|
|
/*
* jmorecfg.h * * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 1997-2009 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains additional configuration options that customize the * JPEG software for special applications or support machine-dependent * optimizations. Most users will not need to touch this file. */
/*
* Define BITS_IN_JSAMPLE as either * 8 for 8-bit sample values (the usual setting) * 12 for 12-bit sample values * Only 8 and 12 are legal data precisions for lossy JPEG according to the * JPEG standard, and the IJG code does not support anything else! * We do not support run-time selection of data precision, sorry. */
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
/*
* Maximum number of components (color channels) allowed in JPEG image. * To meet the letter of the JPEG spec, set this to 255. However, darn * few applications need more than 4 channels (maybe 5 for CMYK + alpha * mask). We recommend 10 as a reasonable compromise; use 4 if you are * really short on memory. (Each allowed component costs a hundred or so * bytes of storage, whether actually used in an image or not.) */
#define MAX_COMPONENTS 10 /* maximum number of image components */
/*
* Basic data types. * You may need to change these if you have a machine with unusual data * type sizes; for example, "char" not 8 bits, "short" not 16 bits, * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, * but it had better be at least 16. */
/* Representation of a single sample (pixel element value).
* We frequently allocate large arrays of these, so it's important to keep * them small. But if you have memory to burn and access to char or short * arrays is very slow on your hardware, you might want to change these. */
#if BITS_IN_JSAMPLE == 8
/* JSAMPLE should be the smallest type that will hold the values 0..255.
* You can use a signed char by having GETJSAMPLE mask it with 0xFF. */
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JSAMPLE; #define GETJSAMPLE(value) ((int) (value))
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JSAMPLE; #ifdef CHAR_IS_UNSIGNED
#define GETJSAMPLE(value) ((int) (value))
#else
#define GETJSAMPLE(value) ((int) (value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
#define MAXJSAMPLE 255
#define CENTERJSAMPLE 128
#endif /* BITS_IN_JSAMPLE == 8 */
#if BITS_IN_JSAMPLE == 12
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
* On nearly all machines "short" will do nicely. */
typedef short JSAMPLE; #define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 4095
#define CENTERJSAMPLE 2048
#endif /* BITS_IN_JSAMPLE == 12 */
/* Representation of a DCT frequency coefficient.
* This should be a signed value of at least 16 bits; "short" is usually OK. * Again, we allocate large arrays of these, but you can change to int * if you have memory to burn and "short" is really slow. */
typedef short JCOEF;
/* Compressed datastreams are represented as arrays of JOCTET.
* These must be EXACTLY 8 bits wide, at least once they are written to * external storage. Note that when using the stdio data source/destination * managers, this is also the data type passed to fread/fwrite. */
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JOCTET; #define GETJOCTET(value) (value)
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JOCTET; #ifdef CHAR_IS_UNSIGNED
#define GETJOCTET(value) (value)
#else
#define GETJOCTET(value) ((value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
/* These typedefs are used for various table entries and so forth.
* They must be at least as wide as specified; but making them too big * won't cost a huge amount of memory, so we don't provide special * extraction code like we did for JSAMPLE. (In other words, these * typedefs live at a different point on the speed/space tradeoff curve.) */
/* UINT8 must hold at least the values 0..255. */
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char UINT8; #else /* not HAVE_UNSIGNED_CHAR */
#ifdef CHAR_IS_UNSIGNED
typedef char UINT8; #else /* not CHAR_IS_UNSIGNED */
typedef short UINT8; #endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
/* UINT16 must hold at least the values 0..65535. */
#ifdef HAVE_UNSIGNED_SHORT
typedef unsigned short UINT16; #else /* not HAVE_UNSIGNED_SHORT */
typedef unsigned int UINT16; #endif /* HAVE_UNSIGNED_SHORT */
/* INT16 must hold at least the values -32768..32767. */
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
typedef short INT16; #endif
/* INT32 must hold at least signed 32-bit values. */
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
#ifndef _BASETSD_H /* MinGW is slightly different */
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
typedef long INT32; #endif
#endif
#endif
#endif
/* Datatype used for image dimensions. The JPEG standard only supports
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore * "unsigned int" is sufficient on all machines. However, if you need to * handle larger images and you don't mind deviating from the spec, you * can change this datatype. */
typedef unsigned int JDIMENSION;
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
/* These macros are used in all function definitions and extern declarations.
* You could modify them if you need to change function linkage conventions; * in particular, you'll need to do that to make the library a Windows DLL. * Another application is to make all functions global for use with debuggers * or code profilers that require it. */
/* a function called through method pointers: */ #define METHODDEF(type) static type
/* a function used only in its module: */ #define LOCAL(type) static type
/* a function referenced thru EXTERNs: */ #if defined(GNUC) && !defined(__clang__)
#define GLOBAL(type) extern "C" __attribute__ ((visibility("default"))) type
#else
#define GLOBAL(type) type
#endif
/* a reference to a GLOBAL function: */ #if defined(GNUC) && !defined(__clang__)
#define EXTERN(type) extern "C" type
#else
#define EXTERN(type) extern type
#endif
/* This macro is used to declare a "method", that is, a function pointer.
* We want to supply prototype parameters if the compiler can cope. * Note that the arglist parameter must be parenthesized! * Again, you can customize this if you need special linkage keywords. */
#ifdef HAVE_PROTOTYPES
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
#else
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
#endif
/* Here is the pseudo-keyword for declaring pointers that must be "far"
* on 80x86 machines. Most of the specialized coding for 80x86 is handled * by just saying "FAR *" where such a pointer is needed. In a few places * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol. */
#ifndef FAR
#ifdef NEED_FAR_POINTERS
#define FAR far
#else
#define FAR
#endif
#endif
/*
* On a few systems, type boolean and/or its values FALSE, TRUE may appear * in standard header files. Or you may have conflicts with application- * specific header files that you want to include together with these files. * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. */
#ifndef HAVE_BOOLEAN
typedef int boolean; #endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
/*
* The remaining options affect code selection within the JPEG library, * but they don't need to be visible to most applications using the library. * To minimize application namespace pollution, the symbols won't be * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. */
#ifdef JPEG_INTERNALS
#define JPEG_INTERNAL_OPTIONS
#endif
#ifdef JPEG_INTERNAL_OPTIONS
/*
* These defines indicate whether to include various optional functions. * Undefining some of these symbols will produce a smaller but less capable * library. Note that you can leave certain source files out of the * compilation/linking process if you've #undef'd the corresponding symbols. * (You may HAVE to do that if your compiler doesn't like null source files.) */
/* Capability options common to encoder and decoder: */
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
/* Encoder capability options: */
#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit * precision, so jchuff.c normally uses entropy optimization to compute * usable tables for higher precision. If you don't want to do optimization, * you'll have to supply different default Huffman tables. * The exact same statements apply for progressive JPEG: the default tables * don't work for progressive mode. (This may get fixed, however.) */ #define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
/* Decoder capability options: */
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
/* more capability options later, no doubt */
/*
* Ordering of RGB data in scanlines passed to or from the application. * If your application wants to deal with data in the order B,G,R, just * change these macros. You can also deal with formats such as R,G,B,X * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing * the offsets will also change the order in which colormap data is organized. * RESTRICTIONS: * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats. * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not * useful if you are using JPEG color spaces other than YCbCr or grayscale. * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE * is not 3 (they don't understand about dummy color components!). So you * can't use color quantization if you change that value. */
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
#define RGB_GREEN 1 /* Offset of Green */
#define RGB_BLUE 2 /* Offset of Blue */
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
/* Definitions for speed-related optimizations. */
/* If your compiler supports inline functions, define INLINE
* as the inline keyword; otherwise define it as empty. */
#ifndef INLINE
#ifdef __GNUC__ /* for instance, GNU C knows about inline */
#define INLINE __inline__
#endif
#ifndef INLINE
#define INLINE /* default is to define it as empty */
#endif
#endif
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER * as short on such a machine. MULTIPLIER must be at least 16 bits wide. */
#ifndef MULTIPLIER
#define MULTIPLIER int /* type for fastest integer multiply */
#endif
/* FAST_FLOAT should be either float or double, whichever is done faster
* by your compiler. (Note that this type is only used in the floating point * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) * Typically, float is faster in ANSI C compilers, while double is faster in * pre-ANSI compilers (because they insist on converting to double anyway). * The code below therefore chooses float if we have ANSI-style prototypes. */
#ifndef FAST_FLOAT
#ifdef HAVE_PROTOTYPES
#define FAST_FLOAT float
#else
#define FAST_FLOAT double
#endif
#endif
#endif /* JPEG_INTERNAL_OPTIONS */
|