|
|
//========== Copyright 2005, Valve Corporation, All rights reserved. ========
//
// Purpose:
//
//=============================================================================
#if defined( _WIN32 ) && !defined( _X360 )
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "tier0/dbg.h"
#include "tier0/tslist.h"
#include "tier0/icommandline.h"
#include "tier0/threadtools.h"
#include "vstdlib/jobthread.h"
#include "vstdlib/random.h"
#include "tier1/functors.h"
#include "tier1/fmtstr.h"
#include "tier1/utlvector.h"
#include "tier1/generichash.h"
#include "tier0/fasttimer.h"
#if defined( _X360 )
#include "xbox/xbox_win32stubs.h"
#endif
#ifdef _PS3
#include "tls_ps3.h"
#include "ps3/ps3_win32stubs.h"
#endif
#include "tier0/memdbgon.h"
class CJobThread;
//-----------------------------------------------------------------------------
inline void ServiceJobAndRelease( CJob *pJob, int iThread = -1 ) { // TryLock() would only fail if another thread has entered
// Execute() or Abort()
if ( !pJob->IsFinished() && pJob->TryLock() ) { // ...service the request
pJob->SetServiceThread( iThread ); pJob->Execute(); pJob->Unlock(); } pJob->Release(); }
//-----------------------------------------------------------------------------
#pragma pack(push)
#pragma pack(8)
class ALIGN16 CJobQueue { public: CJobQueue() : m_nItems( 0 ), m_nMaxItems( INT_MAX ) { }
int Count() { return m_nItems; }
int Count( JobPriority_t priority ) { return m_queues[priority].Count(); }
static JobPriority_t GetMinPriority() { return (JobPriority_t)m_MinPriority; }
static void SetMinPriority( JobPriority_t priority ) { m_MinPriority = priority; }
CJob *PrePush() { if ( m_nItems >= m_nMaxItems ) { CJob *pOverflowJob; if ( Pop( &pOverflowJob ) ) { return pOverflowJob; } } return NULL; }
int Push( CJob *pJob, int iThread = -1 ) { pJob->AddRef();
CJob *pOverflowJob; int nOverflow = 0; while ( ( pOverflowJob = PrePush() ) != NULL ) { ServiceJobAndRelease( pJob ); nOverflow++; }
m_queues[pJob->GetPriority()].PushItem( pJob );
m_mutex.Lock(); if ( ++m_nItems == 1 ) { m_JobAvailableEvent.Set(); } m_mutex.Unlock();
return nOverflow; }
bool Pop( CJob **ppJob ) { m_mutex.Lock(); if ( !m_nItems ) { m_mutex.Unlock(); *ppJob = NULL; return false; } if ( --m_nItems == 0 ) { m_JobAvailableEvent.Reset(); } m_mutex.Unlock();
for ( int i = JP_NUM_PRIORITIES - 1; i >= m_MinPriority; --i ) { if ( m_queues[i].PopItem( ppJob ) ) { return true; } }
m_mutex.Lock(); AssertMsg( m_MinPriority != JP_LOW, "Expected at least one queue item" );
if ( ++m_nItems == 1 ) { m_JobAvailableEvent.Set(); ThreadSleep(); } m_mutex.Unlock();
*ppJob = NULL; return false; }
CThreadEvent &GetEventHandle() { return m_JobAvailableEvent; }
void Flush() { // Only safe to call when system is suspended
m_mutex.Lock(); m_nItems = 0; m_JobAvailableEvent.Reset(); CJob *pJob = NULL; for ( int i = JP_NUM_PRIORITIES - 1; i >= 0; --i ) { while ( m_queues[i].PopItem( &pJob ) ) { pJob->Abort(); pJob->Release(); } } m_mutex.Unlock(); }
private: CTSQueue<CJob *> m_queues[JP_NUM_PRIORITIES]; int m_nItems; int m_nMaxItems; CThreadMutex m_mutex; CThreadManualEvent m_JobAvailableEvent; static int m_MinPriority; } ALIGN16_POST;
int CJobQueue::m_MinPriority = JP_LOW;
#pragma pack(pop)
class CJobThread;
//-----------------------------------------------------------------------------
//
// CThreadPool
//
//-----------------------------------------------------------------------------
class CThreadPool : public CRefCounted1<IThreadPool, CRefCountServiceMT> { public: CThreadPool(); ~CThreadPool();
//-----------------------------------------------------
// Thread functions
//-----------------------------------------------------
bool Start( const ThreadPoolStartParams_t &startParams = ThreadPoolStartParams_t() ) { return Start( startParams, NULL ); } bool Start( const ThreadPoolStartParams_t &startParams, const char *pszNameOverride ); bool Stop( int timeout = TT_INFINITE ); void Distribute( bool bDistribute = true, int *pAffinityTable = NULL );
//-----------------------------------------------------
// Functions for any thread
//-----------------------------------------------------
unsigned GetJobCount() { return m_nJobs; } int NumThreads(); int NumIdleThreads();
//-----------------------------------------------------
// Pause/resume processing jobs
//-----------------------------------------------------
int SuspendExecution(); int ResumeExecution();
//-----------------------------------------------------
// Offer the current thread to the pool
//-----------------------------------------------------
virtual int YieldWait( CThreadEvent **pEvents, int nEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); virtual int YieldWait( CJob **, int nJobs, bool bWaitAll = true, unsigned timeout = TT_INFINITE ); void Yield( unsigned timeout ); virtual int YieldWaitPerFrameJobs( );
//-----------------------------------------------------
// Add a native job to the queue (master thread)
//-----------------------------------------------------
void AddJob( CJob * ); virtual void AddPerFrameJob( CJob * ); void InsertJobInQueue( CJob * );
//-----------------------------------------------------
// Add an function object to the queue (master thread)
//-----------------------------------------------------
void AddFunctorInternal( CFunctor *, CJob ** = NULL, const char *pszDescription = NULL, unsigned flags = 0 );
//-----------------------------------------------------
// Remove a job from the queue (master thread)
//-----------------------------------------------------
virtual void ChangePriority( CJob *p, JobPriority_t priority );
//-----------------------------------------------------
// Bulk job manipulation (blocking)
//-----------------------------------------------------
int ExecuteToPriority( JobPriority_t toPriority, JobFilter_t pfnFilter = NULL ); int AbortAll();
private: enum { IO_STACKSIZE = ( 64 * 1024 ), COMPUTATION_STACKSIZE = 0, };
//-----------------------------------------------------
//
//-----------------------------------------------------
CJob *PeekJob(); CJob *GetDummyJob();
//-----------------------------------------------------
// Thread functions
//-----------------------------------------------------
int Run();
private: friend class CJobThread;
CJobQueue m_SharedQueue; CInterlockedInt m_nIdleThreads; CUtlVector<CJobThread *> m_Threads;
CThreadMutex m_SuspendMutex; int m_nSuspend; CInterlockedInt m_nJobs;
// Some jobs should only be executed on the threadpool thread(s). Ie: the rendering thread has the GL context
// and the main thread coming in and "helping" with jobs breaks that pretty nicely. This flag states that
// only the threadpool threads should execute these jobs.
bool m_bExecOnThreadPoolThreadsOnly;
CThreadMutex m_PerFrameJobListMutex; CUtlVectorFixedGrowable< CJob *, 2048 > m_PerFrameJobs; };
//-----------------------------------------------------------------------------
JOB_INTERFACE IThreadPool *CreateNewThreadPool() { return new CThreadPool; }
JOB_INTERFACE void DestroyThreadPool( IThreadPool *pPool ) { delete static_cast<CThreadPool*>( pPool ); }
//-----------------------------------------------------------------------------
class CGlobalThreadPool : public CThreadPool { public: virtual bool Start( const ThreadPoolStartParams_t &startParamsIn ) { int nThreads = ( CommandLine()->ParmValue( "-threads", -1 ) - 1 ); ThreadPoolStartParams_t startParams = startParamsIn;
if ( nThreads >= 0 ) { startParams.nThreads = nThreads; } else { // Cap the GlobPool threads at 4.
startParams.nThreadsMax = 4; } return CThreadPool::Start( startParams, "GlobPool" ); }
virtual bool OnFinalRelease() { AssertMsg( 0, "Releasing global thread pool object!" ); return false; } };
//-----------------------------------------------------------------------------
class CJobThread : public CWorkerThread { public: CJobThread( CThreadPool *pOwner, int iThread ) : m_SharedQueue( pOwner->m_SharedQueue ), m_pOwner( pOwner ), m_iThread( iThread ) { }
CThreadEvent &GetIdleEvent() { return m_IdleEvent; }
CJobQueue &AccessDirectQueue() { return m_DirectQueue; }
private: unsigned Wait() { unsigned waitResult; #ifdef WIN32
enum Event_t { CALL_FROM_MASTER, SHARED_QUEUE, DIRECT_QUEUE, NUM_EVENTS };
CThreadEvent *waitHandles[NUM_EVENTS]; waitHandles[CALL_FROM_MASTER] = &GetCallHandle(); waitHandles[SHARED_QUEUE] = &m_SharedQueue.GetEventHandle(); waitHandles[DIRECT_QUEUE] = &m_DirectQueue.GetEventHandle(); #ifdef _DEBUG
while ( ( waitResult = CThreadEvent::WaitForMultiple( ARRAYSIZE(waitHandles), waitHandles , FALSE, 10 ) ) == TW_TIMEOUT ) { waitResult = waitResult; // break here
} #else
waitResult = CThreadEvent::WaitForMultiple( ARRAYSIZE(waitHandles), waitHandles , FALSE, TT_INFINITE ); #endif
#else // !win32
bool bSet = false; int nWaitTime = 100; while ( !bSet ) { // jobs are typically enqueued to the shared job queue so wait on it
bSet = m_SharedQueue.GetEventHandle().Wait( nWaitTime ); if ( !bSet ) bSet = m_DirectQueue.GetEventHandle().Wait( 0 ); if ( !bSet ) bSet = GetCallHandle().Wait( 0 ); } if ( !bSet ) waitResult = WAIT_TIMEOUT; else waitResult = WAIT_OBJECT_0; #endif
return waitResult; }
int Run() { // Wait for either a call from the master thread, or an item in the queue...
unsigned waitResult; bool bExit = false;
m_pOwner->m_nIdleThreads++; m_IdleEvent.Set(); while ( !bExit && ( waitResult = Wait() ) != TW_FAILED ) { if ( PeekCall() ) { switch ( GetCallParam() ) { case TPM_EXIT: Reply( true ); bExit = TRUE; break;
case TPM_SUSPEND: Reply( true ); Suspend(); break;
default: AssertMsg( 0, "Unknown call to thread" ); Reply( false ); break; } } else { CJob *pJob; bool bTookJob = false; do { if ( !m_DirectQueue.Pop( &pJob) ) { if ( !m_SharedQueue.Pop( &pJob ) ) { // Nothing to process, return to wait state
break; } } if ( !bTookJob ) { m_IdleEvent.Reset(); m_pOwner->m_nIdleThreads--; bTookJob = true; } ServiceJobAndRelease( pJob, m_iThread ); m_pOwner->m_nJobs--; } while ( !PeekCall() );
if ( bTookJob ) { m_pOwner->m_nIdleThreads++; m_IdleEvent.Set(); } } } m_pOwner->m_nIdleThreads--; m_IdleEvent.Reset(); return 0; }
CJobQueue m_DirectQueue; CJobQueue & m_SharedQueue; CThreadPool * m_pOwner; CThreadManualEvent m_IdleEvent; int m_iThread; };
//-----------------------------------------------------------------------------
CGlobalThreadPool g_ThreadPool; IThreadPool *g_pThreadPool = &g_ThreadPool; IThreadPool *g_pAlternateThreadPool;
//-----------------------------------------------------------------------------
//
// CThreadPool
//
//-----------------------------------------------------------------------------
CThreadPool::CThreadPool() : m_nIdleThreads( 0 ), m_nJobs( 0 ), m_nSuspend( 0 ) { }
//---------------------------------------------------------
CThreadPool::~CThreadPool() { }
//---------------------------------------------------------
//
//---------------------------------------------------------
int CThreadPool::NumThreads() { return m_Threads.Count(); }
//---------------------------------------------------------
//
//---------------------------------------------------------
int CThreadPool::NumIdleThreads() { return m_nIdleThreads; }
//---------------------------------------------------------
// Pause/resume processing jobs
//---------------------------------------------------------
int CThreadPool::SuspendExecution() { AUTO_LOCK( m_SuspendMutex );
// If not already suspended
if ( m_nSuspend == 0 ) { int i; for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->CallWorker( TPM_SUSPEND, 0 ); }
for ( i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->WaitForReply(); }
// Because worker must signal before suspending, we could reach
// here with the thread not actually suspended
for ( i = 0; i < m_Threads.Count(); i++ ) { while ( !m_Threads[i]->IsSuspended() ) { ThreadSleep(); } } }
return m_nSuspend++; }
//---------------------------------------------------------
int CThreadPool::ResumeExecution() { AUTO_LOCK( m_SuspendMutex ); AssertMsg( m_nSuspend >= 1, "Attempted resume when not suspended"); int result = m_nSuspend--; if (m_nSuspend == 0 ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { m_Threads[i]->Resume(); } } return result; }
//---------------------------------------------------------
int CThreadPool::YieldWait( CThreadEvent **pEvents, int nEvents, bool bWaitAll, unsigned timeout ) { Assert( timeout == TT_INFINITE ); // unimplemented
int result; CJob *pJob; // Always wait for zero milliseconds initially, to let us process jobs on this thread.
timeout = 0; while ( ( result = CThreadEvent::WaitForMultiple( nEvents, pEvents, bWaitAll, timeout ) ) == TW_TIMEOUT ) { if (!m_bExecOnThreadPoolThreadsOnly && m_SharedQueue.Pop( &pJob ) ) { ServiceJobAndRelease( pJob ); m_nJobs--; } else { // Since there are no jobs for the main thread set the timeout to infinite.
// The only disadvantage to this is that if a job thread creates a new job
// then the main thread will not be available to pick it up, but if that
// is a problem you can just create more worker threads. Debugging test runs
// of TF2 suggests that jobs are only ever added from the main thread which
// means that there is no disadvantage.
// Waiting on the events instead of busy spinning has multiple advantages.
// It avoids wasting CPU time/electricity, it makes it more obvious in profiles
// when the main thread is idle versus busy, and it allows ready thread analysis
// in xperf to find out what woke up a waiting thread.
// It also avoids unnecessary CPU starvation -- seen on customer traces of TF2.
timeout = TT_INFINITE; } } return result; }
//---------------------------------------------------------
int CThreadPool::YieldWait( CJob **ppJobs, int nJobs, bool bWaitAll, unsigned timeout ) { CUtlVectorFixed<CThreadEvent*, 64> handles; if ( nJobs > handles.NumAllocated() - 2 ) { return TW_FAILED; }
for ( int i = 0; i < nJobs; i++ ) { handles.AddToTail( ppJobs[i]->AccessEvent() ); }
return YieldWait( (CThreadEvent **)handles.Base(), handles.Count(), bWaitAll, timeout); }
//---------------------------------------------------------
void CThreadPool::Yield( unsigned timeout ) { // @MULTICORE (toml 10/24/2006): not implemented
Assert( ThreadInMainThread() ); if ( !ThreadInMainThread() ) { ThreadSleep( timeout ); return; } ThreadSleep( timeout ); }
//---------------------------------------------------------
// Block until all per-frame jobs are done
//---------------------------------------------------------
int CThreadPool::YieldWaitPerFrameJobs( ) { // NOTE: Per-Frame jobs may spawn other per-frame jobs.
// Therefore we must copy the list off and block on that list
// because more jobs may be added while we're yielding
int nRetVal = 0; while ( true ) { m_PerFrameJobListMutex.Lock(); int nCount = m_PerFrameJobs.Count(); if ( nCount == 0 ) { m_PerFrameJobListMutex.Unlock(); break; }
size_t nSize = nCount * sizeof( CJob* ); CJob **ppJobs = ( CJob** )stackalloc( nSize ); memcpy( ppJobs, m_PerFrameJobs.Base(), nSize ); m_PerFrameJobs.RemoveAll(); m_PerFrameJobListMutex.Unlock();
nRetVal = YieldWait( ppJobs, nCount );
for ( int i = 0; i < nCount; ++i ) { ppJobs[i]->Release(); } } return nRetVal; }
//---------------------------------------------------------
// Add a job to the queue
//---------------------------------------------------------
void CThreadPool::AddJob( CJob *pJob ) { if ( !pJob ) { return; }
if ( pJob->m_ThreadPoolData != JOB_NO_DATA ) { Warning( "Cannot add a thread job already committed to another thread pool\n" ); return; }
if ( m_Threads.Count() == 0 ) { // So only threadpool jobs are supposed to execute the jobs, but there are no threadpool threads?
Assert( !m_bExecOnThreadPoolThreadsOnly );
pJob->Execute(); return; }
int flags = pJob->GetFlags();
if ( !m_bExecOnThreadPoolThreadsOnly && ( ( flags & ( JF_IO | JF_QUEUE ) ) == 0 ) /* @TBD && !m_queue.Count() */ ) { if ( !NumIdleThreads() ) { pJob->Execute(); return; } pJob->SetPriority( (JobPriority_t)(JP_NUM_PRIORITIES - 1) ); }
if ( !pJob->CanExecute() ) { // Already handled
ExecuteOnce( Warning( "Attempted to add job to job queue that has already been completed\n" ) ); return; }
pJob->m_pThreadPool = this; pJob->m_status = JOB_STATUS_PENDING; #if defined( THREAD_PARENT_STACK_TRACE_ENABLED )
{ int iValidEntries = GetCallStack_Fast( pJob->m_ParentStackTrace, ARRAYSIZE( pJob->m_ParentStackTrace ), 0 ); for( int i = iValidEntries; i < ARRAYSIZE( pJob->m_ParentStackTrace ); ++i ) { pJob->m_ParentStackTrace[i] = NULL; } } #endif
InsertJobInQueue( pJob ); ++m_nJobs; }
//-----------------------------------------------------
// Add a native job to the queue (master thread)
// Call YieldWaitPerFrameJobs() to wait only until all per-frame jobs are done
//-----------------------------------------------------
void CThreadPool::AddPerFrameJob( CJob *pJob ) { m_PerFrameJobListMutex.Lock(); pJob->AddRef(); m_PerFrameJobs.AddToTail( pJob ); m_PerFrameJobListMutex.Unlock();
AddJob( pJob ); }
//---------------------------------------------------------
//
//---------------------------------------------------------
void CThreadPool::InsertJobInQueue( CJob *pJob ) { CJobQueue *pQueue;
if ( !( pJob->GetFlags() & JF_SERIAL ) ) { int iThread = pJob->GetServiceThread(); if ( iThread == -1 || !m_Threads.IsValidIndex( iThread ) ) { pQueue = &m_SharedQueue; } else { pQueue = &(m_Threads[iThread]->AccessDirectQueue()); } } else { pQueue = &(m_Threads[0]->AccessDirectQueue()); }
#ifdef SN_TARGET_PS3
// GSidhu
// Make sure render job goes on shared q rather than direct q.
// Direct q jobs get picked up only after jobs appear on shared q or
// wait times out on shared q.
// This is a fix for Eurogamer, look at this in more detail later
pQueue = &m_SharedQueue; #endif
m_nJobs -= pQueue->Push( pJob ); }
//---------------------------------------------------------
// Add an function object to the queue (master thread)
//---------------------------------------------------------
void CThreadPool::AddFunctorInternal( CFunctor *pFunctor, CJob **ppJob, const char *pszDescription, unsigned flags ) { // Note: assumes caller has handled refcount
CJob *pJob = new CFunctorJob( pFunctor, pszDescription );
pJob->SetFlags( flags );
AddJob( pJob );
if ( ppJob ) { *ppJob = pJob; } else { pJob->Release(); } }
//---------------------------------------------------------
// Remove a job from the queue
//---------------------------------------------------------
void CThreadPool::ChangePriority( CJob *pJob, JobPriority_t priority ) { // Right now, only support upping the priority
if ( pJob->GetPriority() < priority ) { pJob->SetPriority( priority ); m_SharedQueue.Push( pJob ); } else { ExecuteOnce( if ( pJob->GetPriority() != priority ) DevMsg( "CThreadPool::RemoveJob not implemented right now" ) ); }
}
//---------------------------------------------------------
// Execute to a specified priority
//---------------------------------------------------------
#define THREADED_EXECUTETOPRIORITY 0 // Not ready for general consumption [8/4/2010 tom]
int CThreadPool::ExecuteToPriority( JobPriority_t iToPriority, JobFilter_t pfnFilter ) { if ( !THREADED_EXECUTETOPRIORITY || pfnFilter ) { SuspendExecution();
CJob *pJob; int i; int nExecuted = 0; int nJobsTotal = GetJobCount(); CUtlVector<CJob *> jobsToPutBack;
for ( int iCurPriority = JP_NUM_PRIORITIES - 1; iCurPriority >= iToPriority; --iCurPriority ) { for ( i = 0; i < m_Threads.Count(); i++ ) { CJobQueue &queue = m_Threads[i]->AccessDirectQueue(); while ( queue.Count( (JobPriority_t)iCurPriority ) ) { queue.Pop( &pJob ); if ( pfnFilter && !(*pfnFilter)( pJob ) ) { if ( pJob->CanExecute() ) { jobsToPutBack.EnsureCapacity( nJobsTotal ); jobsToPutBack.AddToTail( pJob ); } else { m_nJobs--; pJob->Release(); // an already serviced job in queue, may as well ditch it (as in, main thread probably force executed)
} continue; } ServiceJobAndRelease( pJob ); m_nJobs--; nExecuted++; }
}
while ( m_SharedQueue.Count( (JobPriority_t)iCurPriority ) ) { m_SharedQueue.Pop( &pJob ); if ( pfnFilter && !(*pfnFilter)( pJob ) ) { if ( pJob->CanExecute() ) { jobsToPutBack.EnsureCapacity( nJobsTotal ); jobsToPutBack.AddToTail( pJob ); } else { m_nJobs--; pJob->Release(); // see above
} continue; }
ServiceJobAndRelease( pJob ); m_nJobs--; nExecuted++; } }
for ( i = 0; i < jobsToPutBack.Count(); i++ ) { InsertJobInQueue( jobsToPutBack[i] ); jobsToPutBack[i]->Release(); }
ResumeExecution();
return nExecuted; } else { JobPriority_t prevPriority = CJobQueue::GetMinPriority();
CJobQueue::SetMinPriority( iToPriority );
CUtlVectorFixedGrowable<CThreadEvent*, 64> handles;
for ( int i = 0; i < m_Threads.Count(); i++ ) { handles.AddToTail( &m_Threads[i]->GetIdleEvent() ); }
CJob *pJob = NULL; do { YieldWait( (CThreadEvent **)handles.Base(), handles.Count(), true, TT_INFINITE ); if ( m_SharedQueue.Pop( &pJob ) ) { ServiceJobAndRelease( pJob ); m_nJobs--; } } while ( pJob );
CJobQueue::SetMinPriority( prevPriority );
return 1; } }
//---------------------------------------------------------
//
//---------------------------------------------------------
int CThreadPool::AbortAll() { SuspendExecution(); CJob *pJob;
int iAborted = 0; while ( m_SharedQueue.Pop( &pJob ) ) { pJob->Abort(); pJob->Release(); iAborted++; }
for ( int i = 0; i < m_Threads.Count(); i++ ) { CJobQueue &queue = m_Threads[i]->AccessDirectQueue(); while ( queue.Pop( &pJob ) ) { pJob->Abort(); pJob->Release(); iAborted++; }
}
m_nJobs = 0;
ResumeExecution();
return iAborted; }
//---------------------------------------------------------
// CThreadPool thread functions
//---------------------------------------------------------
bool CThreadPool::Start( const ThreadPoolStartParams_t &startParams, const char *pszName ) { #if defined( DEDICATED ) && IsPlatformLinux()
if ( !startParams.bEnableOnLinuxDedicatedServer ) return false; #endif
int nThreads = startParams.nThreads;
m_bExecOnThreadPoolThreadsOnly = startParams.bExecOnThreadPoolThreadsOnly;
if ( nThreads < 0 ) { const CPUInformation &ci = GetCPUInformation(); if ( startParams.bIOThreads ) { nThreads = ci.m_nLogicalProcessors; } else { // One worker thread per logical processor minus main thread and graphic driver
nThreads = ci.m_nLogicalProcessors - 2; if ( IsPC() ) { if ( nThreads > 3 ) { DevMsg( "Defaulting to limit of 3 worker threads, use -threads on command line if want more\n" ); // Current >4 processor configs don't really work so well, probably due to cache issues? (toml 7/12/2007)
nThreads = 3; } } }
if ( ( startParams.nThreadsMax >= 0 ) && ( nThreads > startParams.nThreadsMax ) ) { nThreads = startParams.nThreadsMax; } }
if ( nThreads <= 0 ) { return true; }
int nStackSize = startParams.nStackSize;
if ( nStackSize < 0 ) { if ( startParams.bIOThreads ) { nStackSize = IO_STACKSIZE; } else { nStackSize = COMPUTATION_STACKSIZE; } }
int priority = startParams.iThreadPriority;
if ( priority == SHRT_MIN ) { if ( startParams.bIOThreads ) { #if defined( _WIN32 )
priority = THREAD_PRIORITY_HIGHEST; #endif
} else { priority = ThreadGetPriority(); } }
if ( IsPS3() && priority < ThreadGetPriority() ) { // On PS3 all thread pools should be the same priority as creator or less demanding
priority = ThreadGetPriority(); }
bool bDistribute; if ( startParams.fDistribute != TRS_NONE ) { bDistribute = ( startParams.fDistribute == TRS_TRUE ); } else { bDistribute = !startParams.bIOThreads; }
//--------------------------------------------------------
m_Threads.EnsureCapacity( nThreads ); if ( !pszName ) { pszName = ( startParams.bIOThreads ) ? "IOJob" : "CmpJob"; } while ( nThreads-- ) { int iThread = m_Threads.AddToTail(); m_Threads[iThread] = new CJobThread( this, iThread ); CFmtStr formattedName( "%s%d", pszName, iThread ); m_Threads[iThread]->SetName( formattedName ); m_Threads[iThread]->Start( nStackSize ); m_Threads[iThread]->GetIdleEvent().Wait(); ThreadSetDebugName( m_Threads[iThread]->GetThreadHandle(), formattedName ); ThreadSetPriority( (ThreadHandle_t)m_Threads[iThread]->GetThreadHandle(), priority ); }
Distribute( bDistribute, startParams.bUseAffinityTable ? (int *)startParams.iAffinityTable : NULL );
return true; }
//---------------------------------------------------------
void CThreadPool::Distribute( bool bDistribute, int *pAffinityTable ) { if ( bDistribute ) { const CPUInformation &ci = GetCPUInformation(); int nHwThreadsPer = (( ci.m_bHT ) ? 2 : 1); if ( ci.m_nLogicalProcessors > 1 ) { if ( !pAffinityTable ) { #if defined( IS_WINDOWS_PC )
// no affinity table, distribution is cycled across all available
HINSTANCE hInst = LoadLibrary( "kernel32.dll" ); if ( hInst ) { typedef DWORD (WINAPI *SetThreadIdealProcessorFn)(ThreadHandle_t hThread, DWORD dwIdealProcessor); SetThreadIdealProcessorFn Thread_SetIdealProcessor = (SetThreadIdealProcessorFn)GetProcAddress( hInst, "SetThreadIdealProcessor" ); if ( Thread_SetIdealProcessor ) { ThreadHandle_t hMainThread = ThreadGetCurrentHandle(); Thread_SetIdealProcessor( hMainThread, 0 ); int iProc = 0; for ( int i = 0; i < m_Threads.Count(); i++ ) { iProc += nHwThreadsPer; if ( iProc >= ci.m_nLogicalProcessors ) { iProc %= ci.m_nLogicalProcessors; if ( nHwThreadsPer > 1 ) { iProc = ( iProc + 1 ) % nHwThreadsPer; } } Thread_SetIdealProcessor((ThreadHandle_t)m_Threads[i]->GetThreadHandle(), iProc); } } FreeLibrary( hInst ); } #else
// no affinity table, distribution is cycled across all available
int iProc = 0; for ( int i = 0; i < m_Threads.Count(); i++ ) { iProc += nHwThreadsPer; if ( iProc >= ci.m_nLogicalProcessors ) { iProc %= ci.m_nLogicalProcessors; if ( nHwThreadsPer > 1 ) { iProc = ( iProc + 1 ) % nHwThreadsPer; } } ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), 1 << iProc ); } #endif
} else { // distribution is from affinity table
for ( int i = 0; i < m_Threads.Count(); i++ ) { ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), pAffinityTable[i] ); } } } } else { #if defined( _WIN32 )
DWORD_PTR dwProcessAffinity, dwSystemAffinity; if ( GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity ) ) { for ( int i = 0; i < m_Threads.Count(); i++ ) { ThreadSetAffinity( (ThreadHandle_t)m_Threads[i]->GetThreadHandle(), dwProcessAffinity ); } } #endif
} }
//---------------------------------------------------------
bool CThreadPool::Stop( int timeout ) { #ifdef _PS3
if ( GetTLSGlobals()->bNormalQuitRequested ) { // When PS3 system requests a quit we
// might leave some of our threads suspended
// we need to resume them so that they could
// receive TPM_EXIT command
AUTO_LOCK( m_SuspendMutex ); if ( m_nSuspend >= 1 ) { m_nSuspend = 1; ResumeExecution(); } } #endif
CUtlVector< ThreadHandle_t > arrHandles; arrHandles.SetCount( m_Threads.Count() ); for ( int i = 0; i < m_Threads.Count(); i++ ) { arrHandles[i] = m_Threads[i]->GetThreadHandle(); #ifdef _WIN32
if( arrHandles[i] ) { // due to weird legacy reasons, the worker thread keeps its handle ownership.
// it closes the handle BEFORE exiting, which renders that handle useless to join on Win32
// this leads to (a) invalid handle before the thread exits (b) potentially unmapping the code running worker thread before the thread exits
// The worker thread even has a hacky workaround: it sets an event before exiting! Obviously, that event is useless to fix this race condition
// The right solution would be to have the worker NOT close its own handle, rendering that handle useful. And make ThreadJoin close that handle,
// mimicking pthreads semantics (joinable thread enters zombie state until it's properly joined). But it leads to another problem,
// namely handle leak in cases when we potentially stop the workers in other systems, and potentially incorrect joins on closed handles
// (because in Win32, it's valid to wait for thread handle twice, but it's not valid in pthreads to join the same thread twice).
// So for now, I'm just fixing it with local fix here.
//
HANDLE hDup; DuplicateHandle( GetCurrentProcess(), arrHandles[i], GetCurrentProcess(), &hDup, DUPLICATE_SAME_ACCESS, FALSE, 0 ); arrHandles[i] = (ThreadHandle_t)hDup; } #endif
m_Threads[i]->CallWorker( TPM_EXIT ); }
for ( int i = 0; i < m_Threads.Count(); ++i ) { if ( arrHandles[i] ) { ThreadJoin( arrHandles[i] );
#ifdef WIN32
Assert( !m_Threads[i]->GetThreadHandle() ); // because we duplicated the handle above, due to the historical reasons described above, we have to close this handle on Win32
CloseHandle( arrHandles[i] ); #else
Assert( !m_Threads[i]->IsAlive() ); #endif
}
#ifdef WIN32
while( m_Threads[i]->GetThreadHandle() ) #else
while( m_Threads[i]->IsAlive() ) #endif
{ ThreadSleep( 0 ); } delete m_Threads[i]; }
m_nJobs = 0; m_SharedQueue.Flush(); m_nIdleThreads = 0; m_Threads.RemoveAll();
return true; }
//---------------------------------------------------------
CJob *CThreadPool::GetDummyJob() { class CDummyJob : public CJob { public: CDummyJob() { Execute(); }
virtual JobStatus_t DoExecute() { return JOB_OK; } };
static CDummyJob dummyJob;
dummyJob.AddRef(); return &dummyJob; }
namespace ThreadPoolTest { int g_iSleep;
CThreadEvent g_done; int g_nTotalToComplete; CThreadPool *g_pTestThreadPool;
class CCountJob : public CJob { public: virtual JobStatus_t DoExecute() { m_nCount++; ThreadPause(); if ( g_iSleep >= 0) ThreadSleep( g_iSleep ); if ( bDoWork ) { byte pMemory[1024]; int i; for ( i = 0; i < 1024; i++ ) { pMemory[i] = rand(); } for ( i = 0; i < 50; i++ ) { sqrt( (float)HashBlock( pMemory, 1024 ) + HashBlock( pMemory, 1024 ) + 10.0 ); } bDoWork = false; } if ( m_nCount == g_nTotalToComplete ) g_done.Set(); return 0; }
static CInterlockedInt m_nCount; bool bDoWork; }; CInterlockedInt CCountJob::m_nCount; int g_nTotalAtFinish;
void Test( bool bDistribute, bool bSleep = true, bool bFinishExecute = false, bool bDoWork = false, bool bIncludeMain = false, bool bPrioritized = false ) { int nJobCount = 4000; CCountJob *jobs = new CCountJob[4000]; for ( int bInterleavePushPop = 0; bInterleavePushPop < 2; bInterleavePushPop++ ) { for ( g_iSleep = -10; g_iSleep <= 10; g_iSleep += 10 ) { Msg( "ThreadPoolTest: Testing! Sleep %d, interleave %d, prioritized %d \n", g_iSleep, bInterleavePushPop, bPrioritized ); int nMaxThreads = ( IsX360() ) ? 6 : 8; int nIncrement = ( IsX360() ) ? 1 : 2; for ( int i = 1; i <= nMaxThreads; i += nIncrement ) { CCountJob::m_nCount = 0; g_nTotalAtFinish = 0; ThreadPoolStartParams_t params; params.nThreads = i; params.fDistribute = ( bDistribute) ? TRS_TRUE : TRS_FALSE; g_pTestThreadPool->Start( params, "Tst" ); if ( !bInterleavePushPop ) { g_pTestThreadPool->SuspendExecution(); }
g_nTotalToComplete = nJobCount;
CFastTimer timer, suspendTimer;
suspendTimer.Start(); timer.Start(); for ( int j = 0; j < nJobCount; j++ ) { jobs[j].SetFlags( JF_QUEUE ); jobs[j].bDoWork = bDoWork; if ( bPrioritized ) { jobs[j].SetPriority( (JobPriority_t)RandomInt( JP_LOW, JP_IMMEDIATE ) ); } g_pTestThreadPool->AddJob( &jobs[j] ); if ( bSleep && j % 16 == 0 ) { ThreadSleep( 0 ); } } if ( !bInterleavePushPop ) { g_pTestThreadPool->ResumeExecution(); } if ( bFinishExecute && g_iSleep <= 1 ) { if ( bDoWork && bIncludeMain ) { while ( g_pTestThreadPool->GetJobCount() && g_pTestThreadPool->NumIdleThreads() == g_pTestThreadPool->NumIdleThreads() ) {
} CThreadEvent *pEvent = &g_done; g_pTestThreadPool->YieldWait( &pEvent, 1 ); } else { g_done.Wait(); } } g_nTotalAtFinish = CCountJob::m_nCount; timer.End(); g_pTestThreadPool->SuspendExecution(); suspendTimer.End(); g_pTestThreadPool->ResumeExecution(); g_pTestThreadPool->Stop(); g_done.Reset();
int counts[9] = { 0 }; for ( int j = 0; j < nJobCount; j++ ) { if ( jobs[j].GetServiceThread() != -1 ) { counts[jobs[j].GetServiceThread()+1]++; jobs[j].ClearServiceThread(); } else if ( jobs[j].GetStatus() == JOB_OK ) { counts[0]++; } }
Msg( "ThreadPoolTest: %d threads -- %d (%d) jobs processed in %fms, %fms to suspend (%f/%f) [ (main) %d, %d, %d, %d, %d, %d, %d, %d, %d]\n", i, (int)g_nTotalAtFinish, (int)CCountJob::m_nCount, timer.GetDuration().GetMillisecondsF(), suspendTimer.GetDuration().GetMillisecondsF() - timer.GetDuration().GetMillisecondsF(), timer.GetDuration().GetMillisecondsF() / (float)CCountJob::m_nCount, (suspendTimer.GetDuration().GetMillisecondsF())/(float)g_nTotalAtFinish, counts[0], counts[1], counts[2], counts[3], counts[4], counts[5], counts[6], counts[7], counts[8] ); } } } delete[]jobs; }
bool g_bOutputError; volatile int g_ReadyToExecute; CInterlockedInt g_nReady;
class CExecuteTestJob : public CJob { public: virtual JobStatus_t DoExecute() { byte pMemory[1024]; int i; for ( i = 0; i < 1024; i++ ) { pMemory[i] = rand(); } for ( i = 0; i < 50; i++ ) { sqrt( (float)HashBlock( pMemory, 1024 ) + HashBlock( pMemory, 1024 ) + 10.0 ); } if ( AccessEvent()->Check() || IsFinished() ) { if ( !g_bOutputError ) { Msg( "Forced execute test failed!\n" ); DebuggerBreakIfDebugging(); } } return 0; } };
class CExecuteTestExecuteJob : public CJob { public: virtual JobStatus_t DoExecute() { bool bAbort = ( RandomInt( 1, 10 ) == 1 ); g_nReady++; while ( !g_ReadyToExecute ) { ThreadPause(); }
if ( !bAbort ) m_pTestJob->Execute(); else m_pTestJob->Abort(); g_nReady--; return 0; }
CExecuteTestJob *m_pTestJob; };
void TestForcedExecute() { Msg( "TestForcedExecute\n" ); for ( int tests = 0; tests < 30; tests++ ) { for ( int i = 1; i <= 5; i += 2 ) { g_nReady = 0; ThreadPoolStartParams_t params; params.nThreads = i; params.fDistribute = TRS_TRUE; g_pTestThreadPool->Start( params, "Tst" );
int nJobCount = 4000; CExecuteTestJob *jobs = new CExecuteTestJob[nJobCount]; for ( int j = 0; j < nJobCount; j++ ) { g_ReadyToExecute = false; for ( int k = 0; k < i; k++ ) { CExecuteTestExecuteJob *pJob = new CExecuteTestExecuteJob; pJob->SetFlags( JF_QUEUE ); pJob->m_pTestJob = &jobs[j]; g_pTestThreadPool->AddJob( pJob ); pJob->Release(); } while ( g_nReady < i ) { ThreadPause(); } g_ReadyToExecute = true; ThreadSleep(); jobs[j].Execute(); while ( g_nReady > 0 ) { ThreadPause(); } } g_pTestThreadPool->Stop(); delete []jobs; } } Msg( "TestForcedExecute DONE\n" ); }
} // namespace ThreadPoolTest
void RunThreadPoolTests() { CThreadPool pool; ThreadPoolTest::g_pTestThreadPool = &pool; RunTSQueueTests(10000); RunTSListTests(10000);
intp mask1=-1; #ifdef _WIN32
intp mask2 = -1; GetProcessAffinityMask( GetCurrentProcess(), (DWORD_PTR *) &mask1, (DWORD_PTR *) &mask2 ); #endif
Msg( "ThreadPoolTest: Job distribution speed\n" ); for ( int i = 0; i < 2; i++ ) { bool bToCompletion = ( i % 2 != 0 ); Msg( bToCompletion ? "ThreadPoolTest: To completion\n" : "ThreadPoolTest: NOT to completion\n" ); if ( !IsX360() ) { Msg( "ThreadPoolTest: Non-distribute\n" ); ThreadPoolTest::Test( false, true, bToCompletion ); }
Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, true, bToCompletion );
// Msg( "ThreadPoolTest: One core\n" );
// ThreadSetAffinity( 0, 1 );
// ThreadPoolTest::Test( false, true, bToCompletion );
// ThreadSetAffinity( 0, mask1 );
Msg( "ThreadPoolTest: NO Sleep\n" ); ThreadPoolTest::Test( false, false, bToCompletion );
Msg( "ThreadPoolTest: Distribute NO Sleep\n" ); ThreadPoolTest::Test( true, false, bToCompletion );
// Not plumbed correctly
// Msg( "ThreadPoolTest: One core\n" );
// ThreadSetAffinity( 0, 1 );
// ThreadPoolTest::Test( false, false, bToCompletion );
// ThreadSetAffinity( 0, mask1 );
}
for ( int bMain = 0; bMain < 2; bMain++ ) { Msg( "ThreadPoolTest: Jobs doing work, %s main thread\n", bMain ? "WITH" : "without" ); for ( int i = 0; i < 2; i++ ) { bool bToCompletion = true;// = ( i % 2 != 0 );
if ( !IsX360() ) { Msg( "ThreadPoolTest: Non-distribute\n" ); ThreadPoolTest::Test( false, true, bToCompletion, true, !!bMain ); }
Msg( "ThreadPoolTest: Distribute\n" ); ThreadPoolTest::Test( true, true, bToCompletion, true, !!bMain );
// Msg( "ThreadPoolTest: One core\n" );
// ThreadSetAffinity( 0, 1 );
// ThreadPoolTest::Test( false, true, bToCompletion, true, !!bMain );
// ThreadSetAffinity( 0, mask1 );
Msg( "ThreadPoolTest: NO Sleep\n" ); ThreadPoolTest::Test( false, false, bToCompletion, true, !!bMain );
Msg( "ThreadPoolTest: Distribute NO Sleep\n" ); ThreadPoolTest::Test( true, false, bToCompletion, true, !!bMain );
// Msg( "ThreadPoolTest: One core\n" );
// ThreadSetAffinity( 0, 1 );
// ThreadPoolTest::Test( false, false, bToCompletion, true, !!bMain );
// ThreadSetAffinity( 0, mask1 );
} } #ifdef _WIN32
GetProcessAffinityMask( GetCurrentProcess(), (DWORD_PTR *) &mask1, (DWORD_PTR *) &mask2 ); #endif
ThreadPoolTest::TestForcedExecute(); }
|