL; do { CreateUniqueId( &id ); UniqueIdToString( id, idBuf, sizeof( idBuf ) ); pTmpBaseState = FindBaseState( idBuf ); } while( pTmpBaseState != NULL );
pTmpBaseState = FindOrCreateBaseState( idBuf ); if ( !pTmpBaseState ) return NULL;
for ( int i = 0; i < nSuperior; ++i ) { Assert( superiorDeltaStates[ i ] < DeltaStateCount() ); CDmeVertexDeltaData *pSuperiorDelta = GetDeltaState( superiorDeltaStates[ i ] ); if ( pSuperiorDelta->GetValue< bool >( "corrected" ) ) { // Only fiddle with states that are "corrected"
if ( !SetBaseStateToDelta( pSuperiorDelta, pTmpBaseState ) ) return NULL;
if ( !ModifyOrCreateDeltaStateFromBaseState( CUtlString( pSuperiorDelta->GetName() ), pTmpBaseState, true ) ) return NULL; } }
DeleteBaseState( idBuf ); }
ResetDeltaState( pDeltaName ); CDmeVertexDeltaData *pDelta = FindOrCreateDeltaState( pDeltaName ); if ( !pDelta ) return NULL;
CDmeVertexData::StandardFields_t deltaFields[] = { CDmeVertexData::FIELD_POSITION, CDmeVertexData::FIELD_NORMAL, CDmeVertexData::FIELD_WRINKLE };
for ( int i = 0; i < sizeof( deltaFields ) / sizeof( deltaFields[ 0 ] ); ++i ) { CDmeVertexData::StandardFields_t standardFieldIndex( deltaFields[ i ] ); const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( standardFieldIndex ) ); const FieldIndex_t bindFieldIndex( pBind->FindFieldIndex( standardFieldIndex ) );
if ( baseFieldIndex < 0 || bindFieldIndex < 0 ) continue;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) ); CDmAttribute *pBindData( pBind->GetVertexData( bindFieldIndex ) );
if ( pBaseData->GetType() != pBindData->GetType() ) continue;
switch ( pBaseData->GetType() ) { case AT_FLOAT_ARRAY: CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< float >( pBaseData ), CDmrArrayConst< float >( pBindData ), pDelta ); break; case AT_COLOR_ARRAY: CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< Vector >( pBaseData ), CDmrArrayConst< Vector >( pBindData ), pDelta ); break; case AT_VECTOR2_ARRAY: CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< Vector2D >( pBaseData ), CDmrArrayConst< Vector2D >( pBindData ), pDelta ); break; case AT_VECTOR3_ARRAY: CreateDeltaFieldFromBaseField( standardFieldIndex, CDmrArrayConst< Vector >( pBaseData ), CDmrArrayConst< Vector >( pBindData ), pDelta ); break; default: break; } }
if ( !strchr( pDelta->GetName(), '_' ) ) { const static CUtlSymbolLarge symTargets = g_pDataModel->GetSymbol( "targets" ); CDmeCombinationOperator *pCombo( FindReferringElement< CDmeCombinationOperator >( this, symTargets ) ); if ( pCombo ) { pCombo->FindOrCreateControl( pDelta->GetName(), false, true ); } }
if ( !absolute ) { ComputeAllCorrectedPositionsFromActualPositions(); }
return pDelta; }
//-----------------------------------------------------------------------------
// TODO: Uncorrect all superior states and then correct them afterwards
//-----------------------------------------------------------------------------
bool CDmeMesh::DeleteDeltaState( const char *pDeltaName ) { const int nDeltaIndex = FindDeltaStateIndex( pDeltaName ); if ( nDeltaIndex < 0 ) return false;
Assert( m_DeltaStates.Count() == m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ].Count() ); Assert( m_DeltaStates.Count() == m_DeltaStateWeights[ MESH_DELTA_WEIGHT_LAGGED ].Count() ); CDmeVertexDeltaData *pDelta( m_DeltaStates[ nDeltaIndex ] ); if ( !pDelta ) return false;
m_DeltaStates.Remove( nDeltaIndex ); m_DeltaStateWeights[ MESH_DELTA_WEIGHT_NORMAL ].Remove( nDeltaIndex ); m_DeltaStateWeights[ MESH_DELTA_WEIGHT_LAGGED ].Remove( nDeltaIndex ); g_pDataModel->DestroyElement( pDelta->GetHandle() );
const static CUtlSymbolLarge symTargets = g_pDataModel->GetSymbol( "targets" ); CDmeCombinationOperator *pCombo( FindReferringElement< CDmeCombinationOperator >( this, symTargets ) ); if ( pCombo ) { pCombo->Purge(); }
return true; }
//-----------------------------------------------------------------------------
// TODO: Uncorrect all superior states and then correct them afterwards
//-----------------------------------------------------------------------------
bool CDmeMesh::ResetDeltaState( const char *pDeltaName ) { const int nDeltaIndex = FindDeltaStateIndex( pDeltaName ); if ( nDeltaIndex < 0 ) return false;
CDmeVertexDeltaData *pOldDelta = m_DeltaStates[ nDeltaIndex ]; CDmeVertexDeltaData *pNewDelta = CreateElement< CDmeVertexDeltaData >( pOldDelta->GetName(), GetFileId() ); if ( !pNewDelta ) return false;
m_DeltaStates.Set( nDeltaIndex, pNewDelta ); g_pDataModel->DestroyElement( pOldDelta->GetHandle() );
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
class CSelectionHelper { public: class CVert { public: int m_index; int m_count; float m_weight; };
void AddVert( int vIndex, float weight = 1.0f );
int AddToSelection( CDmeSingleIndexedComponent *pSelection ) const;
int RemoveFromSelection( CDmeSingleIndexedComponent *pSelection, bool bAllowEmpty ) const;
protected: CUtlVector< CVert > m_verts;
int BinarySearch( int component ) const; };
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CSelectionHelper::AddVert( int vIndex, float weight /* = 1.0f */ ) { // Find the vertex, add it if necessary
const int index = BinarySearch( vIndex );
if ( index == m_verts.Count() ) { // New Add to end
CVert &v( m_verts[ m_verts.AddToTail() ] ); v.m_index = vIndex; v.m_count = 1; v.m_weight = weight; } else if ( vIndex == m_verts[ index ].m_index ) { // Existing, increment
CVert &v( m_verts[ index ] ); Assert( v.m_index == vIndex ); v.m_count += 1; v.m_weight += weight; } else { // New insert before index
CVert &v( m_verts[ m_verts.InsertBefore( index ) ] ); v.m_index = vIndex; v.m_count = 1; v.m_weight = weight; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int CSelectionHelper::AddToSelection( CDmeSingleIndexedComponent *pSelection ) const { const int nVerts = m_verts.Count();
for ( int i = 0; i < nVerts; ++i ) { const CVert &v( m_verts[ i ] ); Assert( !pSelection->HasComponent( v.m_index ) ); pSelection->AddComponent( v.m_index, v.m_weight / static_cast< float >( v.m_count ) ); }
return nVerts; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
int CSelectionHelper::RemoveFromSelection( CDmeSingleIndexedComponent *pSelection, bool bAllowEmpty ) const { const int nVerts = m_verts.Count(); int nVertsRemovedCount = 0;
for ( int i = 0; i < nVerts; ++i ) { const CVert &v( m_verts[ i ] ); if ( bAllowEmpty || pSelection->Count() > 1 ) { pSelection->RemoveComponent( v.m_index ); ++nVertsRemovedCount; } }
return nVertsRemovedCount; }
//-----------------------------------------------------------------------------
// Searches for the component in the sorted component list and returns the
// index if it's found or if it's not found, returns the index at which it
// should be inserted to maintain the sorted order of the component list
//-----------------------------------------------------------------------------
int CSelectionHelper::BinarySearch( int vIndex ) const { const int nVerts( m_verts.Count() );
int left( 0 ); int right( nVerts - 1 ); int mid;
while ( left <= right ) { mid = ( left + right ) >> 1; // floor( ( left + right ) / 2.0 )
if ( vIndex > m_verts[ mid ].m_index ) { left = mid + 1; } else if ( vIndex < m_verts[ mid ].m_index ) { right = mid - 1; } else { return mid; } }
return left; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::GrowSelection( int nSize, CDmeSingleIndexedComponent *pSelection, CDmMeshComp *pPassedMeshComp ) { if ( nSize <= 0 || !pSelection ) return;
CUtlVector< int > sIndices; CUtlVector< float > sWeights; pSelection->GetComponents( sIndices, sWeights ); const int nVertices = sIndices.Count();
CDmMeshComp *pMeshComp = pPassedMeshComp ? pPassedMeshComp : new CDmMeshComp( this );
CUtlVector< CDmMeshComp::CVert * > neighbours;
CSelectionHelper sHelper;
for ( int i = 0; i < nVertices; ++i ) { const int nNeighbours = pMeshComp->FindNeighbouringVerts( sIndices[ i ], neighbours ); for ( int j = 0; j < nNeighbours; ++j ) { CDmMeshComp::CVert *pNeighbour = neighbours[ j ]; Assert( pNeighbour ); if ( pNeighbour ) { const int vIndex = pNeighbour->PositionIndex(); if ( !pSelection->HasComponent( vIndex ) ) { sHelper.AddVert( vIndex, sWeights[ i ] ); } } } }
if ( sHelper.AddToSelection( pSelection ) > 0 ) { GrowSelection( nSize - 1, pSelection, pMeshComp ); }
if ( pMeshComp != pPassedMeshComp ) { delete pMeshComp; } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::ShrinkSelection( int nSize, CDmeSingleIndexedComponent *pSelection, CDmMeshComp *pPassedMeshComp ) { if ( nSize <= 0 || !pSelection ) return;
CUtlVector< int > sIndices; CUtlVector< float > sWeights; pSelection->GetComponents( sIndices, sWeights ); const int nVertices = sIndices.Count();
CDmMeshComp *pMeshComp = pPassedMeshComp ? pPassedMeshComp : new CDmMeshComp( this );
CUtlVector< CDmMeshComp::CVert * > neighbours;
CSelectionHelper sHelper;
for ( int i = 0; i < nVertices; ++i ) { bool hasSelectedNeighbour = false; bool hasUnselectedNeighbour = false;
const int vIndex = sIndices[ i ]; const int nNeighbours = pMeshComp->FindNeighbouringVerts( vIndex, neighbours ); for ( int j = 0; j < nNeighbours; ++j ) { const int nvIndex = neighbours[ j ]->PositionIndex(); if ( pSelection->HasComponent( nvIndex ) ) { hasSelectedNeighbour = true; if ( hasUnselectedNeighbour ) { sHelper.AddVert( vIndex ); break; } } else { hasUnselectedNeighbour = true; if ( hasSelectedNeighbour ) { sHelper.AddVert( vIndex ); break; } } } }
if ( sHelper.RemoveFromSelection( pSelection, false ) > 0 ) { ShrinkSelection( nSize - 1, pSelection, pMeshComp ); }
if ( pMeshComp != pPassedMeshComp ) { delete pMeshComp; } }
CDmeSingleIndexedComponent *CDmeMesh::FeatherSelection( float falloffDistance, Falloff_t falloffType, Distance_t distanceType, CDmeSingleIndexedComponent *pSelection, CDmMeshComp *pPassedMeshComp ) { switch ( falloffType ) { case SMOOTH: return FeatherSelection< SMOOTH >( falloffDistance, distanceType, pSelection, pPassedMeshComp ); case SPIKE: return FeatherSelection< SPIKE >( falloffDistance, distanceType, pSelection, pPassedMeshComp ); case DOME: return FeatherSelection< DOME >( falloffDistance, distanceType, pSelection, pPassedMeshComp ); default: return FeatherSelection< LINEAR >( falloffDistance, distanceType, pSelection, pPassedMeshComp ); } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < int T > CDmeSingleIndexedComponent *CDmeMesh::FeatherSelection( float fDistance, Distance_t distanceType, CDmeSingleIndexedComponent *pSelection, CDmMeshComp *pPassedMeshComp ) { // TODO: Support feathering inward instead of just outward
if ( fDistance <= 0.0f || !pSelection ) return NULL;
// Make a new CDmeSingleIndexedComponent to do all of the dirty work
CDmeSingleIndexedComponent *pNewSelection = CreateElement< CDmeSingleIndexedComponent >( "feather", pSelection->GetFileId() ); pSelection->CopyAttributesTo( pNewSelection );
CDmMeshComp *pMeshComp = pPassedMeshComp ? pPassedMeshComp : new CDmMeshComp( this ); CDmeVertexData *pBase = pMeshComp->BaseState();
if ( distanceType == DIST_RELATIVE ) { Vector vCenter; float flRadius; GetBoundingSphere( vCenter, flRadius, pBase, pSelection ); fDistance *= flRadius; }
const CUtlVector< Vector > &positions( pBase->GetPositionData() ); const int nPositions = positions.Count();
if ( !pBase ) return NULL;
CUtlVector< int > sIndices;
int insideCount = 0;
CFalloff< T > falloff; do { insideCount = 0; CUtlVector< CDmMeshComp::CVert * > neighbours; CSelectionHelper sHelper;
pNewSelection->GetComponents( sIndices ); int nVertices = sIndices.Count();
for ( int i = 0; i < nVertices; ++i ) { const int nNeighbours = pMeshComp->FindNeighbouringVerts( sIndices[ i ], neighbours );
for ( int j = 0; j < nNeighbours; ++j ) { const int vIndex = neighbours[ j ]->PositionIndex();
if ( pNewSelection->HasComponent( vIndex ) ) continue;
const int closestVert = ClosestSelectedVertex( vIndex, pSelection, pBase ); if ( closestVert < 0 || closestVert >= nPositions ) continue;
const float vDistance = positions[ vIndex ].DistTo( positions[ closestVert ] ); if ( vDistance <= fDistance ) { sHelper.AddVert( vIndex, falloff( vDistance / fDistance ) ); ++insideCount; } } }
sHelper.AddToSelection( pNewSelection );
} while ( insideCount > 0 );
return pNewSelection; }
//-----------------------------------------------------------------------------
// Add the specified delta, scaled by the weight value to the DmeVertexData
// base state specified. Optionally the add can be masked by a specified
// weight map.
//
// If a DmeVertexData is not explicitly specified, the current state of the
// mesh is modified unless it's the bind state. The bind state will never
// be modified even if it is explicitly specified.
//
// Only the delta specified is added. No dependent states are added.
//-----------------------------------------------------------------------------
bool CDmeMesh::AddMaskedDelta( CDmeVertexDeltaData *pDelta, CDmeVertexData *pDst /* = NULL */, float weight /* = 1.0f */, const CDmeSingleIndexedComponent *pMask /* = NULL */ ) { CDmeVertexData *pBase = pDst ? pDst : GetCurrentBaseState();
if ( !pBase || pBase == GetBindBaseState() ) return false;
bool retVal = true;
const int nBaseField( pBase->FieldCount() ); const int nDeltaField( pDelta->FieldCount() );
// Try to add every field of the base state
for ( int j( 0 ); j < nBaseField; ++j ) { const CUtlString &baseFieldName( pBase->FieldName( j ) );
// Find the corresponding field in the delta
for ( int k( 0 ); k < nDeltaField; ++k ) { const CUtlString &deltaFieldName( pDelta->FieldName( k ) );
if ( baseFieldName != deltaFieldName ) continue;
const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( baseFieldName ) ); const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) ); if ( baseFieldIndex < 0 || deltaFieldIndex < 0 ) break;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) ); CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pBaseData->GetType() != pDeltaData->GetType() ) break;
switch ( pBaseData->GetType() ) { case AT_FLOAT_ARRAY: AddRawDelta( pDelta, CDmrArray< float >( pBaseData ), baseFieldIndex, weight, pMask ); break; case AT_COLOR_ARRAY: // TODO: Color is missing some algebraic operators
// AddRawDelta( pDelta, CDmrArray< Color >( pBaseData ), baseFieldIndex, weight, pMask );
break; case AT_VECTOR2_ARRAY: AddRawDelta( pDelta, CDmrArray< Vector2D >( pBaseData ), baseFieldIndex, weight, pMask ); break; case AT_VECTOR3_ARRAY: AddRawDelta( pDelta, CDmrArray< Vector >( pBaseData ), baseFieldIndex, weight, pMask ); break; default: break; } break; } }
return retVal; }
//-----------------------------------------------------------------------------
// Add the specified delta, scaled by the weight value to the DmeVertexData
// base state specified. Optionally the add can be masked by a specified
// weight map.
//
// If a DmeVertexData is not explicitly specified, the current state of the
// mesh is modified unless it's the bind state. The bind state will never
// be modified even if it is explicitly specified.
//
// Only the delta specified is added. No dependent states are added.
//-----------------------------------------------------------------------------
bool CDmeMesh::AddCorrectedMaskedDelta( CDmeVertexDeltaData *pDelta, CDmeVertexData *pDst /* = NULL */, float weight /* = 1.0f */, const CDmeSingleIndexedComponent *pMask /* = NULL */ ) { CDmeVertexData *pBase = pDst ? pDst : GetCurrentBaseState();
if ( !pBase || pBase == GetBindBaseState() ) return false;
bool retVal = true;
const int nBaseField( pBase->FieldCount() ); const int nDeltaField( pDelta->FieldCount() );
// This should be cached and recomputed only when states are added
CUtlVector< DeltaComputation_t > compList; ComputeDependentDeltaStateList( compList );
const int nDeltas( compList.Count() ); for ( int i = 0; i < nDeltas; ++i ) { if ( pDelta != GetDeltaState( compList[ i ].m_nDeltaIndex ) ) continue;
// Try to add every field of the base state
for ( int j( 0 ); j < nBaseField; ++j ) { const CUtlString &baseFieldName( pBase->FieldName( j ) );
// Find the corresponding field in the delta
for ( int k( 0 ); k < nDeltaField; ++k ) { const CUtlString &deltaFieldName( pDelta->FieldName( k ) );
if ( baseFieldName != deltaFieldName ) continue;
const FieldIndex_t baseFieldIndex( pBase->FindFieldIndex( baseFieldName ) ); const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) ); if ( baseFieldIndex < 0 || deltaFieldIndex < 0 ) break;
CDmAttribute *pBaseData( pBase->GetVertexData( baseFieldIndex ) ); CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pBaseData->GetType() != pDeltaData->GetType() ) break;
const CUtlVector< int > &baseIndices( pBase->GetVertexIndexData( baseFieldIndex ) );
switch ( pBaseData->GetType() ) { case AT_FLOAT_ARRAY: AddCorrectedDelta( CDmrArray< float >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask ); break; case AT_COLOR_ARRAY: AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask ); break; case AT_VECTOR2_ARRAY: AddCorrectedDelta( CDmrArray< Vector2D >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask ); break; case AT_VECTOR3_ARRAY: AddCorrectedDelta( CDmrArray< Vector >( pBaseData ), baseIndices, compList[ i ], baseFieldName, weight, pMask ); break; default: break; } break; } } }
return retVal; }
//-----------------------------------------------------------------------------
// Interpolates between two arrays of values and stores the result in a
// CDmrArray.
//
// result = ( ( 1 - weight ) * a ) + ( weight * b )
//
//-----------------------------------------------------------------------------
template< class T_t > bool CDmeMesh::InterpMaskedData( CDmrArray< T_t > &aData, const CUtlVector< T_t > &bData, float weight, const CDmeSingleIndexedComponent *pMask ) const { const int nDst = aData.Count();
if ( bData.Count() != nDst ) return false;
// The wacky way of writing these expression is because Vector4D is missing operators
// And this probably works better because of fewer temporaries
T_t a; T_t b;
if ( pMask ) { // With a weight mask
float vWeight; for ( int i = 0; i < nDst; ++i ) { if ( pMask->GetWeight( i, vWeight ) ) { vWeight *= weight; // Specifically not clamping
a = aData.Get( i ); a *= ( 1.0f - vWeight ); b = bData[ i ]; b *= vWeight; b += a; aData.Set( i, b ); } } } else { // Without a weight mask
const float oneMinusWeight( 1.0f - weight ); for ( int i = 0; i < nDst; ++i ) { a = aData.Get( i ); a *= oneMinusWeight; b = bData[ i ]; b *= weight; b += a; aData.Set( i, b ); } }
return true; }
//-----------------------------------------------------------------------------
// Interpolates between two CDmeVertexData's
//
// paData = ( ( 1 - weight ) * a ) + ( weight * b )
//-----------------------------------------------------------------------------
bool CDmeMesh::InterpMaskedData( CDmeVertexData *paData, const CDmeVertexData *pbData, float weight, const CDmeSingleIndexedComponent *pMask ) const { if ( !paData || !pbData || paData == pbData ) return false;
const int naField = paData->FieldCount(); const int nbField = pbData->FieldCount();
for ( int i = 0; i < naField; ++i ) { const CUtlString &aFieldName( paData->FieldName( i ) );
for ( int j = 0; j < nbField; ++j ) { const CUtlString &bFieldName( pbData->FieldName( j ) ); if ( aFieldName != bFieldName ) continue;
const FieldIndex_t aFieldIndex( paData->FindFieldIndex( aFieldName ) ); const FieldIndex_t bFieldIndex( pbData->FindFieldIndex( bFieldName ) );
if ( aFieldIndex < 0 || bFieldIndex < 0 ) break;
CDmAttribute *paAttr( paData->GetVertexData( aFieldIndex ) ); const CDmAttribute *pbAttr( pbData->GetVertexData( bFieldIndex ) );
if ( paAttr->GetType() != pbAttr->GetType() ) break;
if ( paData->GetVertexIndexData( aFieldIndex ).Count() != pbData->GetVertexIndexData( bFieldIndex ).Count() ) break;
switch ( paAttr->GetType() ) { case AT_FLOAT_ARRAY: InterpMaskedData( CDmrArray< float >( paAttr ), CDmrArrayConst< float >( pbAttr ).Get(), weight, pMask ); break; case AT_COLOR_ARRAY: InterpMaskedData( CDmrArray< Vector4D >( paAttr ), CDmrArrayConst< Vector4D >( pbAttr ).Get(), weight, pMask ); break; case AT_VECTOR2_ARRAY: InterpMaskedData( CDmrArray< Vector2D >( paAttr ), CDmrArrayConst< Vector2D >( pbAttr ).Get(), weight, pMask ); break; case AT_VECTOR3_ARRAY: InterpMaskedData( CDmrArray< Vector >( paAttr ), CDmrArrayConst< Vector >( pbAttr ).Get(), weight, pMask ); break; default: break; } break; } }
return true; }
//-----------------------------------------------------------------------------
// Interpolates between the specified VertexData and the specified Delta
// If pBase is NULL it will become the current state
// If pDelta is NULL then the state to interpolate to will be the bind state
//-----------------------------------------------------------------------------
bool CDmeMesh::InterpMaskedDelta( CDmeVertexDeltaData *pDelta, CDmeVertexData *pDst /* = NULL */, float weight /*= 1.0f */, const CDmeSingleIndexedComponent *pMask /*= NULL */ ) { CDmeVertexData *pDstBase = pDst ? pDst : GetCurrentBaseState(); CDmeVertexData *pBind = GetBindBaseState();
if ( !pDstBase || !pBind || pDstBase == pBind ) return false;
if ( pDelta == NULL ) { // Interpolate between specified state and bind state
return InterpMaskedData( pDstBase, pBind, weight, pMask ); }
// This should be cached and recomputed only when states are added
CUtlVector< DeltaComputation_t > compList; ComputeDependentDeltaStateList( compList );
bool retVal = false;
const int nDeltas( compList.Count() ); for ( int i = 0; i < nDeltas; ++i ) { if ( pDelta != GetDeltaState( compList[ i ].m_nDeltaIndex ) ) continue;
retVal = true;
const int nBaseField( pDstBase->FieldCount() ); const int nBindField( pBind->FieldCount() ); const int nDeltaField( pDelta->FieldCount() );
CUtlVector< float > floatData; CUtlVector< Vector2D > vector2DData; CUtlVector< Vector > vectorData; CUtlVector< Vector4D > vector4DData;
for ( int j( 0 ); j < nBaseField; ++j ) { const CUtlString &baseFieldName( pDstBase->FieldName( j ) );
for ( int k = 0; k < nBindField; ++k ) { const CUtlString &bindFieldName( pBind->FieldName( k ) ); if ( baseFieldName != bindFieldName ) continue;
for ( int l = 0; l < nDeltaField; ++l ) { const CUtlString &deltaFieldName( pDelta->FieldName( l ) ); if ( bindFieldName != deltaFieldName ) continue;
const FieldIndex_t baseFieldIndex( pDstBase->FindFieldIndex( baseFieldName ) ); const FieldIndex_t bindFieldIndex( pBind->FindFieldIndex( bindFieldName ) ); const FieldIndex_t deltaFieldIndex( pDelta->FindFieldIndex( deltaFieldName ) );
if ( baseFieldIndex < 0 || bindFieldIndex < 0 || deltaFieldIndex < 0 ) break;
CDmAttribute *pDstBaseData( pDstBase->GetVertexData( baseFieldIndex ) ); CDmAttribute *pBindData( pBind->GetVertexData( bindFieldIndex ) ); CDmAttribute *pDeltaData( pDelta->GetVertexData( deltaFieldIndex ) );
if ( pDstBaseData->GetType() != pBindData->GetType() || pBindData->GetType() != pDeltaData->GetType() ) break;
const CUtlVector< int > &bindIndices( pBind->GetVertexIndexData( bindFieldIndex ) );
switch ( pDstBaseData->GetType() ) { case AT_FLOAT_ARRAY: floatData = CDmrArrayConst< float >( pBindData ).Get(); AddCorrectedDelta( floatData, bindIndices, compList[ i ], baseFieldName ); InterpMaskedData( CDmrArray< float >( pDstBaseData ), floatData, weight, pMask ); break; case AT_COLOR_ARRAY: vector4DData = CDmrArrayConst< Vector4D >( pBindData ).Get(); AddCorrectedDelta( vector4DData, bindIndices, compList[ i ], baseFieldName ); InterpMaskedData( CDmrArray< Vector4D >( pDstBaseData ), vector4DData, weight, pMask ); break; case AT_VECTOR2_ARRAY: vector2DData = CDmrArrayConst< Vector2D >( pBindData ).Get(); AddCorrectedDelta( vector2DData, bindIndices, compList[ i ], baseFieldName ); InterpMaskedData( CDmrArray< Vector2D >( pDstBaseData ), vector2DData, weight, pMask ); break; case AT_VECTOR3_ARRAY: vectorData = CDmrArrayConst< Vector >( pBindData ).Get(); AddCorrectedDelta( vectorData, bindIndices, compList[ i ], baseFieldName ); InterpMaskedData( CDmrArray< Vector >( pDstBaseData ), vectorData, weight, pMask ); break; default: break; } break; } } } }
return retVal; }
//-----------------------------------------------------------------------------
// Returns the index of the closest selected vertex in the mesh to vIndex
// -1 on failure
//-----------------------------------------------------------------------------
int CDmeMesh::ClosestSelectedVertex( int vIndex, CDmeSingleIndexedComponent *pSelection, const CDmeVertexData *pPassedBase /* = NULL */ ) const { const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState(); if ( !pBase ) return -1;
const CUtlVector< Vector > &positions( pBase->GetPositionData() );
if ( vIndex >= positions.Count() ) return -1;
const Vector &p( positions[ vIndex ] );
CUtlVector< int > verts; pSelection->GetComponents( verts ); const int nVerts = verts.Count();
if ( nVerts <= 0 ) return -1;
float minSqDist = p.DistToSqr( positions[ verts[ 0 ] ] ); float tmpSqDist;
int retVal = verts[ 0 ]; for ( int i = 1; i < nVerts; ++i ) { tmpSqDist = p.DistToSqr( positions[ verts[ i ] ] ); if ( tmpSqDist < minSqDist ) { minSqDist = tmpSqDist; retVal = verts[ i ]; } }
return retVal; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
float CDmeMesh::DistanceBetween( int vIndex0, int vIndex1, const CDmeVertexData *pPassedBase /*= NULL */ ) const { const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState(); if ( !pBase ) return 0.0f;
const CUtlVector< Vector > &positions( pBase->GetPositionData() ); const int nPositions = positions.Count();
if ( vIndex0 >= nPositions || vIndex1 >= nPositions ) return 0.0f;
return positions[ vIndex0 ].DistTo( positions[ vIndex1 ] ); }
//-----------------------------------------------------------------------------
// Sorts DeltaComputation_t's by dimensionality
//-----------------------------------------------------------------------------
int ControlIndexLessFunc( const void *lhs, const void *rhs ) { const int &lVal = *reinterpret_cast< const int * >( lhs ); const int &rVal = *reinterpret_cast< const int * >( rhs ); return lVal - rVal; }
//-----------------------------------------------------------------------------
// This will compute a list of delta states that are superior to the passed
// delta state name (which has the form of <NAME>[_<NAME>]..., i.e. controls
// separated by underscores. The states will be returned in order from
// most superior to least superior. Since the deltas need to be broken down
// by the control deltas, if any control delta doesn't exist it will return false.
//
// A superior delta state is defined as a delta which has this delta as
// a dependent (or inferior) delta.
//
// Given the network of:
//
// A, B, C
// A_B, A_C, B_C
// A_B_C
//
// A_B_C is superior to A, B, A_B, A_C & B_C
// A_B is superior to A, B & C
// A_C is superior to A, B & C
// B_C is superior to A, B & C
//
// Input Output
// ------- --------------------
// A A_B_C, A_B, A_C, B_C
// B A_B_C, A_B, A_C, B_C
// C A_B_C, A_B, A_C, B_C
// A_B A_B_C
// A_C A_B_C
// B_C A_B_C
// A_B_C
//-----------------------------------------------------------------------------
bool CDmeMesh::ComputeSuperiorDeltaStateList( const char *pInferiorDeltaName, CUtlVector< int > &superiorDeltaStates ) { // TODO: Compute this data only when the deltas are added, removed or renamed
CUtlVector< DeltaComputation_t > compList; ComputeDeltaStateComputationList( compList );
// Typically the passed delta won't be in the list yet, but it could be, that's ok
// Treat it like it isn't to be sure.
CUtlVector< int > inferiorIndices; if ( !GetControlDeltaIndices( pInferiorDeltaName, inferiorIndices ) ) return false;
const int nInferiorIndices = inferiorIndices.Count(); qsort( inferiorIndices.Base(), nInferiorIndices, sizeof( int ), ControlIndexLessFunc );
CUtlVector< int > superiorIndices; int nSuperiorIndices; CDmeVertexDeltaData *pSuperiorDelta;
for ( int i = compList.Count() - 1; i >= 0; --i ) { const DeltaComputation_t &deltaComp = compList[ i ];
// For a delta to be superior, it has to have more control inputs than the specified delta
// compList is sorted in order of dimensionality, so safe to abort
if ( nInferiorIndices >= deltaComp.m_nDimensionality ) break;
pSuperiorDelta = GetDeltaState( deltaComp.m_nDeltaIndex ); if ( !pSuperiorDelta ) continue;
if ( !GetControlDeltaIndices( pSuperiorDelta, superiorIndices ) ) continue;
nSuperiorIndices = superiorIndices.Count();
qsort( superiorIndices.Base(), nSuperiorIndices, sizeof( int ), ControlIndexLessFunc );
int nFound = 0; int si = 0; for ( int ii = 0; ii < nInferiorIndices; ++ii ) { const int &iIndex = inferiorIndices[ ii ]; while ( si < nSuperiorIndices && iIndex != superiorIndices[ si ] ) { ++si; }
if ( si < nSuperiorIndices ) { ++nFound; } }
if ( nFound == nInferiorIndices ) { superiorDeltaStates.AddToTail( deltaComp.m_nDeltaIndex ); } }
return true; }
//-----------------------------------------------------------------------------
// Removes the passed base state from the list of base states in the mesh
// if it exists in the list of base states in the mesh, but doesn't delete
// the element itself
//-----------------------------------------------------------------------------
bool CDmeMesh::RemoveBaseState( CDmeVertexData *pBase ) { const int nBaseStates = m_BaseStates.Count(); for ( int i = 0; i < nBaseStates; ++i ) { CDmeVertexData *pTmpBase = m_BaseStates[ i ]; if ( pTmpBase == pBase ) { m_BaseStates.Remove( i ); return true; } }
return false; }
//-----------------------------------------------------------------------------
// Adds an existing element to the list of base states of the mesh if it
// isn't already one of the base states
//-----------------------------------------------------------------------------
CDmeVertexData *CDmeMesh::FindOrAddBaseState( CDmeVertexData *pBase ) { const int nBaseStates = m_BaseStates.Count(); for ( int i = 0; i < nBaseStates; ++i ) { if ( m_BaseStates[ i ] == pBase ) { return pBase; } }
return m_BaseStates[ m_BaseStates.AddToTail( pBase ) ]; }
//-----------------------------------------------------------------------------
// TODO: Current state is insufficient as long as the current state isn't
// created from the current delta weights
//-----------------------------------------------------------------------------
void CDmeMesh::GetBoundingSphere( Vector &c, float &r, CDmeVertexData *pPassedBase /* = NULL */, CDmeSingleIndexedComponent *pPassedSelection /* = NULL */ ) const { c.Zero(); r = 0.0f;
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState(); if ( !pBase ) return;
const FieldIndex_t pIndex = pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); if ( pIndex < 0 ) return;
const CUtlVector< Vector > &pData( pBase->GetPositionData() ); const int nPositions = pData.Count();
if ( pPassedSelection ) { const int nSelectionCount = pPassedSelection->Count(); int nIndex; float fWeight; for ( int i = 0; i < nSelectionCount; ++i ) { pPassedSelection->GetComponent( i, nIndex, fWeight ); c += pData[ nIndex ]; }
c /= static_cast< float >( nSelectionCount );
float sqDist; for ( int i = 0; i < nSelectionCount; ++i ) { for ( int i = 0; i < nPositions; ++i ) { sqDist = c.DistToSqr( pData[ i ] ); if ( sqDist > r ) { r = sqDist; } } } } else { for ( int i = 0; i < nPositions; ++i ) { c += pData[ i ]; }
c /= static_cast< float >( nPositions );
float sqDist; for ( int i = 0; i < nPositions; ++i ) { for ( int i = 0; i < nPositions; ++i ) { sqDist = c.DistToSqr( pData[ i ] ); if ( sqDist > r ) { r = sqDist; } } } }
r = sqrt( r ); }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::GetBoundingBox( Vector &min, Vector &max, CDmeVertexData *pPassedBase /* = NULL */, CDmeSingleIndexedComponent *pPassedSelection /* = NULL */ ) const { min.Zero(); max.Zero();
const CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState(); if ( !pBase ) return;
const FieldIndex_t pIndex = pBase->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); if ( pIndex < 0 ) return;
const CUtlVector< Vector > &pData( pBase->GetPositionData() ); const int nPositions = pData.Count();
if ( pPassedSelection ) { const int nSelectionCount = pPassedSelection->Count();
if ( nSelectionCount > 0 ) { int nIndex; float fWeight;
pPassedSelection->GetComponent( 0, nIndex, fWeight ); min = pData[ nIndex ]; max = min;
for ( int i = 1; i < nSelectionCount; ++i ) { pPassedSelection->GetComponent( i, nIndex, fWeight );
const Vector &p = pData[ nIndex ]; if ( p.x < min.x ) { min.x = p.x; } else if ( p.x > max.x ) { max.x = p.x; }
if ( p.y < min.y ) { min.y = p.y; } else if ( p.y > max.y ) { max.y = p.y; }
if ( p.z < min.z ) { min.z = p.z; } else if ( p.z > max.z ) { max.z = p.z; } } } } else { if ( nPositions > 0 ) { min = pData[ 0 ]; max = min;
for ( int i = 1; i < nPositions; ++i ) { const Vector &p = pData[ i ]; if ( p.x < min.x ) { min.x = p.x; } else if ( p.x > max.x ) { max.x = p.x; }
if ( p.y < min.y ) { min.y = p.y; } else if ( p.y > max.y ) { max.y = p.y; }
if ( p.z < min.z ) { min.z = p.z; } else if ( p.z > max.z ) { max.z = p.z; } } } } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
template < class T_t > bool CDmeMesh::SetBaseDataToDeltas( CDmeVertexData *pBase, CDmeVertexData::StandardFields_t nStandardField, CDmrArrayConst< T_t > &srcData, CDmrArray< T_t > &dstData, bool bDoStereo, bool bDoLag ) { const int nDataCount = dstData.Count(); if ( srcData.Count() != nDataCount ) return false;
// Create the temp buffer for the data
T_t *pData = reinterpret_cast< T_t * >( alloca( nDataCount * sizeof( T_t ) ) );
// Copy the data from the src base state
memcpy( pData, srcData.Base(), nDataCount * sizeof( T_t ) );
const int nCount = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count(); Assert( m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL].Count() == m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED].Count() );
if ( bDoStereo ) { for ( int i = 0; i < nCount; ++i ) { float flLeftWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x; float flRightWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].y; float flLeftWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x; float flRightWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].y; if ( flLeftWeight <= 0.0f && flRightWeight <= 0.0f && ( !bDoLag || ( flLeftWeightLagged <= 0.0f && flRightWeightLagged <= 0.0f ) ) ) continue;
AddStereoVertexDelta< T_t >( pBase, pData, sizeof( T_t ), nStandardField, i, bDoLag ); } } else { for ( int i = 0; i < nCount; ++i ) { float flWeight = m_DeltaStateWeights[MESH_DELTA_WEIGHT_NORMAL][i].x; float flWeightLagged = m_DeltaStateWeights[MESH_DELTA_WEIGHT_LAGGED][i].x; if ( flWeight < 0.0f && ( !bDoLag || flWeightLagged <= 0.0f ) ) continue;
AddVertexDelta< T_t >( pBase, pData, sizeof( T_t ), nStandardField, i, bDoLag ); } }
dstData.SetMultiple( 0, nDataCount, pData );
return true; }
//-----------------------------------------------------------------------------
// Sets the specified based state to the version of the mesh specified by the
// current weighted deltas
// It's ok to modify the bind state... if you know what you're doing
//-----------------------------------------------------------------------------
bool CDmeMesh::SetBaseStateToDeltas( CDmeVertexData *pPassedBase /*= NULL */ ) { CDmeVertexData *pBind = GetBindBaseState(); CDmeVertexData *pBase = pPassedBase ? pPassedBase : GetCurrentBaseState();
if ( !pBind || !pBase ) return false;
CDmeVertexData::StandardFields_t deltaFields[] = { CDmeVertexData::FIELD_POSITION, CDmeVertexData::FIELD_NORMAL, CDmeVertexData::FIELD_WRINKLE };
const bool bDoStereo = ( pBind->FindFieldIndex( CDmeVertexDeltaData::FIELD_BALANCE ) >= 0 );
for ( int i = 0; i < sizeof( deltaFields ) / sizeof( deltaFields[ 0 ] ); ++i ) { const CDmeVertexDeltaData::StandardFields_t nStandardField = deltaFields[ i ]; const int nSrcField = pBind->FindFieldIndex( nStandardField ); const int nDstField = pBase->FindFieldIndex( nStandardField ); if ( nSrcField < 0 || nDstField < 0 ) continue;
const CDmAttribute *pSrcAttr = pBind->GetVertexData( nSrcField ); CDmAttribute *pDstAttr = pBase->GetVertexData( nDstField ); if ( !pSrcAttr || !pDstAttr || pSrcAttr->GetType() != pDstAttr->GetType() ) continue;
switch ( pDstAttr->GetType() ) { case AT_FLOAT_ARRAY: SetBaseDataToDeltas( pBind, nStandardField, CDmrArrayConst< float >( pSrcAttr ), CDmrArray< float >( pDstAttr ), bDoStereo, false ); break; case AT_VECTOR3_ARRAY: SetBaseDataToDeltas( pBind, nStandardField, CDmrArrayConst< Vector >( pSrcAttr ), CDmrArray< Vector >( pDstAttr ), bDoStereo, false ); break; default: Assert( 0 ); break; } }
return true; }
//-----------------------------------------------------------------------------
// Replace all instances of a material with a different material
//-----------------------------------------------------------------------------
void CDmeMesh::ReplaceMaterial( const char *pOldMaterialName, const char *pNewMaterialName ) { char pOldFixedName[MAX_PATH]; char pNewFixedName[MAX_PATH]; char pFixedName[MAX_PATH]; if ( pOldMaterialName ) { Q_FixupPathName( pOldFixedName, sizeof(pOldFixedName), pOldMaterialName ); } Q_FixupPathName( pNewFixedName, sizeof(pNewFixedName), pNewMaterialName ); CDmeMaterial *pReplacementMaterial = NULL;
int nCount = m_FaceSets.Count(); for ( int i = 0; i < nCount; ++i ) { CDmeFaceSet *pFaceSet = m_FaceSets[i]; CDmeMaterial *pMaterial = pFaceSet->GetMaterial(); if ( pOldMaterialName ) { const char *pMaterialName = pMaterial->GetMaterialName(); Q_FixupPathName( pFixedName, sizeof(pFixedName), pMaterialName ); if ( Q_stricmp( pFixedName, pOldFixedName ) ) continue; }
if ( !pReplacementMaterial ) { pReplacementMaterial = CreateElement< CDmeMaterial >( pMaterial->GetName(), pMaterial->GetFileId() ); pReplacementMaterial->SetMaterial( pNewFixedName ); } pFaceSet->SetMaterial( pReplacementMaterial ); } }
//-----------------------------------------------------------------------------
// Reskins the mesh to new bones
// The joint index remap maps an initial bone index to a new bone index
//-----------------------------------------------------------------------------
void CDmeMesh::Reskin( const int *pJointTransformIndexRemap ) { CleanupHWMesh();
int nCount = m_BaseStates.Count(); for ( int i = 0; i < nCount; ++i ) { m_BaseStates[i]->Reskin( pJointTransformIndexRemap ); } }
//-----------------------------------------------------------------------------
// Cleans up delta data that is referring to normals which have been merged out
//-----------------------------------------------------------------------------
static void CollapseRedundantDeltaNormals( CDmeVertexDeltaData *pDmeDelta, const CUtlVector< int > &normalMap ) { if ( !pDmeDelta ) return;
FieldIndex_t nNormalFieldIndex = pDmeDelta->FindFieldIndex( CDmeVertexData::FIELD_NORMAL ); if ( nNormalFieldIndex < 0 ) return; // No normal deltas
const CUtlVector< Vector > &oldNormalData = pDmeDelta->GetNormalData(); const CUtlVector< int > &oldNormalIndices = pDmeDelta->GetVertexIndexData( nNormalFieldIndex );
Assert( oldNormalData.Count() == oldNormalIndices.Count() );
CUtlVector< bool > done; done.SetCount( normalMap.Count() ); Q_memset( done.Base(), 0, done.Count() * sizeof( bool ) );
CUtlVector< Vector > newNormalData; CUtlVector< int > newNormalIndices;
for ( int i = 0; i < oldNormalIndices.Count(); ++i ) { const int nNewIndex = normalMap[ oldNormalIndices[i] ]; if ( nNewIndex < 0 || done[ nNewIndex ] ) continue;
done[ nNewIndex ] = true; newNormalData.AddToTail( oldNormalData[i] ); newNormalIndices.AddToTail( nNewIndex ); }
pDmeDelta->RemoveAllVertexData( nNormalFieldIndex ); nNormalFieldIndex = pDmeDelta->CreateField( CDmeVertexDeltaData::FIELD_NORMAL ); pDmeDelta->AddVertexData( nNormalFieldIndex, newNormalData.Count() ); pDmeDelta->SetVertexData( nNormalFieldIndex, 0, newNormalData.Count(), AT_VECTOR3, newNormalData.Base() ); pDmeDelta->SetVertexIndices( nNormalFieldIndex, 0, newNormalIndices.Count(), newNormalIndices.Base() ); }
//-----------------------------------------------------------------------------
// Remove redundant normals from a DMX Mesh
// Looks at all of the normals around each position vertex and merges normals
// which are numerically similar (within flNormalBlend which by default in
// studiomdl is within 2 degrees) around that vertex
//
// If this would result in more normals being created, then don't do anything
// return false.
//-----------------------------------------------------------------------------
static bool CollapseRedundantBaseNormals( CDmeVertexData *pDmeVertexData, CUtlVector< int > &normalMap, float flNormalBlend ) { if ( !pDmeVertexData ) return false;
FieldIndex_t nPositionFieldIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_POSITION ); FieldIndex_t nNormalFieldIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL ); if ( nPositionFieldIndex < 0 || nNormalFieldIndex < 0 ) return false;
const CUtlVector< Vector > &oldNormalData = pDmeVertexData->GetNormalData(); const CUtlVector< int > &oldNormalIndices = pDmeVertexData->GetVertexIndexData( nNormalFieldIndex );
CUtlVector< Vector > newNormalData; CUtlVector< int > newNormalIndices;
newNormalIndices.SetCount( oldNormalIndices.Count() ); for ( int i = 0; i < newNormalIndices.Count(); ++i ) { newNormalIndices[i] = -1; }
const int nPositionDataCount = pDmeVertexData->GetPositionData().Count(); for ( int i = 0; i < nPositionDataCount; ++i ) { int nNewNormalDataIndex = newNormalData.Count();
const CUtlVector< int > &vertexIndices = pDmeVertexData->FindVertexIndicesFromDataIndex( CDmeVertexData::FIELD_POSITION, i ); for ( int j = 0; j < vertexIndices.Count(); ++j ) { bool bUnique = true; const int nVertexIndex = vertexIndices[j]; const Vector &vNormal = oldNormalData[ oldNormalIndices[ vertexIndices[j] ] ];
for ( int k = nNewNormalDataIndex; k < newNormalData.Count(); ++k ) { if ( DotProduct( vNormal, newNormalData[k] ) > flNormalBlend ) { newNormalIndices[ nVertexIndex ] = k; bUnique = false; break; } }
if ( !bUnique ) continue;
newNormalIndices[ nVertexIndex ] = newNormalData.AddToTail( vNormal ); } }
for ( int i = 0; i < newNormalIndices.Count(); ++i ) { if ( newNormalIndices[i] == -1 ) { newNormalIndices[i] = newNormalData.AddToTail( oldNormalData[ oldNormalIndices[i] ] ); } }
// If it's the same or more don't do anything
if ( newNormalData.Count() >= oldNormalData.Count() ) return false;
normalMap.SetCount( oldNormalData.Count() ); for ( int i = 0; i < normalMap.Count(); ++i ) { normalMap[i] = -1; }
Assert( newNormalIndices.Count() == oldNormalIndices.Count() ); for ( int i = 0; i < oldNormalIndices.Count(); ++i ) { if ( normalMap[ oldNormalIndices[i] ] == -1 ) { normalMap[ oldNormalIndices[i] ] = newNormalIndices[i]; } else { Assert( normalMap[ oldNormalIndices[i] ] == newNormalIndices[i] ); } }
pDmeVertexData->RemoveAllVertexData( nNormalFieldIndex ); nNormalFieldIndex = pDmeVertexData->CreateField( CDmeVertexDeltaData::FIELD_NORMAL ); pDmeVertexData->AddVertexData( nNormalFieldIndex, newNormalData.Count() ); pDmeVertexData->SetVertexData( nNormalFieldIndex, 0, newNormalData.Count(), AT_VECTOR3, newNormalData.Base() ); pDmeVertexData->SetVertexIndices( nNormalFieldIndex, 0, newNormalIndices.Count(), newNormalIndices.Base() );
return true; }
//-----------------------------------------------------------------------------
// Collapse all normals with the same numerical value into the same normal
//-----------------------------------------------------------------------------
static bool CollapseRedundantBaseNormalsAggressive( CDmeVertexData *pDmeVertexData, float flNormalBlend ) { if ( !pDmeVertexData ) return false;
FieldIndex_t nNormalFieldIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL ); if ( nNormalFieldIndex < 0 ) return false;
const CUtlVector< Vector > &oldNormalData = pDmeVertexData->GetNormalData(); const CUtlVector< int > &oldNormalIndices = pDmeVertexData->GetVertexIndexData( nNormalFieldIndex );
CUtlVector< int > normalMap; normalMap.SetCount( oldNormalData.Count() );
CUtlVector< Vector > newNormalData;
for ( int i = 0; i < oldNormalData.Count(); ++i ) { bool bUnique = true; const Vector &vNormal = oldNormalData[ i ];
for ( int j = 0; j < newNormalData.Count(); ++j ) { if ( DotProduct( vNormal, newNormalData[j] ) > flNormalBlend ) { normalMap[ i ] = j; bUnique = false; break; } }
if ( !bUnique ) continue;
normalMap[ i ] = newNormalData.AddToTail( vNormal ); }
// If it's the same then don't do anything.
if ( newNormalData.Count() >= oldNormalData.Count() ) return false;
CUtlVector< int > newNormalIndices; newNormalIndices.SetCount( oldNormalIndices.Count() );
for ( int i = 0; i < oldNormalIndices.Count(); ++i ) { newNormalIndices[i] = normalMap[ oldNormalIndices[i] ]; }
pDmeVertexData->RemoveAllVertexData( nNormalFieldIndex ); nNormalFieldIndex = pDmeVertexData->CreateField( CDmeVertexDeltaData::FIELD_NORMAL ); pDmeVertexData->AddVertexData( nNormalFieldIndex, newNormalData.Count() ); pDmeVertexData->SetVertexData( nNormalFieldIndex, 0, newNormalData.Count(), AT_VECTOR3, newNormalData.Base() ); pDmeVertexData->SetVertexIndices( nNormalFieldIndex, 0, newNormalIndices.Count(), newNormalIndices.Base() );
return true; }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::NormalizeNormals() { Vector vNormal;
for ( int i = 0; i < this->BaseStateCount(); ++i ) { CDmeVertexData *pDmeVertexData = GetBaseState( i ); if ( !pDmeVertexData ) continue;
FieldIndex_t nNormalIndex = pDmeVertexData->FindFieldIndex( CDmeVertexData::FIELD_NORMAL ); if ( nNormalIndex < 0 ) continue;
CDmAttribute *pDmNormalAttr = pDmeVertexData->GetVertexData( nNormalIndex ); if ( !pDmNormalAttr ) continue;
CDmrArray< Vector > normalData( pDmNormalAttr ); for ( int j = 0; j < normalData.Count(); ++j ) { vNormal = normalData.Get( j ); VectorNormalize( vNormal ); normalData.Set( j, vNormal ); } } }
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
void CDmeMesh::CollapseRedundantNormals( float flNormalBlend ) { NormalizeNormals();
CDmeVertexData *pDmeBind = GetBindBaseState(); if ( !pDmeBind ) return;
CUtlVector< int > normalMap;
const int nDeltaStateCount = DeltaStateCount(); if ( nDeltaStateCount <= 0 ) { // No deltas
if ( CollapseRedundantBaseNormalsAggressive( pDmeBind, flNormalBlend ) ) { // Collapse any other states
for ( int i = 0; i < BaseStateCount(); ++i ) { CDmeVertexData *pDmeVertexData = GetBaseState( i ); if ( !pDmeVertexData || pDmeVertexData == pDmeBind ) continue;
CollapseRedundantBaseNormalsAggressive( pDmeVertexData, flNormalBlend ); } } } else { // Collapse the base state
if ( CollapseRedundantBaseNormals( pDmeBind, normalMap, flNormalBlend ) ) { // Collapse any delta states using the baseState normal map
for ( int i = 0; i < DeltaStateCount(); ++i ) { CDmeVertexDeltaData *pDmeDeltaData = GetDeltaState( i ); if ( !pDmeDeltaData ) continue;
CollapseRedundantDeltaNormals( pDmeDeltaData, normalMap ); }
// Collapse any other states
for ( int i = 0; i < BaseStateCount(); ++i ) { CDmeVertexData *pDmeVertexData = GetBaseState( i ); if ( !pDmeVertexData || pDmeVertexData == pDmeBind ) continue;
CollapseRedundantBaseNormals( pDmeVertexData, normalMap, flNormalBlend ); } } } }
|