|
|
#ifndef CRYPTOPP_POLYNOMI_H
#define CRYPTOPP_POLYNOMI_H
/*! \file */
#include "cryptlib.h"
#include "misc.h"
#include "algebra.h"
#include <iosfwd>
#include <vector>
NAMESPACE_BEGIN(CryptoPP)
//! represents single-variable polynomials over arbitrary rings
/*! \nosubgrouping */ template <class T> class PolynomialOver { public: //! \name ENUMS, EXCEPTIONS, and TYPEDEFS
//@{
//! division by zero exception
class DivideByZero : public Exception { public: DivideByZero() : Exception(OTHER_ERROR, "PolynomialOver<T>: division by zero") {} };
//! specify the distribution for randomization functions
class RandomizationParameter { public: RandomizationParameter(unsigned int coefficientCount, const typename T::RandomizationParameter &coefficientParameter ) : m_coefficientCount(coefficientCount), m_coefficientParameter(coefficientParameter) {}
private: unsigned int m_coefficientCount; typename T::RandomizationParameter m_coefficientParameter; friend class PolynomialOver<T>; };
typedef T Ring; typedef typename T::Element CoefficientType; //@}
//! \name CREATORS
//@{
//! creates the zero polynomial
PolynomialOver() {}
//!
PolynomialOver(const Ring &ring, unsigned int count) : m_coefficients((size_t)count, ring.Identity()) {}
//! copy constructor
PolynomialOver(const PolynomialOver<Ring> &t) : m_coefficients(t.m_coefficients.size()) {*this = t;}
//! construct constant polynomial
PolynomialOver(const CoefficientType &element) : m_coefficients(1, element) {}
//! construct polynomial with specified coefficients, starting from coefficient of x^0
template <typename Iterator> PolynomialOver(Iterator begin, Iterator end) : m_coefficients(begin, end) {}
//! convert from string
PolynomialOver(const char *str, const Ring &ring) {FromStr(str, ring);}
//! convert from big-endian byte array
PolynomialOver(const byte *encodedPolynomialOver, unsigned int byteCount);
//! convert from Basic Encoding Rules encoded byte array
explicit PolynomialOver(const byte *BEREncodedPolynomialOver);
//! convert from BER encoded byte array stored in a BufferedTransformation object
explicit PolynomialOver(BufferedTransformation &bt);
//! create a random PolynomialOver<T>
PolynomialOver(RandomNumberGenerator &rng, const RandomizationParameter ¶meter, const Ring &ring) {Randomize(rng, parameter, ring);} //@}
//! \name ACCESSORS
//@{
//! the zero polynomial will return a degree of -1
int Degree(const Ring &ring) const {return int(CoefficientCount(ring))-1;} //!
unsigned int CoefficientCount(const Ring &ring) const; //! return coefficient for x^i
CoefficientType GetCoefficient(unsigned int i, const Ring &ring) const; //@}
//! \name MANIPULATORS
//@{
//!
PolynomialOver<Ring>& operator=(const PolynomialOver<Ring>& t);
//!
void Randomize(RandomNumberGenerator &rng, const RandomizationParameter ¶meter, const Ring &ring);
//! set the coefficient for x^i to value
void SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring);
//!
void Negate(const Ring &ring);
//!
void swap(PolynomialOver<Ring> &t); //@}
//! \name BASIC ARITHMETIC ON POLYNOMIALS
//@{
bool Equals(const PolynomialOver<Ring> &t, const Ring &ring) const; bool IsZero(const Ring &ring) const {return CoefficientCount(ring)==0;}
PolynomialOver<Ring> Plus(const PolynomialOver<Ring>& t, const Ring &ring) const; PolynomialOver<Ring> Minus(const PolynomialOver<Ring>& t, const Ring &ring) const; PolynomialOver<Ring> Inverse(const Ring &ring) const;
PolynomialOver<Ring> Times(const PolynomialOver<Ring>& t, const Ring &ring) const; PolynomialOver<Ring> DividedBy(const PolynomialOver<Ring>& t, const Ring &ring) const; PolynomialOver<Ring> Modulo(const PolynomialOver<Ring>& t, const Ring &ring) const; PolynomialOver<Ring> MultiplicativeInverse(const Ring &ring) const; bool IsUnit(const Ring &ring) const;
PolynomialOver<Ring>& Accumulate(const PolynomialOver<Ring>& t, const Ring &ring); PolynomialOver<Ring>& Reduce(const PolynomialOver<Ring>& t, const Ring &ring);
//!
PolynomialOver<Ring> Doubled(const Ring &ring) const {return Plus(*this, ring);} //!
PolynomialOver<Ring> Squared(const Ring &ring) const {return Times(*this, ring);}
CoefficientType EvaluateAt(const CoefficientType &x, const Ring &ring) const;
PolynomialOver<Ring>& ShiftLeft(unsigned int n, const Ring &ring); PolynomialOver<Ring>& ShiftRight(unsigned int n, const Ring &ring);
//! calculate r and q such that (a == d*q + r) && (0 <= degree of r < degree of d)
static void Divide(PolynomialOver<Ring> &r, PolynomialOver<Ring> &q, const PolynomialOver<Ring> &a, const PolynomialOver<Ring> &d, const Ring &ring); //@}
//! \name INPUT/OUTPUT
//@{
std::istream& Input(std::istream &in, const Ring &ring); std::ostream& Output(std::ostream &out, const Ring &ring) const; //@}
private: void FromStr(const char *str, const Ring &ring);
std::vector<CoefficientType> m_coefficients; };
//! Polynomials over a fixed ring
/*! Having a fixed ring allows overloaded operators */ template <class T, int instance> class PolynomialOverFixedRing : private PolynomialOver<T> { typedef PolynomialOver<T> B; typedef PolynomialOverFixedRing<T, instance> ThisType;
public: typedef T Ring; typedef typename T::Element CoefficientType; typedef typename B::DivideByZero DivideByZero; typedef typename B::RandomizationParameter RandomizationParameter;
//! \name CREATORS
//@{
//! creates the zero polynomial
PolynomialOverFixedRing(unsigned int count = 0) : B(ms_fixedRing, count) {}
//! copy constructor
PolynomialOverFixedRing(const ThisType &t) : B(t) {}
explicit PolynomialOverFixedRing(const B &t) : B(t) {}
//! construct constant polynomial
PolynomialOverFixedRing(const CoefficientType &element) : B(element) {}
//! construct polynomial with specified coefficients, starting from coefficient of x^0
template <typename Iterator> PolynomialOverFixedRing(Iterator first, Iterator last) : B(first, last) {}
//! convert from string
explicit PolynomialOverFixedRing(const char *str) : B(str, ms_fixedRing) {}
//! convert from big-endian byte array
PolynomialOverFixedRing(const byte *encodedPoly, unsigned int byteCount) : B(encodedPoly, byteCount) {}
//! convert from Basic Encoding Rules encoded byte array
explicit PolynomialOverFixedRing(const byte *BEREncodedPoly) : B(BEREncodedPoly) {}
//! convert from BER encoded byte array stored in a BufferedTransformation object
explicit PolynomialOverFixedRing(BufferedTransformation &bt) : B(bt) {}
//! create a random PolynomialOverFixedRing
PolynomialOverFixedRing(RandomNumberGenerator &rng, const RandomizationParameter ¶meter) : B(rng, parameter, ms_fixedRing) {}
static const ThisType &Zero(); static const ThisType &One(); //@}
//! \name ACCESSORS
//@{
//! the zero polynomial will return a degree of -1
int Degree() const {return B::Degree(ms_fixedRing);} //! degree + 1
unsigned int CoefficientCount() const {return B::CoefficientCount(ms_fixedRing);} //! return coefficient for x^i
CoefficientType GetCoefficient(unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);} //! return coefficient for x^i
CoefficientType operator[](unsigned int i) const {return B::GetCoefficient(i, ms_fixedRing);} //@}
//! \name MANIPULATORS
//@{
//!
ThisType& operator=(const ThisType& t) {B::operator=(t); return *this;} //!
ThisType& operator+=(const ThisType& t) {Accumulate(t, ms_fixedRing); return *this;} //!
ThisType& operator-=(const ThisType& t) {Reduce(t, ms_fixedRing); return *this;} //!
ThisType& operator*=(const ThisType& t) {return *this = *this*t;} //!
ThisType& operator/=(const ThisType& t) {return *this = *this/t;} //!
ThisType& operator%=(const ThisType& t) {return *this = *this%t;}
//!
ThisType& operator<<=(unsigned int n) {ShiftLeft(n, ms_fixedRing); return *this;} //!
ThisType& operator>>=(unsigned int n) {ShiftRight(n, ms_fixedRing); return *this;}
//! set the coefficient for x^i to value
void SetCoefficient(unsigned int i, const CoefficientType &value) {B::SetCoefficient(i, value, ms_fixedRing);}
//!
void Randomize(RandomNumberGenerator &rng, const RandomizationParameter ¶meter) {B::Randomize(rng, parameter, ms_fixedRing);}
//!
void Negate() {B::Negate(ms_fixedRing);}
void swap(ThisType &t) {B::swap(t);} //@}
//! \name UNARY OPERATORS
//@{
//!
bool operator!() const {return CoefficientCount()==0;} //!
ThisType operator+() const {return *this;} //!
ThisType operator-() const {return ThisType(Inverse(ms_fixedRing));} //@}
//! \name BINARY OPERATORS
//@{
//!
friend ThisType operator>>(ThisType a, unsigned int n) {return ThisType(a>>=n);} //!
friend ThisType operator<<(ThisType a, unsigned int n) {return ThisType(a<<=n);} //@}
//! \name OTHER ARITHMETIC FUNCTIONS
//@{
//!
ThisType MultiplicativeInverse() const {return ThisType(B::MultiplicativeInverse(ms_fixedRing));} //!
bool IsUnit() const {return B::IsUnit(ms_fixedRing);}
//!
ThisType Doubled() const {return ThisType(B::Doubled(ms_fixedRing));} //!
ThisType Squared() const {return ThisType(B::Squared(ms_fixedRing));}
CoefficientType EvaluateAt(const CoefficientType &x) const {return B::EvaluateAt(x, ms_fixedRing);}
//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
static void Divide(ThisType &r, ThisType &q, const ThisType &a, const ThisType &d) {B::Divide(r, q, a, d, ms_fixedRing);} //@}
//! \name INPUT/OUTPUT
//@{
//!
friend std::istream& operator>>(std::istream& in, ThisType &a) {return a.Input(in, ms_fixedRing);} //!
friend std::ostream& operator<<(std::ostream& out, const ThisType &a) {return a.Output(out, ms_fixedRing);} //@}
private: struct NewOnePolynomial { ThisType * operator()() const { return new ThisType(ms_fixedRing.MultiplicativeIdentity()); } };
static const Ring ms_fixedRing; };
//! Ring of polynomials over another ring
template <class T> class RingOfPolynomialsOver : public AbstractEuclideanDomain<PolynomialOver<T> > { public: typedef T CoefficientRing; typedef PolynomialOver<T> Element; typedef typename Element::CoefficientType CoefficientType; typedef typename Element::RandomizationParameter RandomizationParameter;
RingOfPolynomialsOver(const CoefficientRing &ring) : m_ring(ring) {}
Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter ¶meter) {return Element(rng, parameter, m_ring);}
bool Equal(const Element &a, const Element &b) const {return a.Equals(b, m_ring);}
const Element& Identity() const {return this->result = m_ring.Identity();}
const Element& Add(const Element &a, const Element &b) const {return this->result = a.Plus(b, m_ring);}
Element& Accumulate(Element &a, const Element &b) const {a.Accumulate(b, m_ring); return a;}
const Element& Inverse(const Element &a) const {return this->result = a.Inverse(m_ring);}
const Element& Subtract(const Element &a, const Element &b) const {return this->result = a.Minus(b, m_ring);}
Element& Reduce(Element &a, const Element &b) const {return a.Reduce(b, m_ring);}
const Element& Double(const Element &a) const {return this->result = a.Doubled(m_ring);}
const Element& MultiplicativeIdentity() const {return this->result = m_ring.MultiplicativeIdentity();}
const Element& Multiply(const Element &a, const Element &b) const {return this->result = a.Times(b, m_ring);}
const Element& Square(const Element &a) const {return this->result = a.Squared(m_ring);}
bool IsUnit(const Element &a) const {return a.IsUnit(m_ring);}
const Element& MultiplicativeInverse(const Element &a) const {return this->result = a.MultiplicativeInverse(m_ring);}
const Element& Divide(const Element &a, const Element &b) const {return this->result = a.DividedBy(b, m_ring);}
const Element& Mod(const Element &a, const Element &b) const {return this->result = a.Modulo(b, m_ring);}
void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const {Element::Divide(r, q, a, d, m_ring);}
class InterpolationFailed : public Exception { public: InterpolationFailed() : Exception(OTHER_ERROR, "RingOfPolynomialsOver<T>: interpolation failed") {} };
Element Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
// a faster version of Interpolate(x, y, n).EvaluateAt(position)
CoefficientType InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const; /*
void PrepareBulkInterpolation(CoefficientType *w, const CoefficientType x[], unsigned int n) const; void PrepareBulkInterpolationAt(CoefficientType *v, const CoefficientType &position, const CoefficientType x[], const CoefficientType w[], unsigned int n) const; CoefficientType BulkInterpolateAt(const CoefficientType y[], const CoefficientType v[], unsigned int n) const; */ protected: void CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const;
CoefficientRing m_ring; };
template <class Ring, class Element> void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n); template <class Ring, class Element> void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n); template <class Ring, class Element> Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n);
//!
template <class T, int instance> inline bool operator==(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return a.Equals(b, a.ms_fixedRing);} //!
template <class T, int instance> inline bool operator!=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return !(a==b);}
//!
template <class T, int instance> inline bool operator> (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return a.Degree() > b.Degree();} //!
template <class T, int instance> inline bool operator>=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return a.Degree() >= b.Degree();} //!
template <class T, int instance> inline bool operator< (const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return a.Degree() < b.Degree();} //!
template <class T, int instance> inline bool operator<=(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return a.Degree() <= b.Degree();}
//!
template <class T, int instance> inline CryptoPP::PolynomialOverFixedRing<T, instance> operator+(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Plus(b, a.ms_fixedRing));} //!
template <class T, int instance> inline CryptoPP::PolynomialOverFixedRing<T, instance> operator-(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Minus(b, a.ms_fixedRing));} //!
template <class T, int instance> inline CryptoPP::PolynomialOverFixedRing<T, instance> operator*(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Times(b, a.ms_fixedRing));} //!
template <class T, int instance> inline CryptoPP::PolynomialOverFixedRing<T, instance> operator/(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.DividedBy(b, a.ms_fixedRing));} //!
template <class T, int instance> inline CryptoPP::PolynomialOverFixedRing<T, instance> operator%(const CryptoPP::PolynomialOverFixedRing<T, instance> &a, const CryptoPP::PolynomialOverFixedRing<T, instance> &b) {return CryptoPP::PolynomialOverFixedRing<T, instance>(a.Modulo(b, a.ms_fixedRing));}
NAMESPACE_END
NAMESPACE_BEGIN(std) template<class T> inline void swap(CryptoPP::PolynomialOver<T> &a, CryptoPP::PolynomialOver<T> &b) { a.swap(b); } template<class T, int i> inline void swap(CryptoPP::PolynomialOverFixedRing<T,i> &a, CryptoPP::PolynomialOverFixedRing<T,i> &b) { a.swap(b); } NAMESPACE_END
#endif
|