|
|
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: [email protected] (Vlad Losev)
//
// Tests for Google Test itself. This file verifies that the parameter
// generators objects produce correct parameter sequences and that
// Google Test runtime instantiates correct tests from those sequences.
#include "gtest/gtest.h"
#if GTEST_HAS_PARAM_TEST
# include <algorithm>
# include <iostream>
# include <list>
# include <sstream>
# include <string>
# include <vector>
// To include gtest-internal-inl.h.
# define GTEST_IMPLEMENTATION_ 1
# include "src/gtest-internal-inl.h" // for UnitTestOptions
# undef GTEST_IMPLEMENTATION_
# include "test/gtest-param-test_test.h"
using ::std::vector; using ::std::sort;
using ::testing::AddGlobalTestEnvironment; using ::testing::Bool; using ::testing::Message; using ::testing::Range; using ::testing::TestWithParam; using ::testing::Values; using ::testing::ValuesIn;
# if GTEST_HAS_COMBINE
using ::testing::Combine; using ::std::tr1::get; using ::std::tr1::make_tuple; using ::std::tr1::tuple; # endif // GTEST_HAS_COMBINE
using ::testing::internal::ParamGenerator; using ::testing::internal::UnitTestOptions;
// Prints a value to a string.
//
// TODO([email protected]): remove PrintValue() when we move matchers and
// EXPECT_THAT() from Google Mock to Google Test. At that time, we
// can write EXPECT_THAT(x, Eq(y)) to compare two tuples x and y, as
// EXPECT_THAT() and the matchers know how to print tuples.
template <typename T> ::std::string PrintValue(const T& value) { ::std::stringstream stream; stream << value; return stream.str(); }
# if GTEST_HAS_COMBINE
// These overloads allow printing tuples in our tests. We cannot
// define an operator<< for tuples, as that definition needs to be in
// the std namespace in order to be picked up by Google Test via
// Argument-Dependent Lookup, yet defining anything in the std
// namespace in non-STL code is undefined behavior.
template <typename T1, typename T2> ::std::string PrintValue(const tuple<T1, T2>& value) { ::std::stringstream stream; stream << "(" << get<0>(value) << ", " << get<1>(value) << ")"; return stream.str(); }
template <typename T1, typename T2, typename T3> ::std::string PrintValue(const tuple<T1, T2, T3>& value) { ::std::stringstream stream; stream << "(" << get<0>(value) << ", " << get<1>(value) << ", "<< get<2>(value) << ")"; return stream.str(); }
template <typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10> ::std::string PrintValue( const tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& value) { ::std::stringstream stream; stream << "(" << get<0>(value) << ", " << get<1>(value) << ", "<< get<2>(value) << ", " << get<3>(value) << ", "<< get<4>(value) << ", " << get<5>(value) << ", "<< get<6>(value) << ", " << get<7>(value) << ", "<< get<8>(value) << ", " << get<9>(value) << ")"; return stream.str(); }
# endif // GTEST_HAS_COMBINE
// Verifies that a sequence generated by the generator and accessed
// via the iterator object matches the expected one using Google Test
// assertions.
template <typename T, size_t N> void VerifyGenerator(const ParamGenerator<T>& generator, const T (&expected_values)[N]) { typename ParamGenerator<T>::iterator it = generator.begin(); for (size_t i = 0; i < N; ++i) { ASSERT_FALSE(it == generator.end()) << "At element " << i << " when accessing via an iterator " << "created with the copy constructor.\n"; // We cannot use EXPECT_EQ() here as the values may be tuples,
// which don't support <<.
EXPECT_TRUE(expected_values[i] == *it) << "where i is " << i << ", expected_values[i] is " << PrintValue(expected_values[i]) << ", *it is " << PrintValue(*it) << ", and 'it' is an iterator created with the copy constructor.\n"; it++; } EXPECT_TRUE(it == generator.end()) << "At the presumed end of sequence when accessing via an iterator " << "created with the copy constructor.\n";
// Test the iterator assignment. The following lines verify that
// the sequence accessed via an iterator initialized via the
// assignment operator (as opposed to a copy constructor) matches
// just the same.
it = generator.begin(); for (size_t i = 0; i < N; ++i) { ASSERT_FALSE(it == generator.end()) << "At element " << i << " when accessing via an iterator " << "created with the assignment operator.\n"; EXPECT_TRUE(expected_values[i] == *it) << "where i is " << i << ", expected_values[i] is " << PrintValue(expected_values[i]) << ", *it is " << PrintValue(*it) << ", and 'it' is an iterator created with the copy constructor.\n"; it++; } EXPECT_TRUE(it == generator.end()) << "At the presumed end of sequence when accessing via an iterator " << "created with the assignment operator.\n"; }
template <typename T> void VerifyGeneratorIsEmpty(const ParamGenerator<T>& generator) { typename ParamGenerator<T>::iterator it = generator.begin(); EXPECT_TRUE(it == generator.end());
it = generator.begin(); EXPECT_TRUE(it == generator.end()); }
// Generator tests. They test that each of the provided generator functions
// generates an expected sequence of values. The general test pattern
// instantiates a generator using one of the generator functions,
// checks the sequence produced by the generator using its iterator API,
// and then resets the iterator back to the beginning of the sequence
// and checks the sequence again.
// Tests that iterators produced by generator functions conform to the
// ForwardIterator concept.
TEST(IteratorTest, ParamIteratorConformsToForwardIteratorConcept) { const ParamGenerator<int> gen = Range(0, 10); ParamGenerator<int>::iterator it = gen.begin();
// Verifies that iterator initialization works as expected.
ParamGenerator<int>::iterator it2 = it; EXPECT_TRUE(*it == *it2) << "Initialized iterators must point to the " << "element same as its source points to";
// Verifies that iterator assignment works as expected.
it++; EXPECT_FALSE(*it == *it2); it2 = it; EXPECT_TRUE(*it == *it2) << "Assigned iterators must point to the " << "element same as its source points to";
// Verifies that prefix operator++() returns *this.
EXPECT_EQ(&it, &(++it)) << "Result of the prefix operator++ must be " << "refer to the original object";
// Verifies that the result of the postfix operator++ points to the value
// pointed to by the original iterator.
int original_value = *it; // Have to compute it outside of macro call to be
// unaffected by the parameter evaluation order.
EXPECT_EQ(original_value, *(it++));
// Verifies that prefix and postfix operator++() advance an iterator
// all the same.
it2 = it; it++; ++it2; EXPECT_TRUE(*it == *it2); }
// Tests that Range() generates the expected sequence.
TEST(RangeTest, IntRangeWithDefaultStep) { const ParamGenerator<int> gen = Range(0, 3); const int expected_values[] = {0, 1, 2}; VerifyGenerator(gen, expected_values); }
// Edge case. Tests that Range() generates the single element sequence
// as expected when provided with range limits that are equal.
TEST(RangeTest, IntRangeSingleValue) { const ParamGenerator<int> gen = Range(0, 1); const int expected_values[] = {0}; VerifyGenerator(gen, expected_values); }
// Edge case. Tests that Range() with generates empty sequence when
// supplied with an empty range.
TEST(RangeTest, IntRangeEmpty) { const ParamGenerator<int> gen = Range(0, 0); VerifyGeneratorIsEmpty(gen); }
// Tests that Range() with custom step (greater then one) generates
// the expected sequence.
TEST(RangeTest, IntRangeWithCustomStep) { const ParamGenerator<int> gen = Range(0, 9, 3); const int expected_values[] = {0, 3, 6}; VerifyGenerator(gen, expected_values); }
// Tests that Range() with custom step (greater then one) generates
// the expected sequence when the last element does not fall on the
// upper range limit. Sequences generated by Range() must not have
// elements beyond the range limits.
TEST(RangeTest, IntRangeWithCustomStepOverUpperBound) { const ParamGenerator<int> gen = Range(0, 4, 3); const int expected_values[] = {0, 3}; VerifyGenerator(gen, expected_values); }
// Verifies that Range works with user-defined types that define
// copy constructor, operator=(), operator+(), and operator<().
class DogAdder { public: explicit DogAdder(const char* a_value) : value_(a_value) {} DogAdder(const DogAdder& other) : value_(other.value_.c_str()) {}
DogAdder operator=(const DogAdder& other) { if (this != &other) value_ = other.value_; return *this; } DogAdder operator+(const DogAdder& other) const { Message msg; msg << value_.c_str() << other.value_.c_str(); return DogAdder(msg.GetString().c_str()); } bool operator<(const DogAdder& other) const { return value_ < other.value_; } const std::string& value() const { return value_; }
private: std::string value_; };
TEST(RangeTest, WorksWithACustomType) { const ParamGenerator<DogAdder> gen = Range(DogAdder("cat"), DogAdder("catdogdog"), DogAdder("dog")); ParamGenerator<DogAdder>::iterator it = gen.begin();
ASSERT_FALSE(it == gen.end()); EXPECT_STREQ("cat", it->value().c_str());
ASSERT_FALSE(++it == gen.end()); EXPECT_STREQ("catdog", it->value().c_str());
EXPECT_TRUE(++it == gen.end()); }
class IntWrapper { public: explicit IntWrapper(int a_value) : value_(a_value) {} IntWrapper(const IntWrapper& other) : value_(other.value_) {}
IntWrapper operator=(const IntWrapper& other) { value_ = other.value_; return *this; } // operator+() adds a different type.
IntWrapper operator+(int other) const { return IntWrapper(value_ + other); } bool operator<(const IntWrapper& other) const { return value_ < other.value_; } int value() const { return value_; }
private: int value_; };
TEST(RangeTest, WorksWithACustomTypeWithDifferentIncrementType) { const ParamGenerator<IntWrapper> gen = Range(IntWrapper(0), IntWrapper(2)); ParamGenerator<IntWrapper>::iterator it = gen.begin();
ASSERT_FALSE(it == gen.end()); EXPECT_EQ(0, it->value());
ASSERT_FALSE(++it == gen.end()); EXPECT_EQ(1, it->value());
EXPECT_TRUE(++it == gen.end()); }
// Tests that ValuesIn() with an array parameter generates
// the expected sequence.
TEST(ValuesInTest, ValuesInArray) { int array[] = {3, 5, 8}; const ParamGenerator<int> gen = ValuesIn(array); VerifyGenerator(gen, array); }
// Tests that ValuesIn() with a const array parameter generates
// the expected sequence.
TEST(ValuesInTest, ValuesInConstArray) { const int array[] = {3, 5, 8}; const ParamGenerator<int> gen = ValuesIn(array); VerifyGenerator(gen, array); }
// Edge case. Tests that ValuesIn() with an array parameter containing a
// single element generates the single element sequence.
TEST(ValuesInTest, ValuesInSingleElementArray) { int array[] = {42}; const ParamGenerator<int> gen = ValuesIn(array); VerifyGenerator(gen, array); }
// Tests that ValuesIn() generates the expected sequence for an STL
// container (vector).
TEST(ValuesInTest, ValuesInVector) { typedef ::std::vector<int> ContainerType; ContainerType values; values.push_back(3); values.push_back(5); values.push_back(8); const ParamGenerator<int> gen = ValuesIn(values);
const int expected_values[] = {3, 5, 8}; VerifyGenerator(gen, expected_values); }
// Tests that ValuesIn() generates the expected sequence.
TEST(ValuesInTest, ValuesInIteratorRange) { typedef ::std::vector<int> ContainerType; ContainerType values; values.push_back(3); values.push_back(5); values.push_back(8); const ParamGenerator<int> gen = ValuesIn(values.begin(), values.end());
const int expected_values[] = {3, 5, 8}; VerifyGenerator(gen, expected_values); }
// Edge case. Tests that ValuesIn() provided with an iterator range specifying a
// single value generates a single-element sequence.
TEST(ValuesInTest, ValuesInSingleElementIteratorRange) { typedef ::std::vector<int> ContainerType; ContainerType values; values.push_back(42); const ParamGenerator<int> gen = ValuesIn(values.begin(), values.end());
const int expected_values[] = {42}; VerifyGenerator(gen, expected_values); }
// Edge case. Tests that ValuesIn() provided with an empty iterator range
// generates an empty sequence.
TEST(ValuesInTest, ValuesInEmptyIteratorRange) { typedef ::std::vector<int> ContainerType; ContainerType values; const ParamGenerator<int> gen = ValuesIn(values.begin(), values.end());
VerifyGeneratorIsEmpty(gen); }
// Tests that the Values() generates the expected sequence.
TEST(ValuesTest, ValuesWorks) { const ParamGenerator<int> gen = Values(3, 5, 8);
const int expected_values[] = {3, 5, 8}; VerifyGenerator(gen, expected_values); }
// Tests that Values() generates the expected sequences from elements of
// different types convertible to ParamGenerator's parameter type.
TEST(ValuesTest, ValuesWorksForValuesOfCompatibleTypes) { const ParamGenerator<double> gen = Values(3, 5.0f, 8.0);
const double expected_values[] = {3.0, 5.0, 8.0}; VerifyGenerator(gen, expected_values); }
TEST(ValuesTest, ValuesWorksForMaxLengthList) { const ParamGenerator<int> gen = Values( 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500);
const int expected_values[] = { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500}; VerifyGenerator(gen, expected_values); }
// Edge case test. Tests that single-parameter Values() generates the sequence
// with the single value.
TEST(ValuesTest, ValuesWithSingleParameter) { const ParamGenerator<int> gen = Values(42);
const int expected_values[] = {42}; VerifyGenerator(gen, expected_values); }
// Tests that Bool() generates sequence (false, true).
TEST(BoolTest, BoolWorks) { const ParamGenerator<bool> gen = Bool();
const bool expected_values[] = {false, true}; VerifyGenerator(gen, expected_values); }
# if GTEST_HAS_COMBINE
// Tests that Combine() with two parameters generates the expected sequence.
TEST(CombineTest, CombineWithTwoParameters) { const char* foo = "foo"; const char* bar = "bar"; const ParamGenerator<tuple<const char*, int> > gen = Combine(Values(foo, bar), Values(3, 4));
tuple<const char*, int> expected_values[] = { make_tuple(foo, 3), make_tuple(foo, 4), make_tuple(bar, 3), make_tuple(bar, 4)}; VerifyGenerator(gen, expected_values); }
// Tests that Combine() with three parameters generates the expected sequence.
TEST(CombineTest, CombineWithThreeParameters) { const ParamGenerator<tuple<int, int, int> > gen = Combine(Values(0, 1), Values(3, 4), Values(5, 6)); tuple<int, int, int> expected_values[] = { make_tuple(0, 3, 5), make_tuple(0, 3, 6), make_tuple(0, 4, 5), make_tuple(0, 4, 6), make_tuple(1, 3, 5), make_tuple(1, 3, 6), make_tuple(1, 4, 5), make_tuple(1, 4, 6)}; VerifyGenerator(gen, expected_values); }
// Tests that the Combine() with the first parameter generating a single value
// sequence generates a sequence with the number of elements equal to the
// number of elements in the sequence generated by the second parameter.
TEST(CombineTest, CombineWithFirstParameterSingleValue) { const ParamGenerator<tuple<int, int> > gen = Combine(Values(42), Values(0, 1));
tuple<int, int> expected_values[] = {make_tuple(42, 0), make_tuple(42, 1)}; VerifyGenerator(gen, expected_values); }
// Tests that the Combine() with the second parameter generating a single value
// sequence generates a sequence with the number of elements equal to the
// number of elements in the sequence generated by the first parameter.
TEST(CombineTest, CombineWithSecondParameterSingleValue) { const ParamGenerator<tuple<int, int> > gen = Combine(Values(0, 1), Values(42));
tuple<int, int> expected_values[] = {make_tuple(0, 42), make_tuple(1, 42)}; VerifyGenerator(gen, expected_values); }
// Tests that when the first parameter produces an empty sequence,
// Combine() produces an empty sequence, too.
TEST(CombineTest, CombineWithFirstParameterEmptyRange) { const ParamGenerator<tuple<int, int> > gen = Combine(Range(0, 0), Values(0, 1)); VerifyGeneratorIsEmpty(gen); }
// Tests that when the second parameter produces an empty sequence,
// Combine() produces an empty sequence, too.
TEST(CombineTest, CombineWithSecondParameterEmptyRange) { const ParamGenerator<tuple<int, int> > gen = Combine(Values(0, 1), Range(1, 1)); VerifyGeneratorIsEmpty(gen); }
// Edge case. Tests that combine works with the maximum number
// of parameters supported by Google Test (currently 10).
TEST(CombineTest, CombineWithMaxNumberOfParameters) { const char* foo = "foo"; const char* bar = "bar"; const ParamGenerator<tuple<const char*, int, int, int, int, int, int, int, int, int> > gen = Combine(Values(foo, bar), Values(1), Values(2), Values(3), Values(4), Values(5), Values(6), Values(7), Values(8), Values(9));
tuple<const char*, int, int, int, int, int, int, int, int, int> expected_values[] = {make_tuple(foo, 1, 2, 3, 4, 5, 6, 7, 8, 9), make_tuple(bar, 1, 2, 3, 4, 5, 6, 7, 8, 9)}; VerifyGenerator(gen, expected_values); }
# endif // GTEST_HAS_COMBINE
// Tests that an generator produces correct sequence after being
// assigned from another generator.
TEST(ParamGeneratorTest, AssignmentWorks) { ParamGenerator<int> gen = Values(1, 2); const ParamGenerator<int> gen2 = Values(3, 4); gen = gen2;
const int expected_values[] = {3, 4}; VerifyGenerator(gen, expected_values); }
// This test verifies that the tests are expanded and run as specified:
// one test per element from the sequence produced by the generator
// specified in INSTANTIATE_TEST_CASE_P. It also verifies that the test's
// fixture constructor, SetUp(), and TearDown() have run and have been
// supplied with the correct parameters.
// The use of environment object allows detection of the case where no test
// case functionality is run at all. In this case TestCaseTearDown will not
// be able to detect missing tests, naturally.
template <int kExpectedCalls> class TestGenerationEnvironment : public ::testing::Environment { public: static TestGenerationEnvironment* Instance() { static TestGenerationEnvironment* instance = new TestGenerationEnvironment; return instance; }
void FixtureConstructorExecuted() { fixture_constructor_count_++; } void SetUpExecuted() { set_up_count_++; } void TearDownExecuted() { tear_down_count_++; } void TestBodyExecuted() { test_body_count_++; }
virtual void TearDown() { // If all MultipleTestGenerationTest tests have been de-selected
// by the filter flag, the following checks make no sense.
bool perform_check = false;
for (int i = 0; i < kExpectedCalls; ++i) { Message msg; msg << "TestsExpandedAndRun/" << i; if (UnitTestOptions::FilterMatchesTest( "TestExpansionModule/MultipleTestGenerationTest", msg.GetString().c_str())) { perform_check = true; } } if (perform_check) { EXPECT_EQ(kExpectedCalls, fixture_constructor_count_) << "Fixture constructor of ParamTestGenerationTest test case " << "has not been run as expected."; EXPECT_EQ(kExpectedCalls, set_up_count_) << "Fixture SetUp method of ParamTestGenerationTest test case " << "has not been run as expected."; EXPECT_EQ(kExpectedCalls, tear_down_count_) << "Fixture TearDown method of ParamTestGenerationTest test case " << "has not been run as expected."; EXPECT_EQ(kExpectedCalls, test_body_count_) << "Test in ParamTestGenerationTest test case " << "has not been run as expected."; } }
private: TestGenerationEnvironment() : fixture_constructor_count_(0), set_up_count_(0), tear_down_count_(0), test_body_count_(0) {}
int fixture_constructor_count_; int set_up_count_; int tear_down_count_; int test_body_count_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestGenerationEnvironment); };
const int test_generation_params[] = {36, 42, 72};
class TestGenerationTest : public TestWithParam<int> { public: enum { PARAMETER_COUNT = sizeof(test_generation_params)/sizeof(test_generation_params[0]) };
typedef TestGenerationEnvironment<PARAMETER_COUNT> Environment;
TestGenerationTest() { Environment::Instance()->FixtureConstructorExecuted(); current_parameter_ = GetParam(); } virtual void SetUp() { Environment::Instance()->SetUpExecuted(); EXPECT_EQ(current_parameter_, GetParam()); } virtual void TearDown() { Environment::Instance()->TearDownExecuted(); EXPECT_EQ(current_parameter_, GetParam()); }
static void SetUpTestCase() { bool all_tests_in_test_case_selected = true;
for (int i = 0; i < PARAMETER_COUNT; ++i) { Message test_name; test_name << "TestsExpandedAndRun/" << i; if ( !UnitTestOptions::FilterMatchesTest( "TestExpansionModule/MultipleTestGenerationTest", test_name.GetString())) { all_tests_in_test_case_selected = false; } } EXPECT_TRUE(all_tests_in_test_case_selected) << "When running the TestGenerationTest test case all of its tests\n" << "must be selected by the filter flag for the test case to pass.\n" << "If not all of them are enabled, we can't reliably conclude\n" << "that the correct number of tests have been generated.";
collected_parameters_.clear(); }
static void TearDownTestCase() { vector<int> expected_values(test_generation_params, test_generation_params + PARAMETER_COUNT); // Test execution order is not guaranteed by Google Test,
// so the order of values in collected_parameters_ can be
// different and we have to sort to compare.
sort(expected_values.begin(), expected_values.end()); sort(collected_parameters_.begin(), collected_parameters_.end());
EXPECT_TRUE(collected_parameters_ == expected_values); }
protected: int current_parameter_; static vector<int> collected_parameters_;
private: GTEST_DISALLOW_COPY_AND_ASSIGN_(TestGenerationTest); }; vector<int> TestGenerationTest::collected_parameters_;
TEST_P(TestGenerationTest, TestsExpandedAndRun) { Environment::Instance()->TestBodyExecuted(); EXPECT_EQ(current_parameter_, GetParam()); collected_parameters_.push_back(GetParam()); } INSTANTIATE_TEST_CASE_P(TestExpansionModule, TestGenerationTest, ValuesIn(test_generation_params));
// This test verifies that the element sequence (third parameter of
// INSTANTIATE_TEST_CASE_P) is evaluated in InitGoogleTest() and neither at
// the call site of INSTANTIATE_TEST_CASE_P nor in RUN_ALL_TESTS(). For
// that, we declare param_value_ to be a static member of
// GeneratorEvaluationTest and initialize it to 0. We set it to 1 in
// main(), just before invocation of InitGoogleTest(). After calling
// InitGoogleTest(), we set the value to 2. If the sequence is evaluated
// before or after InitGoogleTest, INSTANTIATE_TEST_CASE_P will create a
// test with parameter other than 1, and the test body will fail the
// assertion.
class GeneratorEvaluationTest : public TestWithParam<int> { public: static int param_value() { return param_value_; } static void set_param_value(int param_value) { param_value_ = param_value; }
private: static int param_value_; }; int GeneratorEvaluationTest::param_value_ = 0;
TEST_P(GeneratorEvaluationTest, GeneratorsEvaluatedInMain) { EXPECT_EQ(1, GetParam()); } INSTANTIATE_TEST_CASE_P(GenEvalModule, GeneratorEvaluationTest, Values(GeneratorEvaluationTest::param_value()));
// Tests that generators defined in a different translation unit are
// functional. Generator extern_gen is defined in gtest-param-test_test2.cc.
extern ParamGenerator<int> extern_gen; class ExternalGeneratorTest : public TestWithParam<int> {}; TEST_P(ExternalGeneratorTest, ExternalGenerator) { // Sequence produced by extern_gen contains only a single value
// which we verify here.
EXPECT_EQ(GetParam(), 33); } INSTANTIATE_TEST_CASE_P(ExternalGeneratorModule, ExternalGeneratorTest, extern_gen);
// Tests that a parameterized test case can be defined in one translation
// unit and instantiated in another. This test will be instantiated in
// gtest-param-test_test2.cc. ExternalInstantiationTest fixture class is
// defined in gtest-param-test_test.h.
TEST_P(ExternalInstantiationTest, IsMultipleOf33) { EXPECT_EQ(0, GetParam() % 33); }
// Tests that a parameterized test case can be instantiated with multiple
// generators.
class MultipleInstantiationTest : public TestWithParam<int> {}; TEST_P(MultipleInstantiationTest, AllowsMultipleInstances) { } INSTANTIATE_TEST_CASE_P(Sequence1, MultipleInstantiationTest, Values(1, 2)); INSTANTIATE_TEST_CASE_P(Sequence2, MultipleInstantiationTest, Range(3, 5));
// Tests that a parameterized test case can be instantiated
// in multiple translation units. This test will be instantiated
// here and in gtest-param-test_test2.cc.
// InstantiationInMultipleTranslationUnitsTest fixture class
// is defined in gtest-param-test_test.h.
TEST_P(InstantiationInMultipleTranslaionUnitsTest, IsMultipleOf42) { EXPECT_EQ(0, GetParam() % 42); } INSTANTIATE_TEST_CASE_P(Sequence1, InstantiationInMultipleTranslaionUnitsTest, Values(42, 42*2));
// Tests that each iteration of parameterized test runs in a separate test
// object.
class SeparateInstanceTest : public TestWithParam<int> { public: SeparateInstanceTest() : count_(0) {}
static void TearDownTestCase() { EXPECT_GE(global_count_, 2) << "If some (but not all) SeparateInstanceTest tests have been " << "filtered out this test will fail. Make sure that all " << "GeneratorEvaluationTest are selected or de-selected together " << "by the test filter."; }
protected: int count_; static int global_count_; }; int SeparateInstanceTest::global_count_ = 0;
TEST_P(SeparateInstanceTest, TestsRunInSeparateInstances) { EXPECT_EQ(0, count_++); global_count_++; } INSTANTIATE_TEST_CASE_P(FourElemSequence, SeparateInstanceTest, Range(1, 4));
// Tests that all instantiations of a test have named appropriately. Test
// defined with TEST_P(TestCaseName, TestName) and instantiated with
// INSTANTIATE_TEST_CASE_P(SequenceName, TestCaseName, generator) must be named
// SequenceName/TestCaseName.TestName/i, where i is the 0-based index of the
// sequence element used to instantiate the test.
class NamingTest : public TestWithParam<int> {};
TEST_P(NamingTest, TestsReportCorrectNamesAndParameters) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
EXPECT_STREQ("ZeroToFiveSequence/NamingTest", test_info->test_case_name());
Message index_stream; index_stream << "TestsReportCorrectNamesAndParameters/" << GetParam(); EXPECT_STREQ(index_stream.GetString().c_str(), test_info->name());
EXPECT_EQ(::testing::PrintToString(GetParam()), test_info->value_param()); }
INSTANTIATE_TEST_CASE_P(ZeroToFiveSequence, NamingTest, Range(0, 5));
// Class that cannot be streamed into an ostream. It needs to be copyable
// (and, in case of MSVC, also assignable) in order to be a test parameter
// type. Its default copy constructor and assignment operator do exactly
// what we need.
class Unstreamable { public: explicit Unstreamable(int value) : value_(value) {}
private: int value_; };
class CommentTest : public TestWithParam<Unstreamable> {};
TEST_P(CommentTest, TestsCorrectlyReportUnstreamableParams) { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
EXPECT_EQ(::testing::PrintToString(GetParam()), test_info->value_param()); }
INSTANTIATE_TEST_CASE_P(InstantiationWithComments, CommentTest, Values(Unstreamable(1)));
// Verify that we can create a hierarchy of test fixtures, where the base
// class fixture is not parameterized and the derived class is. In this case
// ParameterizedDerivedTest inherits from NonParameterizedBaseTest. We
// perform simple tests on both.
class NonParameterizedBaseTest : public ::testing::Test { public: NonParameterizedBaseTest() : n_(17) { } protected: int n_; };
class ParameterizedDerivedTest : public NonParameterizedBaseTest, public ::testing::WithParamInterface<int> { protected: ParameterizedDerivedTest() : count_(0) { } int count_; static int global_count_; };
int ParameterizedDerivedTest::global_count_ = 0;
TEST_F(NonParameterizedBaseTest, FixtureIsInitialized) { EXPECT_EQ(17, n_); }
TEST_P(ParameterizedDerivedTest, SeesSequence) { EXPECT_EQ(17, n_); EXPECT_EQ(0, count_++); EXPECT_EQ(GetParam(), global_count_++); }
INSTANTIATE_TEST_CASE_P(RangeZeroToFive, ParameterizedDerivedTest, Range(0, 5));
#endif // GTEST_HAS_PARAM_TEST
TEST(CompileTest, CombineIsDefinedOnlyWhenGtestHasParamTestIsDefined) { #if GTEST_HAS_COMBINE && !GTEST_HAS_PARAM_TEST
FAIL() << "GTEST_HAS_COMBINE is defined while GTEST_HAS_PARAM_TEST is not\n" #endif
}
int main(int argc, char **argv) { #if GTEST_HAS_PARAM_TEST
// Used in TestGenerationTest test case.
AddGlobalTestEnvironment(TestGenerationTest::Environment::Instance()); // Used in GeneratorEvaluationTest test case. Tests that the updated value
// will be picked up for instantiating tests in GeneratorEvaluationTest.
GeneratorEvaluationTest::set_param_value(1); #endif // GTEST_HAS_PARAM_TEST
::testing::InitGoogleTest(&argc, argv);
#if GTEST_HAS_PARAM_TEST
// Used in GeneratorEvaluationTest test case. Tests that value updated
// here will NOT be used for instantiating tests in
// GeneratorEvaluationTest.
GeneratorEvaluationTest::set_param_value(2); #endif // GTEST_HAS_PARAM_TEST
return RUN_ALL_TESTS(); }
|