|
|
// gf2n.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "gf2n.h"
#include "algebra.h"
#include "words.h"
#include "randpool.h"
#include "asn.h"
#include "oids.h"
#include <iostream>
NAMESPACE_BEGIN(CryptoPP)
PolynomialMod2::PolynomialMod2() { }
PolynomialMod2::PolynomialMod2(word value, size_t bitLength) : reg(BitsToWords(bitLength)) { assert(value==0 || reg.size()>0);
if (reg.size() > 0) { reg[0] = value; SetWords(reg+1, 0, reg.size()-1); } }
PolynomialMod2::PolynomialMod2(const PolynomialMod2& t) : reg(t.reg.size()) { CopyWords(reg, t.reg, reg.size()); }
void PolynomialMod2::Randomize(RandomNumberGenerator &rng, size_t nbits) { const size_t nbytes = nbits/8 + 1; SecByteBlock buf(nbytes); rng.GenerateBlock(buf, nbytes); buf[0] = (byte)Crop(buf[0], nbits % 8); Decode(buf, nbytes); }
PolynomialMod2 PolynomialMod2::AllOnes(size_t bitLength) { PolynomialMod2 result((word)0, bitLength); SetWords(result.reg, ~(word)0, result.reg.size()); if (bitLength%WORD_BITS) result.reg[result.reg.size()-1] = (word)Crop(result.reg[result.reg.size()-1], bitLength%WORD_BITS); return result; }
void PolynomialMod2::SetBit(size_t n, int value) { if (value) { reg.CleanGrow(n/WORD_BITS + 1); reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS)); } else { if (n/WORD_BITS < reg.size()) reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS)); } }
byte PolynomialMod2::GetByte(size_t n) const { if (n/WORD_SIZE >= reg.size()) return 0; else return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8)); }
void PolynomialMod2::SetByte(size_t n, byte value) { reg.CleanGrow(BytesToWords(n+1)); reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE)); reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE)); }
PolynomialMod2 PolynomialMod2::Monomial(size_t i) { PolynomialMod2 r((word)0, i+1); r.SetBit(i); return r; }
PolynomialMod2 PolynomialMod2::Trinomial(size_t t0, size_t t1, size_t t2) { PolynomialMod2 r((word)0, t0+1); r.SetBit(t0); r.SetBit(t1); r.SetBit(t2); return r; }
PolynomialMod2 PolynomialMod2::Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4) { PolynomialMod2 r((word)0, t0+1); r.SetBit(t0); r.SetBit(t1); r.SetBit(t2); r.SetBit(t3); r.SetBit(t4); return r; }
template <word i> struct NewPolynomialMod2 { PolynomialMod2 * operator()() const { return new PolynomialMod2(i); } };
const PolynomialMod2 &PolynomialMod2::Zero() { return Singleton<PolynomialMod2>().Ref(); }
const PolynomialMod2 &PolynomialMod2::One() { return Singleton<PolynomialMod2, NewPolynomialMod2<1> >().Ref(); }
void PolynomialMod2::Decode(const byte *input, size_t inputLen) { StringStore store(input, inputLen); Decode(store, inputLen); }
void PolynomialMod2::Encode(byte *output, size_t outputLen) const { ArraySink sink(output, outputLen); Encode(sink, outputLen); }
void PolynomialMod2::Decode(BufferedTransformation &bt, size_t inputLen) { reg.CleanNew(BytesToWords(inputLen));
for (size_t i=inputLen; i > 0; i--) { byte b; bt.Get(b); reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8; } }
void PolynomialMod2::Encode(BufferedTransformation &bt, size_t outputLen) const { for (size_t i=outputLen; i > 0; i--) bt.Put(GetByte(i-1)); }
void PolynomialMod2::DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const { DERGeneralEncoder enc(bt, OCTET_STRING); Encode(enc, length); enc.MessageEnd(); }
void PolynomialMod2::BERDecodeAsOctetString(BufferedTransformation &bt, size_t length) { BERGeneralDecoder dec(bt, OCTET_STRING); if (!dec.IsDefiniteLength() || dec.RemainingLength() != length) BERDecodeError(); Decode(dec, length); dec.MessageEnd(); }
unsigned int PolynomialMod2::WordCount() const { return (unsigned int)CountWords(reg, reg.size()); }
unsigned int PolynomialMod2::ByteCount() const { unsigned wordCount = WordCount(); if (wordCount) return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]); else return 0; }
unsigned int PolynomialMod2::BitCount() const { unsigned wordCount = WordCount(); if (wordCount) return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]); else return 0; }
unsigned int PolynomialMod2::Parity() const { unsigned i; word temp=0; for (i=0; i<reg.size(); i++) temp ^= reg[i]; return CryptoPP::Parity(temp); }
PolynomialMod2& PolynomialMod2::operator=(const PolynomialMod2& t) { reg.Assign(t.reg); return *this; }
PolynomialMod2& PolynomialMod2::operator^=(const PolynomialMod2& t) { reg.CleanGrow(t.reg.size()); XorWords(reg, t.reg, t.reg.size()); return *this; }
PolynomialMod2 PolynomialMod2::Xor(const PolynomialMod2 &b) const { if (b.reg.size() >= reg.size()) { PolynomialMod2 result((word)0, b.reg.size()*WORD_BITS); XorWords(result.reg, reg, b.reg, reg.size()); CopyWords(result.reg+reg.size(), b.reg+reg.size(), b.reg.size()-reg.size()); return result; } else { PolynomialMod2 result((word)0, reg.size()*WORD_BITS); XorWords(result.reg, reg, b.reg, b.reg.size()); CopyWords(result.reg+b.reg.size(), reg+b.reg.size(), reg.size()-b.reg.size()); return result; } }
PolynomialMod2 PolynomialMod2::And(const PolynomialMod2 &b) const { PolynomialMod2 result((word)0, WORD_BITS*STDMIN(reg.size(), b.reg.size())); AndWords(result.reg, reg, b.reg, result.reg.size()); return result; }
PolynomialMod2 PolynomialMod2::Times(const PolynomialMod2 &b) const { PolynomialMod2 result((word)0, BitCount() + b.BitCount());
for (int i=b.Degree(); i>=0; i--) { result <<= 1; if (b[i]) XorWords(result.reg, reg, reg.size()); } return result; }
PolynomialMod2 PolynomialMod2::Squared() const { static const word map[16] = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85};
PolynomialMod2 result((word)0, 2*reg.size()*WORD_BITS);
for (unsigned i=0; i<reg.size(); i++) { unsigned j;
for (j=0; j<WORD_BITS; j+=8) result.reg[2*i] |= map[(reg[i] >> (j/2)) % 16] << j;
for (j=0; j<WORD_BITS; j+=8) result.reg[2*i+1] |= map[(reg[i] >> (j/2 + WORD_BITS/2)) % 16] << j; }
return result; }
void PolynomialMod2::Divide(PolynomialMod2 &remainder, PolynomialMod2 "ient, const PolynomialMod2 ÷nd, const PolynomialMod2 &divisor) { if (!divisor) throw PolynomialMod2::DivideByZero();
int degree = divisor.Degree(); remainder.reg.CleanNew(BitsToWords(degree+1)); if (dividend.BitCount() >= divisor.BitCount()) quotient.reg.CleanNew(BitsToWords(dividend.BitCount() - divisor.BitCount() + 1)); else quotient.reg.CleanNew(0);
for (int i=dividend.Degree(); i>=0; i--) { remainder <<= 1; remainder.reg[0] |= dividend[i]; if (remainder[degree]) { remainder -= divisor; quotient.SetBit(i); } } }
PolynomialMod2 PolynomialMod2::DividedBy(const PolynomialMod2 &b) const { PolynomialMod2 remainder, quotient; PolynomialMod2::Divide(remainder, quotient, *this, b); return quotient; }
PolynomialMod2 PolynomialMod2::Modulo(const PolynomialMod2 &b) const { PolynomialMod2 remainder, quotient; PolynomialMod2::Divide(remainder, quotient, *this, b); return remainder; }
PolynomialMod2& PolynomialMod2::operator<<=(unsigned int n) { if (!reg.size()) return *this;
int i; word u; word carry=0; word *r=reg;
if (n==1) // special case code for most frequent case
{ i = (int)reg.size(); while (i--) { u = *r; *r = (u << 1) | carry; carry = u >> (WORD_BITS-1); r++; }
if (carry) { reg.Grow(reg.size()+1); reg[reg.size()-1] = carry; }
return *this; }
int shiftWords = n / WORD_BITS; int shiftBits = n % WORD_BITS;
if (shiftBits) { i = (int)reg.size(); while (i--) { u = *r; *r = (u << shiftBits) | carry; carry = u >> (WORD_BITS-shiftBits); r++; } }
if (carry) { reg.Grow(reg.size()+shiftWords+1); reg[reg.size()-1] = carry; } else reg.Grow(reg.size()+shiftWords);
if (shiftWords) { for (i = (int)reg.size()-1; i>=shiftWords; i--) reg[i] = reg[i-shiftWords]; for (; i>=0; i--) reg[i] = 0; }
return *this; }
PolynomialMod2& PolynomialMod2::operator>>=(unsigned int n) { if (!reg.size()) return *this;
int shiftWords = n / WORD_BITS; int shiftBits = n % WORD_BITS;
size_t i; word u; word carry=0; word *r=reg+reg.size()-1;
if (shiftBits) { i = reg.size(); while (i--) { u = *r; *r = (u >> shiftBits) | carry; carry = u << (WORD_BITS-shiftBits); r--; } }
if (shiftWords) { for (i=0; i<reg.size()-shiftWords; i++) reg[i] = reg[i+shiftWords]; for (; i<reg.size(); i++) reg[i] = 0; }
return *this; }
PolynomialMod2 PolynomialMod2::operator<<(unsigned int n) const { PolynomialMod2 result(*this); return result<<=n; }
PolynomialMod2 PolynomialMod2::operator>>(unsigned int n) const { PolynomialMod2 result(*this); return result>>=n; }
bool PolynomialMod2::operator!() const { for (unsigned i=0; i<reg.size(); i++) if (reg[i]) return false; return true; }
bool PolynomialMod2::Equals(const PolynomialMod2 &rhs) const { size_t i, smallerSize = STDMIN(reg.size(), rhs.reg.size());
for (i=0; i<smallerSize; i++) if (reg[i] != rhs.reg[i]) return false;
for (i=smallerSize; i<reg.size(); i++) if (reg[i] != 0) return false;
for (i=smallerSize; i<rhs.reg.size(); i++) if (rhs.reg[i] != 0) return false;
return true; }
std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a) { // Get relevant conversion specifications from ostream.
long f = out.flags() & std::ios::basefield; // Get base digits.
int bits, block; char suffix; switch(f) { case std::ios::oct : bits = 3; block = 4; suffix = 'o'; break; case std::ios::hex : bits = 4; block = 2; suffix = 'h'; break; default : bits = 1; block = 8; suffix = 'b'; }
if (!a) return out << '0' << suffix;
SecBlock<char> s(a.BitCount()/bits+1); unsigned i;
static const char upper[]="0123456789ABCDEF"; static const char lower[]="0123456789abcdef"; const char* vec = (out.flags() & std::ios::uppercase) ? upper : lower;
for (i=0; i*bits < a.BitCount(); i++) { int digit=0; for (int j=0; j<bits; j++) digit |= a[i*bits+j] << j; s[i]=vec[digit]; }
while (i--) { out << s[i]; if (i && (i%block)==0) out << ','; }
return out << suffix; }
PolynomialMod2 PolynomialMod2::Gcd(const PolynomialMod2 &a, const PolynomialMod2 &b) { return EuclideanDomainOf<PolynomialMod2>().Gcd(a, b); }
PolynomialMod2 PolynomialMod2::InverseMod(const PolynomialMod2 &modulus) const { typedef EuclideanDomainOf<PolynomialMod2> Domain; return QuotientRing<Domain>(Domain(), modulus).MultiplicativeInverse(*this); }
bool PolynomialMod2::IsIrreducible() const { signed int d = Degree(); if (d <= 0) return false;
PolynomialMod2 t(2), u(t); for (int i=1; i<=d/2; i++) { u = u.Squared()%(*this); if (!Gcd(u+t, *this).IsUnit()) return false; } return true; }
// ********************************************************
GF2NP::GF2NP(const PolynomialMod2 &modulus) : QuotientRing<EuclideanDomainOf<PolynomialMod2> >(EuclideanDomainOf<PolynomialMod2>(), modulus), m(modulus.Degree()) { }
GF2NP::Element GF2NP::SquareRoot(const Element &a) const { Element r = a; for (unsigned int i=1; i<m; i++) r = Square(r); return r; }
GF2NP::Element GF2NP::HalfTrace(const Element &a) const { assert(m%2 == 1); Element h = a; for (unsigned int i=1; i<=(m-1)/2; i++) h = Add(Square(Square(h)), a); return h; }
GF2NP::Element GF2NP::SolveQuadraticEquation(const Element &a) const { if (m%2 == 0) { Element z, w; RandomPool rng; do { Element p((RandomNumberGenerator &)rng, m); z = PolynomialMod2::Zero(); w = p; for (unsigned int i=1; i<=m-1; i++) { w = Square(w); z = Square(z); Accumulate(z, Multiply(w, a)); Accumulate(w, p); } } while (w.IsZero()); return z; } else return HalfTrace(a); }
// ********************************************************
GF2NT::GF2NT(unsigned int t0, unsigned int t1, unsigned int t2) : GF2NP(PolynomialMod2::Trinomial(t0, t1, t2)) , t0(t0), t1(t1) , result((word)0, m) { assert(t0 > t1 && t1 > t2 && t2==0); }
const GF2NT::Element& GF2NT::MultiplicativeInverse(const Element &a) const { if (t0-t1 < WORD_BITS) return GF2NP::MultiplicativeInverse(a);
SecWordBlock T(m_modulus.reg.size() * 4); word *b = T; word *c = T+m_modulus.reg.size(); word *f = T+2*m_modulus.reg.size(); word *g = T+3*m_modulus.reg.size(); size_t bcLen=1, fgLen=m_modulus.reg.size(); unsigned int k=0;
SetWords(T, 0, 3*m_modulus.reg.size()); b[0]=1; assert(a.reg.size() <= m_modulus.reg.size()); CopyWords(f, a.reg, a.reg.size()); CopyWords(g, m_modulus.reg, m_modulus.reg.size());
while (1) { word t=f[0]; while (!t) { ShiftWordsRightByWords(f, fgLen, 1); if (c[bcLen-1]) bcLen++; assert(bcLen <= m_modulus.reg.size()); ShiftWordsLeftByWords(c, bcLen, 1); k+=WORD_BITS; t=f[0]; }
unsigned int i=0; while (t%2 == 0) { t>>=1; i++; } k+=i;
if (t==1 && CountWords(f, fgLen)==1) break;
if (i==1) { ShiftWordsRightByBits(f, fgLen, 1); t=ShiftWordsLeftByBits(c, bcLen, 1); } else { ShiftWordsRightByBits(f, fgLen, i); t=ShiftWordsLeftByBits(c, bcLen, i); } if (t) { c[bcLen] = t; bcLen++; assert(bcLen <= m_modulus.reg.size()); }
if (f[fgLen-1]==0 && g[fgLen-1]==0) fgLen--;
if (f[fgLen-1] < g[fgLen-1]) { std::swap(f, g); std::swap(b, c); }
XorWords(f, g, fgLen); XorWords(b, c, bcLen); }
while (k >= WORD_BITS) { word temp = b[0]; // right shift b
for (unsigned i=0; i+1<BitsToWords(m); i++) b[i] = b[i+1]; b[BitsToWords(m)-1] = 0;
if (t1 < WORD_BITS) for (unsigned int j=0; j<WORD_BITS-t1; j++) temp ^= ((temp >> j) & 1) << (t1 + j); else b[t1/WORD_BITS-1] ^= temp << t1%WORD_BITS;
if (t1 % WORD_BITS) b[t1/WORD_BITS] ^= temp >> (WORD_BITS - t1%WORD_BITS);
if (t0%WORD_BITS) { b[t0/WORD_BITS-1] ^= temp << t0%WORD_BITS; b[t0/WORD_BITS] ^= temp >> (WORD_BITS - t0%WORD_BITS); } else b[t0/WORD_BITS-1] ^= temp;
k -= WORD_BITS; }
if (k) { word temp = b[0] << (WORD_BITS - k); ShiftWordsRightByBits(b, BitsToWords(m), k);
if (t1 < WORD_BITS) for (unsigned int j=0; j<WORD_BITS-t1; j++) temp ^= ((temp >> j) & 1) << (t1 + j); else b[t1/WORD_BITS-1] ^= temp << t1%WORD_BITS;
if (t1 % WORD_BITS) b[t1/WORD_BITS] ^= temp >> (WORD_BITS - t1%WORD_BITS);
if (t0%WORD_BITS) { b[t0/WORD_BITS-1] ^= temp << t0%WORD_BITS; b[t0/WORD_BITS] ^= temp >> (WORD_BITS - t0%WORD_BITS); } else b[t0/WORD_BITS-1] ^= temp; }
CopyWords(result.reg.begin(), b, result.reg.size()); return result; }
const GF2NT::Element& GF2NT::Multiply(const Element &a, const Element &b) const { size_t aSize = STDMIN(a.reg.size(), result.reg.size()); Element r((word)0, m);
for (int i=m-1; i>=0; i--) { if (r[m-1]) { ShiftWordsLeftByBits(r.reg.begin(), r.reg.size(), 1); XorWords(r.reg.begin(), m_modulus.reg, r.reg.size()); } else ShiftWordsLeftByBits(r.reg.begin(), r.reg.size(), 1);
if (b[i]) XorWords(r.reg.begin(), a.reg, aSize); }
if (m%WORD_BITS) r.reg.begin()[r.reg.size()-1] = (word)Crop(r.reg[r.reg.size()-1], m%WORD_BITS);
CopyWords(result.reg.begin(), r.reg.begin(), result.reg.size()); return result; }
const GF2NT::Element& GF2NT::Reduced(const Element &a) const { if (t0-t1 < WORD_BITS) return m_domain.Mod(a, m_modulus);
SecWordBlock b(a.reg);
size_t i; for (i=b.size()-1; i>=BitsToWords(t0); i--) { word temp = b[i];
if (t0%WORD_BITS) { b[i-t0/WORD_BITS] ^= temp >> t0%WORD_BITS; b[i-t0/WORD_BITS-1] ^= temp << (WORD_BITS - t0%WORD_BITS); } else b[i-t0/WORD_BITS] ^= temp;
if ((t0-t1)%WORD_BITS) { b[i-(t0-t1)/WORD_BITS] ^= temp >> (t0-t1)%WORD_BITS; b[i-(t0-t1)/WORD_BITS-1] ^= temp << (WORD_BITS - (t0-t1)%WORD_BITS); } else b[i-(t0-t1)/WORD_BITS] ^= temp; }
if (i==BitsToWords(t0)-1 && t0%WORD_BITS) { word mask = ((word)1<<(t0%WORD_BITS))-1; word temp = b[i] & ~mask; b[i] &= mask;
b[i-t0/WORD_BITS] ^= temp >> t0%WORD_BITS;
if ((t0-t1)%WORD_BITS) { b[i-(t0-t1)/WORD_BITS] ^= temp >> (t0-t1)%WORD_BITS; if ((t0-t1)%WORD_BITS > t0%WORD_BITS) b[i-(t0-t1)/WORD_BITS-1] ^= temp << (WORD_BITS - (t0-t1)%WORD_BITS); else assert(temp << (WORD_BITS - (t0-t1)%WORD_BITS) == 0); } else b[i-(t0-t1)/WORD_BITS] ^= temp; }
SetWords(result.reg.begin(), 0, result.reg.size()); CopyWords(result.reg.begin(), b, STDMIN(b.size(), result.reg.size())); return result; }
void GF2NP::DEREncodeElement(BufferedTransformation &out, const Element &a) const { a.DEREncodeAsOctetString(out, MaxElementByteLength()); }
void GF2NP::BERDecodeElement(BufferedTransformation &in, Element &a) const { a.BERDecodeAsOctetString(in, MaxElementByteLength()); }
void GF2NT::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); ASN1::characteristic_two_field().DEREncode(seq); DERSequenceEncoder parameters(seq); DEREncodeUnsigned(parameters, m); ASN1::tpBasis().DEREncode(parameters); DEREncodeUnsigned(parameters, t1); parameters.MessageEnd(); seq.MessageEnd(); }
void GF2NPP::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); ASN1::characteristic_two_field().DEREncode(seq); DERSequenceEncoder parameters(seq); DEREncodeUnsigned(parameters, m); ASN1::ppBasis().DEREncode(parameters); DERSequenceEncoder pentanomial(parameters); DEREncodeUnsigned(pentanomial, t3); DEREncodeUnsigned(pentanomial, t2); DEREncodeUnsigned(pentanomial, t1); pentanomial.MessageEnd(); parameters.MessageEnd(); seq.MessageEnd(); }
GF2NP * BERDecodeGF2NP(BufferedTransformation &bt) { // VC60 workaround: auto_ptr lacks reset()
member_ptr<GF2NP> result;
BERSequenceDecoder seq(bt); if (OID(seq) != ASN1::characteristic_two_field()) BERDecodeError(); BERSequenceDecoder parameters(seq); unsigned int m; BERDecodeUnsigned(parameters, m); OID oid(parameters); if (oid == ASN1::tpBasis()) { unsigned int t1; BERDecodeUnsigned(parameters, t1); result.reset(new GF2NT(m, t1, 0)); } else if (oid == ASN1::ppBasis()) { unsigned int t1, t2, t3; BERSequenceDecoder pentanomial(parameters); BERDecodeUnsigned(pentanomial, t3); BERDecodeUnsigned(pentanomial, t2); BERDecodeUnsigned(pentanomial, t1); pentanomial.MessageEnd(); result.reset(new GF2NPP(m, t3, t2, t1, 0)); } else { BERDecodeError(); return NULL; } parameters.MessageEnd(); seq.MessageEnd();
return result.release(); }
NAMESPACE_END
#endif
|