|
|
#ifndef CRYPTOPP_XTR_H
#define CRYPTOPP_XTR_H
/** \file
"The XTR public key system" by Arjen K. Lenstra and Eric R. Verheul */
#include "modarith.h"
NAMESPACE_BEGIN(CryptoPP)
//! an element of GF(p^2)
class GFP2Element { public: GFP2Element() {} GFP2Element(const Integer &c1, const Integer &c2) : c1(c1), c2(c2) {} GFP2Element(const byte *encodedElement, unsigned int size) : c1(encodedElement, size/2), c2(encodedElement+size/2, size/2) {}
void Encode(byte *encodedElement, unsigned int size) { c1.Encode(encodedElement, size/2); c2.Encode(encodedElement+size/2, size/2); }
bool operator==(const GFP2Element &rhs) const {return c1 == rhs.c1 && c2 == rhs.c2;} bool operator!=(const GFP2Element &rhs) const {return !operator==(rhs);}
void swap(GFP2Element &a) { c1.swap(a.c1); c2.swap(a.c2); }
static const GFP2Element & Zero();
Integer c1, c2; };
//! GF(p^2), optimal normal basis
template <class F> class GFP2_ONB : public AbstractRing<GFP2Element> { public: typedef F BaseField;
GFP2_ONB(const Integer &p) : modp(p) { if (p%3 != 2) throw InvalidArgument("GFP2_ONB: modulus must be equivalent to 2 mod 3"); }
const Integer& GetModulus() const {return modp.GetModulus();}
GFP2Element ConvertIn(const Integer &a) const { t = modp.Inverse(modp.ConvertIn(a)); return GFP2Element(t, t); }
GFP2Element ConvertIn(const GFP2Element &a) const {return GFP2Element(modp.ConvertIn(a.c1), modp.ConvertIn(a.c2));}
GFP2Element ConvertOut(const GFP2Element &a) const {return GFP2Element(modp.ConvertOut(a.c1), modp.ConvertOut(a.c2));}
bool Equal(const GFP2Element &a, const GFP2Element &b) const { return modp.Equal(a.c1, b.c1) && modp.Equal(a.c2, b.c2); }
const Element& Identity() const { return GFP2Element::Zero(); }
const Element& Add(const Element &a, const Element &b) const { result.c1 = modp.Add(a.c1, b.c1); result.c2 = modp.Add(a.c2, b.c2); return result; }
const Element& Inverse(const Element &a) const { result.c1 = modp.Inverse(a.c1); result.c2 = modp.Inverse(a.c2); return result; }
const Element& Double(const Element &a) const { result.c1 = modp.Double(a.c1); result.c2 = modp.Double(a.c2); return result; }
const Element& Subtract(const Element &a, const Element &b) const { result.c1 = modp.Subtract(a.c1, b.c1); result.c2 = modp.Subtract(a.c2, b.c2); return result; }
Element& Accumulate(Element &a, const Element &b) const { modp.Accumulate(a.c1, b.c1); modp.Accumulate(a.c2, b.c2); return a; }
Element& Reduce(Element &a, const Element &b) const { modp.Reduce(a.c1, b.c1); modp.Reduce(a.c2, b.c2); return a; }
bool IsUnit(const Element &a) const { return a.c1.NotZero() || a.c2.NotZero(); }
const Element& MultiplicativeIdentity() const { result.c1 = result.c2 = modp.Inverse(modp.MultiplicativeIdentity()); return result; }
const Element& Multiply(const Element &a, const Element &b) const { t = modp.Add(a.c1, a.c2); t = modp.Multiply(t, modp.Add(b.c1, b.c2)); result.c1 = modp.Multiply(a.c1, b.c1); result.c2 = modp.Multiply(a.c2, b.c2); result.c1.swap(result.c2); modp.Reduce(t, result.c1); modp.Reduce(t, result.c2); modp.Reduce(result.c1, t); modp.Reduce(result.c2, t); return result; }
const Element& MultiplicativeInverse(const Element &a) const { return result = Exponentiate(a, modp.GetModulus()-2); }
const Element& Square(const Element &a) const { const Integer &ac1 = (&a == &result) ? (t = a.c1) : a.c1; result.c1 = modp.Multiply(modp.Subtract(modp.Subtract(a.c2, a.c1), a.c1), a.c2); result.c2 = modp.Multiply(modp.Subtract(modp.Subtract(ac1, a.c2), a.c2), ac1); return result; }
Element Exponentiate(const Element &a, const Integer &e) const { Integer edivp, emodp; Integer::Divide(emodp, edivp, e, modp.GetModulus()); Element b = PthPower(a); return AbstractRing<GFP2Element>::CascadeExponentiate(a, emodp, b, edivp); }
const Element & PthPower(const Element &a) const { result = a; result.c1.swap(result.c2); return result; }
void RaiseToPthPower(Element &a) const { a.c1.swap(a.c2); }
// a^2 - 2a^p
const Element & SpecialOperation1(const Element &a) const { assert(&a != &result); result = Square(a); modp.Reduce(result.c1, a.c2); modp.Reduce(result.c1, a.c2); modp.Reduce(result.c2, a.c1); modp.Reduce(result.c2, a.c1); return result; }
// x * z - y * z^p
const Element & SpecialOperation2(const Element &x, const Element &y, const Element &z) const { assert(&x != &result && &y != &result && &z != &result); t = modp.Add(x.c2, y.c2); result.c1 = modp.Multiply(z.c1, modp.Subtract(y.c1, t)); modp.Accumulate(result.c1, modp.Multiply(z.c2, modp.Subtract(t, x.c1))); t = modp.Add(x.c1, y.c1); result.c2 = modp.Multiply(z.c2, modp.Subtract(y.c2, t)); modp.Accumulate(result.c2, modp.Multiply(z.c1, modp.Subtract(t, x.c2))); return result; }
protected: BaseField modp; mutable GFP2Element result; mutable Integer t; };
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits);
GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p);
NAMESPACE_END
#endif
|