|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include <stdafx.h>
#include "bitmap/tgaloader.h"
#include "ChunkFile.h"
#include "MapDefs.h"
#include "MapDisp.h"
#include "MapDoc.h"
#include "MapFace.h"
#include "MapSolid.h"
#include "MapWorld.h"
#include "MainFrm.h"
#include "GlobalFunctions.h"
#include "SaveInfo.h"
#include "TextureSystem.h"
#include "materialsystem/IMesh.h"
#include "Material.h"
#include "CollisionUtils.h"
#include "CModel.h"
#include "History.h"
#include "ToolDisplace.h"
#include "ToolManager.h"
#include "mathlib/mathlib.h"
#include "dispshore.h"
#include "Color.h"
#include "render2d.h"
#include "faceeditsheet.h"
#include "..\FoW\FoW.h"
// memdbgon must be the last include file in a .cpp file!!!
#include <tier0/memdbgon.h>
#define OVERLAY_CHECK_BLOAT 16.0f
bool CMapDisp::m_bSelectMask = false; bool CMapDisp::m_bGridMask = false;
//-----------------------------------------------------------------------------
// Purpose : CMapDisp constructor
//-----------------------------------------------------------------------------
CMapDisp::CMapDisp() { // clear neighbor data
ResetNeighbors();
//
// initialize the hit indices
//
ResetTexelHitIndex(); ResetDispMapHitIndex();
m_bHasMappingAxes = false; VectorClear( m_MapAxes[0] ); VectorClear( m_MapAxes[1] );
m_Scale = 1.0f;
m_bSubdiv = false; m_bReSubdiv = false;
m_CoreDispInfo.InitDispInfo( 4, 0, 0, NULL, NULL, NULL, 0, NULL ); Paint_Init( DISPPAINT_CHANNEL_POSITION );
m_CoreDispInfo.AllowedVerts_Clear();
m_FoWTriSoupID = -1; }
//-----------------------------------------------------------------------------
// Purpose : CMapDisp deconstructor
//-----------------------------------------------------------------------------
CMapDisp::~CMapDisp() { m_aWalkableVerts.Purge(); m_aWalkableIndices.Purge(); m_aForcedWalkableIndices.Purge();
m_aBuildableVerts.Purge(); m_aBuildableIndices.Purge(); m_aForcedBuildableIndices.Purge();
if ( m_FoWTriSoupID != -1 ) { CFoW *pFoW = CMapDoc::GetActiveMapDoc()->GetFoW(); if ( pFoW ) { pFoW->RemoveTriSoup( m_FoWTriSoupID ); } m_FoWTriSoupID = -1; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::InitDispSurfaceData( CMapFace *pFace, bool bGenerateStartPoint ) { //
// verify face is a "quad"
//
int pointCount = pFace->GetPointCount(); if( pointCount != 4 ) return false;
// get the displacement surface
CCoreDispSurface *pSurf = m_CoreDispInfo.GetSurface();
//
// set face point data - pos, normal, texture, etc....
//
Vector v3; Vector2D v2; pSurf->SetPointCount( 4 ); for( int i = 0; i < 4; i++ ) { // position
pFace->GetPoint( v3, i ); pSurf->SetPoint( i, v3 );
// normal
pFace->GetFaceNormal( v3 ); pSurf->SetPointNormal( i, v3 );
// texture coords
pFace->GetTexCoord( v2, i ); pSurf->SetTexCoord( i, v2 ); }
//
// get displacement surface point start index
//
int pointStartIndex = pSurf->GetPointStartIndex(); if( m_bHasMappingAxes && ( pointStartIndex == -1 ) ) { pSurf->GeneratePointStartIndexFromMappingAxes( m_MapAxes[0], m_MapAxes[1] ); } else { if( bGenerateStartPoint ) { pSurf->GenerateSurfPointStartIndex(); } else { pSurf->FindSurfPointStartIndex(); } } pSurf->AdjustSurfPointData();
// Luxel coords.
int nLightmapScale = pFace->texture.nLightmapScale; pSurf->CalcLuxelCoords( nLightmapScale, false, pFace->texture.UAxis.AsVector3D(), pFace->texture.VAxis.AsVector3D() );
// Set the lightmap coordinates.
for ( int iLuxelCoord = 0; iLuxelCoord < 4; ++iLuxelCoord ) { Vector2D vecCoord; pSurf->GetLuxelCoord( 0, iLuxelCoord, vecCoord ); pFace->SetLightmapCoord( vecCoord, iLuxelCoord ); }
// reset the has mapping axes flag (surface has been created! - use new method now)
m_bHasMappingAxes = false;
// set the s and t texture mapping axes so that tangent spaces can be calculated
pSurf->SetSAxis( pFace->texture.UAxis.AsVector3D() ); pSurf->SetTAxis( pFace->texture.VAxis.AsVector3D() );
// successful init
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::ResetFieldData( void ) { ResetFieldVectors(); ResetFieldDistances(); ResetSubdivPositions(); ResetSubdivNormals(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::InitData( int power ) { // set surface "power" (defines size)
SetPower( power );
// clear vector field distances, subdiv positions and normals
ResetFieldData(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::Create( void ) { if ( m_CoreDispInfo.CreateWithoutLOD() ) { PostCreate(); return true; }
return false; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::PostCreate( void ) { UpdateBoundingBox(); UpdateNeighborDependencies( false ); UpdateLightmapExtents(); UpdateWalkable(); UpdateBuildable();
// Get the current face and create/update any detail objects
CMapFace *pFace = static_cast<CMapFace*>( GetParent() ); if ( pFace ) DetailObjects::BuildAnyDetailObjects(pFace);
CFoW *pFoW = CMapDoc::GetActiveMapDoc()->GetFoW();
CMapFace *pParent = NULL; CMapSolid *pParent2 = NULL;
pParent = dynamic_cast< CMapFace * >( GetParent() ); if ( pParent ) { pParent2 = dynamic_cast< CMapSolid * >( pParent->GetParent() ); } if ( pFoW && pParent2 && pParent2->IsVisible() ) { if ( m_FoWTriSoupID == -1 ) { m_FoWTriSoupID = pFoW->AddTriSoup(); }
pFoW->ClearTriSoup( m_FoWTriSoupID );
unsigned short *pTriList = m_CoreDispInfo.GetRenderIndexList(); int listSize = m_CoreDispInfo.GetRenderIndexCount(); for( int i = 0; i < listSize; i += 3 ) { // get the triangle
Vector v[3]; GetVert( pTriList[i], v[0] ); GetVert( pTriList[i+1], v[1] ); GetVert( pTriList[i+2], v[2] );
pFoW->AddTri( m_FoWTriSoupID, v[ 0 ], v[ 1 ], v[ 2 ] ); } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
CMapDisp *CMapDisp::CopyFrom( CMapDisp *pMapDisp, bool bUpdateDependencies ) { //
// check for valid displacement to copy from
//
if( !pMapDisp ) return NULL;
//
// copy the base surface data - positions, normals, texture coords, etc...
//
CCoreDispSurface *pFromSurf = pMapDisp->m_CoreDispInfo.GetSurface(); CCoreDispSurface *pToSurf = m_CoreDispInfo.GetSurface();
int pointCount = pFromSurf->GetPointCount(); pToSurf->SetPointCount( pointCount );
Vector2D v2; Vector v3; Vector4D vBlend, vAlphaBlend; Vector vColor1, vColor2, vColor3, vColor4;
for( int i = 0; i < pointCount; i++ ) { pFromSurf->GetPoint( i, v3 ); pToSurf->SetPoint( i, v3 );
pFromSurf->GetPointNormal( i, v3 ); pToSurf->SetPointNormal( i, v3 );
pFromSurf->GetTexCoord( i, v2 ); pToSurf->SetTexCoord( i, v2 );
pFromSurf->GetLuxelCoord( 0, i, v2 ); pToSurf->SetLuxelCoord( 0, i, v2 ); }
pToSurf->SetFlags( pFromSurf->GetFlags() ); pToSurf->SetContents( pFromSurf->GetContents() ); pToSurf->SetPointStartIndex( pFromSurf->GetPointStartIndex() );
//
// copy displacement surface data
//
SetPower( pMapDisp->GetPower() ); SetElevation( pMapDisp->GetElevation() );
// save the scale -- don't want to rescale!!
m_Scale = pMapDisp->GetScale();
int size = GetSize(); for( int i = 0; i < size; i++ ) { pMapDisp->GetFieldVector( i, v3 ); SetFieldVector( i, v3 );
pMapDisp->GetSubdivPosition( i, v3 ); SetSubdivPosition( i, v3 );
pMapDisp->GetSubdivNormal( i, v3 ); SetSubdivNormal( i, v3 );
SetFieldDistance( i, pMapDisp->GetFieldDistance( i ) );
pMapDisp->GetVert( i, v3 ); SetVert( i, v3 );
pMapDisp->GetFlatVert( i, v3 ); SetFlatVert( i, v3 );
SetAlpha( i, pMapDisp->GetAlpha( i ) );
pMapDisp->GetMultiBlend( i, vBlend, vAlphaBlend, vColor1, vColor2, vColor3, vColor4 ); SetMultiBlend( i, vBlend, vAlphaBlend, vColor1, vColor2, vColor3, vColor4 ); }
int renderCount = pMapDisp->m_CoreDispInfo.GetRenderIndexCount(); m_CoreDispInfo.SetRenderIndexCount( renderCount ); for( int i = 0; i < renderCount; i++ ) { m_CoreDispInfo.SetRenderIndex( i, pMapDisp->m_CoreDispInfo.GetRenderIndex( i ) ); }
// Copy the triangle data.
int nTriCount = GetTriCount(); for ( int iTri = 0; iTri < nTriCount; ++iTri ) { unsigned short triIndices[3]; pMapDisp->GetTriIndices( iTri, triIndices[0], triIndices[1], triIndices[2] ); m_CoreDispInfo.SetTriIndices( iTri, triIndices[0], triIndices[1], triIndices[2] );
unsigned short triValue = pMapDisp->m_CoreDispInfo.GetTriTagValue( iTri ); m_CoreDispInfo.SetTriTagValue( iTri, triValue ); }
//
// copy editor specific data
//
m_bSubdiv = pMapDisp->IsSubdivided(); m_bReSubdiv = pMapDisp->NeedsReSubdivision();
ResetTexelHitIndex(); ResetDispMapHitIndex(); ResetTouched(); m_CoreDispInfo.AllowedVerts_Clear();
//
// re-build the surface??? an undo, etc...
//
if( bUpdateDependencies ) { UpdateData(); CheckAndUpdateOverlays( true ); }
return this; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateSurfData( CMapFace *pFace ) { InitDispSurfaceData( pFace, false ); Create(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateSurfDataAndVectorField( CMapFace *pFace ) { InitDispSurfaceData( pFace, false );
// ResetFieldVectors();
ResetSubdivPositions(); ResetSubdivNormals();
Create(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateData( void ) { Create(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateDataAndNeighborData( void ) { // update itself
Create();
// update neighbors
for( int i = 0; i < 4; i++ ) { EditDispHandle_t handle = GetEdgeNeighbor( i ); if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->UpdateData(); }
int cornerCount = GetCornerNeighborCount( i ); if( cornerCount > 0 ) { for( int j = 0; j < cornerCount; j++ ) { handle = GetCornerNeighbor( i, j ); if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->UpdateData(); } } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateLightmapExtents( void ) { // Get the parent face.
CMapFace *pFace = ( CMapFace* )GetParent(); if( !pFace ) return;
// Check for valid lightmap size and correct if need be.
ValidLightmapSize(); }
//-----------------------------------------------------------------------------
// Purpose: Returns TRUE if the lightmap scale on this face is within the acceptable range.
//-----------------------------------------------------------------------------
bool CMapDisp::ValidLightmapSize( void ) { // Get the current face and lightmap scale.
CMapFace *pFace = static_cast<CMapFace*>( GetParent() ); if ( !pFace ) return false;
int nLightmapScale = pFace->texture.nLightmapScale;
// Get the surface points.
Vector vecPoints[4]; for ( int iPoint = 0; iPoint < 4; ++iPoint ) { GetSurfPoint( iPoint, vecPoints[iPoint] ); }
// Find the largest edge.
float flMaxLength = 0.0f; for ( int iPoint = 0; iPoint < 4; ++iPoint ) { float flLength = ( vecPoints[(iPoint+1)%4] - vecPoints[iPoint] ).Length(); if ( flLength > flMaxLength ) { flMaxLength = flLength; } }
float flOOLightmapScale = 1.0f / static_cast<float>( nLightmapScale ); float flSize = static_cast<float>( static_cast<int>( flMaxLength * flOOLightmapScale ) + 1 ); if ( flSize > MAX_DISP_LIGHTMAP_DIM_WITHOUT_BORDER ) { while ( flSize > MAX_DISP_LIGHTMAP_DIM_WITHOUT_BORDER ) { nLightmapScale++; flOOLightmapScale = 1.0f / static_cast<float>( nLightmapScale ); flSize = static_cast<float>( static_cast<int>( flMaxLength * flOOLightmapScale ) + 1 ); }
// Save the next to last.
pFace->texture.nLightmapScale = nLightmapScale;
// Re-calculate texture coordinates now.
pFace->CalcTextureCoords();
CFaceEditSheet *pSheet = GetMainWnd()->GetFaceEditSheet(); if( pSheet ) { pSheet->m_MaterialPage.UpdateDialogData(); } }
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::EntityInBoundingBox( Vector const &vOrigin ) { Vector vMin, vMax;
for( int axis = 0; axis < 3; axis++ ) { vMin[axis] = m_BBox[0][axis] - OVERLAY_CHECK_BLOAT; vMax[axis] = m_BBox[1][axis] + OVERLAY_CHECK_BLOAT; }
if( ( vOrigin.x < vMin.x ) || ( vOrigin.x > vMax.x ) || ( vOrigin.y < vMin.y ) || ( vOrigin.y > vMax.y ) || ( vOrigin.z < vMin.z ) || ( vOrigin.z > vMax.z ) ) return false;
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::CheckAndUpdateOverlays( bool bFull ) { CMapFace *pFace = ( CMapFace* )GetParent(); if ( pFace ) { CMapSolid *pSolid = ( CMapSolid* )pFace->GetParent(); if ( pSolid ) { if ( !bFull ) { pSolid->PostUpdate(Notify_Rebuild); } else { pSolid->PostUpdate(Notify_Rebuild_Full); } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpSample( int oldPower ) { //
// allocate temporary memory to hold new displacement distances
//
int width = GetWidth(); int height = GetHeight();
float *dists = new float[height*width]; float *alphas = new float[height*width]; Vector *dispVectors = new Vector[height*width]; Vector *subdivPositions = new Vector[height*width]; Vector *subdivNormals = new Vector[height*width];
if( !dists || !alphas || !dispVectors || !subdivPositions || !subdivNormals ) { delete [] dists; delete [] alphas; delete [] dispVectors; delete [] subdivPositions; delete [] subdivNormals; return; }
//
// get old width and height
//
int oldWidth = ( ( 1 << oldPower ) + 1 ); int oldHeight = ( ( 1 << oldPower ) + 1 );
for( int oh = 0, nh = 0; oh < oldHeight; oh++, nh += 2 ) { for( int ow = 0, nw = 0; ow < oldWidth; ow++, nw += 2 ) { bool bRight = false; bool bUp = false;
int oldIndex = oh * oldHeight + ow; int newIndex = nh * height + nw;
int x = oldIndex % oldWidth; int y = oldIndex / oldHeight;
float dist = GetFieldDistance( oldIndex ); dists[newIndex] = dist;
float alpha = GetAlpha( oldIndex ); alphas[newIndex] = alpha;
Vector dVector[2], subPVector[2], subNVector[2]; GetFieldVector( oldIndex, dVector[0] ); GetSubdivPosition( oldIndex, subPVector[0] ); GetSubdivNormal( oldIndex, subNVector[0] ); dispVectors[newIndex] = dVector[0]; subdivPositions[newIndex] = subPVector[0]; subdivNormals[newIndex] = subNVector[0];
if( ( x + 1 ) < oldWidth ) { dist = ( GetFieldDistance( oldIndex ) + GetFieldDistance( oldIndex + 1 ) ) * 0.5f; dists[newIndex+1] = dist;
alpha = ( GetAlpha( oldIndex ) + GetAlpha( oldIndex + 1 ) ) * 0.5f; alphas[newIndex+1] = alpha;
GetFieldVector( oldIndex, dVector[0] ); GetFieldVector( oldIndex + 1, dVector[1] ); dispVectors[newIndex+1] = ( dVector[0] + dVector[1] ) * 0.5f;
GetSubdivPosition( oldIndex, subPVector[0] ); GetSubdivPosition( oldIndex + 1, subPVector[1] ); subdivPositions[newIndex+1] = ( subPVector[0] + subPVector[1] ) * 0.5f;
GetSubdivNormal( oldIndex, subNVector[0] ); GetSubdivNormal( oldIndex + 1, subNVector[1] ); subdivNormals[newIndex+1] = ( subNVector[0] + subNVector[1] ) * 0.5f;
bRight = true; }
if( ( y + 1 ) < oldHeight ) { dist = ( GetFieldDistance( oldIndex ) + GetFieldDistance( oldIndex + oldHeight ) ) * 0.5f; dists[newIndex+height] = dist;
alpha = ( GetAlpha( oldIndex ) + GetAlpha( oldIndex + oldHeight ) ) * 0.5f; alphas[newIndex+height] = alpha;
GetFieldVector( oldIndex, dVector[0] ); GetFieldVector( oldIndex + oldHeight, dVector[1] ); dispVectors[newIndex+height] = ( dVector[0] + dVector[1] ) * 0.5f;
GetSubdivPosition( oldIndex, subPVector[0] ); GetSubdivPosition( oldIndex + oldHeight, subPVector[1] ); subdivPositions[newIndex+height] = ( subPVector[0] + subPVector[1] ) * 0.5f;
GetSubdivNormal( oldIndex, subNVector[0] ); GetSubdivNormal( oldIndex + oldHeight, subNVector[1] ); subdivNormals[newIndex+height] = ( subNVector[0] + subNVector[1] ) * 0.5f; bUp = true; }
if( bRight && bUp ) { dist = ( GetFieldDistance( oldIndex + 1 ) + GetFieldDistance( oldIndex + oldHeight ) ) * 0.5f; dists[newIndex+height+1] = dist;
alpha = ( GetAlpha( oldIndex + 1 ) + GetAlpha( oldIndex + oldHeight ) ) * 0.5f; alphas[newIndex+height+1] = alpha;
GetFieldVector( oldIndex + 1, dVector[0] ); GetFieldVector( oldIndex + oldHeight, dVector[1] ); dispVectors[newIndex+height+1] = ( dVector[0] + dVector[1] ) * 0.5f;
GetSubdivPosition( oldIndex + 1, subPVector[0] ); GetSubdivPosition( oldIndex + oldHeight, subPVector[1] ); subdivPositions[newIndex+height+1] = ( subPVector[0] + subPVector[1] ) * 0.5f;
GetSubdivNormal( oldIndex + 1, subNVector[0] ); GetSubdivNormal( oldIndex + oldHeight, subNVector[1] ); subdivNormals[newIndex+height+1] = ( subNVector[0] + subNVector[1] ) * 0.5f; } } }
//
// copy sampled list
//
int size = GetSize(); for( int i = 0; i < size; i++ ) { SetAlpha( i, alphas[i] ); SetFieldVector( i, dispVectors[i] ); SetFieldDistance( i, dists[i] ); SetSubdivPosition( i, subdivPositions[i] ); SetSubdivNormal( i, subdivNormals[i] ); }
//
// free temporary memory
//
delete [] dists; delete [] alphas; delete [] dispVectors; delete [] subdivPositions; delete [] subdivNormals; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::SamplePoints( int index, int width, int height, bool *pValidPoints, float *pValue, float *pAlpha, Vector& newDispVector, Vector& newSubdivPos, Vector &newSubdivNormal ) { //
// set initial sample values
//
Vector vField, vSPos, vSNormal; int value = GetFieldDistance( index ); float alpha = GetAlpha( index ); GetFieldVector( index, vField ); GetSubdivPosition( index, vSPos ); GetSubdivNormal( index, vSNormal );
int count = 1;
//
// accumulate other sample values from around the given index
//
int ndx; Vector vTmp; for( int i = 0; i < 8; i++ ) { if( !pValidPoints[i] ) continue;
switch( i ) { case 0: { ndx = index - height - 1; break; } // down and left
case 1: { ndx = index - 1; break; } // left
case 2: { ndx = index + height - 1; break; } // up and left
case 3: { ndx = index + height; break; } // up
case 4: { ndx = index + height + 1; break; } // up and right
case 5: { ndx = index + 1; break; } // right
case 6: { ndx = index - height + 1; break; } // down and right
case 7: { ndx = index - height; break; } // down
default: continue; }
value += GetFieldDistance( ndx ); alpha += GetAlpha( ndx );
GetFieldVector( ndx, vTmp ); vField += vTmp;
GetSubdivPosition( ndx, vTmp ); vSPos += vTmp;
GetSubdivNormal( ndx, vTmp ); vSNormal += vTmp;
// increment count
count++; }
// average
*pValue = value / ( float )count; *pAlpha = alpha / ( float )count; newDispVector = vField / ( float )count; newSubdivPos = vSPos / ( float )count; newSubdivNormal = vSNormal / ( float )count; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::GetValidSamplePoints( int index, int width, int height, bool *pValidPoints ) { int x = index % width; int y = index / height;
// down and left
if( ( ( x - 1 ) >= 0 ) && ( ( y - 1 ) >= 0 ) ) { pValidPoints[0] = true; }
// left
if( ( x - 1 ) >= 0 ) { pValidPoints[1] = true; }
// up and left
if( ( ( x - 1 ) >= 0 ) && ( ( y + 1 ) < height ) ) { pValidPoints[2] = true; }
// up
if( ( y + 1 ) < height ) { pValidPoints[3] = true; }
// up and right
if( ( ( x + 1 ) < width ) && ( ( y + 1 ) < height ) ) { pValidPoints[4] = true; }
// right
if( ( x + 1 ) < width ) { pValidPoints[5] = true; }
// down and right
if( ( ( x + 1 ) < width ) && ( ( y - 1 ) >= 0 ) ) { pValidPoints[6] = true; }
// down
if( ( y - 1 ) >= 0 ) { pValidPoints[7] = true; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::DownSample( int oldPower ) { //
// allocate temporary memory to hold new displacement distances
//
int width = GetWidth(); int height = GetHeight();
float *dists = new float[height*width]; float *alphas = new float[height*width]; Vector *dispVectors = new Vector[height*width]; Vector *subdivPos = new Vector[height*width]; Vector *subdivNormals = new Vector[height*width];
if( !dists || !alphas || !dispVectors || !subdivPos || !subdivNormals ) { delete [] dists; delete [] alphas; delete [] dispVectors; delete [] subdivPos; delete [] subdivNormals; return; }
//
// get old width and height
//
int oldWidth = ( ( 1 << oldPower ) + 1 ); int oldHeight = ( ( 1 << oldPower ) + 1 );
for( int oh = 0, nh = 0; oh < oldHeight; oh += 2, nh++ ) { for( int ow = 0, nw = 0; ow < oldWidth; ow += 2, nw++ ) { int oldIndex = oh * oldHeight + ow; int newIndex = nh * height + nw;
//
// clear valid point list and gather valid sample points
//
bool validPoints[8]; for( int i = 0; i < 8; i++ ) { validPoints[i] = false; } GetValidSamplePoints( oldIndex, oldWidth, oldHeight, validPoints );
//
// sample the points, vector field vectors, and offset vectors
//
float newValue; float newAlpha; Vector newDispVector; Vector newSubdivPos; Vector newSubdivNormal; SamplePoints( oldIndex, oldWidth, oldHeight, validPoints, &newValue, &newAlpha, newDispVector, newSubdivPos, newSubdivNormal );
//
// save sampled values
//
dists[newIndex] = newValue; alphas[newIndex] = newAlpha; dispVectors[newIndex] = newDispVector; subdivPos[newIndex] = newSubdivPos; subdivNormals[newIndex] = newSubdivNormal; } }
//
// copy sampled list
//
int size = GetSize(); for( int i = 0; i < size; i++ ) { SetAlpha( i, alphas[i] ); SetFieldDistance( i, dists[i] ); SetFieldVector( i, dispVectors[i] ); SetSubdivPosition( i, subdivPos[i] ); SetSubdivNormal( i, subdivNormals[i] ); }
//
// free temporary memory
//
delete [] dists; delete [] alphas; delete [] dispVectors; delete [] subdivPos; delete [] subdivNormals; }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMapDisp::InvertAlpha( void ) { int nVertCount = GetSize(); for ( int iVert = 0; iVert < nVertCount; ++iVert ) { float flAlpha = GetAlpha( iVert ); float flInvAlpha = 255.0f - flAlpha; SetAlpha( iVert, flInvAlpha ); }
// Update the surface with new data.
UpdateData(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Resample( int power ) { //
// save old power for resampling, update to new power
//
int oldPower = GetPower(); if( oldPower > power ) { int delta = oldPower - power; for( int i = 0; i < delta; i++ ) { SetPower( oldPower - ( i + 1 ) ); DownSample( oldPower - i ); } } else { int delta = power - oldPower; for( int i = 0; i < delta; i++ ) { SetPower( oldPower + ( i + 1 ) ); UpSample( oldPower + i ); } }
// update the surface with the new data
UpdateData(); CheckAndUpdateOverlays( true ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Elevate( float elevation ) { // set the new elevation
SetElevation( elevation );
// update the displacement
UpdateData(); }
//-----------------------------------------------------------------------------
// Purpose: Resample a displacement map to be a clipped version of this surface.
// Called when we split a face with a displacement surface.
// NOTE: The new surface must be a quad as well, otherwise return false;
// hBuilderDisp - The displacement surface to receive the new clipped data.
//-----------------------------------------------------------------------------
void CMapDisp::Split( EditDispHandle_t hBuilderDisp ) { #define SPLIT_EPSILON 0.001f
CMapDisp *pBuilderDisp = EditDispMgr()->GetDisp( hBuilderDisp );
static Vector vecSurfPoints[4]; for ( int iPoint = 0; iPoint < 4; ++iPoint ) { GetSurfPoint( iPoint, vecSurfPoints[iPoint] ); }
// Prepare the destination surface for painting.
pBuilderDisp->Paint_Init( DISPPAINT_CHANNEL_POSITION );
int nVertCount = pBuilderDisp->GetSize(); for ( int iVert = 0; iVert < nVertCount; ++iVert ) { Vector vecVert; pBuilderDisp->GetVert( iVert, vecVert );
Vector2D vecDispUV; PointInQuadToBarycentric( vecSurfPoints[0], vecSurfPoints[3], vecSurfPoints[2], vecSurfPoints[1], vecVert, vecDispUV );
// A little clean-up here.
for ( int iComp = 0; iComp < 2; ++iComp ) { vecDispUV[iComp] = clamp( vecDispUV[iComp], 0.0f, 1.0f ); }
Vector vecNewVert, vecNewNormal; float flNewAlpha; m_CoreDispInfo.DispUVToSurf( vecDispUV, vecNewVert, &vecNewNormal, &flNewAlpha );
pBuilderDisp->SetAlpha( iVert, flNewAlpha ); pBuilderDisp->Paint_SetValue(iVert, vecNewVert ); } pBuilderDisp->Paint_Update( true );
#undef SPLIT_EPSILON
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::ComparePoints( const Vector& pt1, const Vector& pt2, const float tolerance ) { for( int i = 0 ; i < 3 ; i++ ) { if( fabs( pt1[i] - pt2[i] ) > tolerance ) return false; } return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
float CMapDisp::CollideWithTriangles( const Vector& RayStart, const Vector& RayEnd, Tri_t *pTris, int triCount, Vector& surfNormal ) { // create a ray
Ray_t ray; ray.m_Start = RayStart; ray.m_Delta = RayEnd - RayStart; ray.m_IsRay = true;
Vector vNormal; float minFraction = 1.0f; for( int ndxTri = 0; ndxTri < triCount; ndxTri++ ) { Tri_t &tri = pTris[ndxTri]; float fraction = IntersectRayWithTriangle( ray, tri.v[0], tri.v[2], tri.v[1], true ); if( fraction == -1 ) continue;
if( fraction < minFraction ) { minFraction = fraction;
// calculate the triangle normal
Vector edge1, edge2; VectorSubtract( tri.v[2], tri.v[0], edge1 ); VectorSubtract( tri.v[1], tri.v[0], edge2 ); CrossProduct( edge1, edge2, surfNormal ); VectorNormalize( surfNormal ); } }
return minFraction; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::CreatePlanesFromBoundingBox( Plane_t *planes, const Vector& bbMin, const Vector& bbMax ) { for( int i = 0; i < 6; i++ ) { VectorClear( planes[i].normal ); }
//
// use pads to store minor axes
//
planes[0].normal[0] = -1; planes[0].dist = -bbMin[0]; planes[1].normal[0] = 1; planes[1].dist = bbMax[0];
planes[2].normal[1] = -1; planes[2].dist = -bbMin[1]; planes[3].normal[1] = 1; planes[3].dist = bbMax[1];
planes[4].normal[2] = -1; planes[4].dist = -bbMin[2]; planes[5].normal[2] = 1; planes[5].dist = bbMax[2]; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::CollideWithBoundingBoxes( const Vector& rayStart, const Vector& rayEnd, BBox_t *pBBox, int bboxCount, Tri_t *pTris, int *triCount ) { const float DIST_EPSILON = 0.01f;
//
// collide against all bounding boxes
//
for( int i = 0; i < bboxCount; i++ ) { //
// make copy of vectors so they can be cut up
//
Vector start, end; start = rayStart; end = rayEnd;
//
// make planes for bbox
//
Plane_t planes[6]; CreatePlanesFromBoundingBox( planes, pBBox[i].min, pBBox[i].max );
//
// collide against bounding box planes
//
int j; for( j = 0; j < 6; j++ ) { float dist1 = DotProduct( planes[j].normal, start ) - planes[j].dist; float dist2 = DotProduct( planes[j].normal, end ) - planes[j].dist; //
// entry intersection point - move ray start up to intersection
//
if( ( dist1 > DIST_EPSILON ) && ( dist2 < -DIST_EPSILON ) ) { float fraction = ( dist1 / ( dist1 - dist2 ) ); Vector segment, addOn; VectorSubtract( end, start, segment ); VectorScale( segment, fraction, addOn ); VectorNormalize( segment ); VectorAdd( addOn, segment, addOn ); VectorAdd( start, addOn, start ); } else if( ( dist1 > DIST_EPSILON ) && ( dist2 > DIST_EPSILON ) ) { break; } }
//
// collision add triangles to list
//
if( j == 6 ) { // gross! shouldn't know value (64) and handle error better
if( *triCount >= 256 ) { // error!!!!!
return; }
int postSpacing = m_CoreDispInfo.GetPostSpacing(); int index = i + ( i / ( postSpacing - 1 ) );
m_CoreDispInfo.GetVert( index, pTris[*triCount].v[0] ); m_CoreDispInfo.GetVert( index+postSpacing, pTris[*triCount].v[1] ); m_CoreDispInfo.GetVert( index+1, pTris[*triCount].v[2] ); *triCount += 1;
m_CoreDispInfo.GetVert( index+1, pTris[*triCount].v[0] ); m_CoreDispInfo.GetVert( index+postSpacing, pTris[*triCount].v[1] ); m_CoreDispInfo.GetVert( index+postSpacing+1, pTris[*triCount].v[2] ); *triCount += 1; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::CreateBoundingBoxes( BBox_t *pBBox, int count, float bloat ) { //
// initialize the bounding boxes
//
for( int i = 0; i < count; i++ ) { VectorFill( pBBox[i].min, COORD_NOTINIT ); VectorFill( pBBox[i].max, -COORD_NOTINIT ); }
// get the width and height of the displacement surface
int postSpacing = m_CoreDispInfo.GetPostSpacing();
//
// find bounding box of every two consecutive triangles
//
int bboxIndex = 0; int index = 0; for( int i = 0; i < ( postSpacing - 1 ); i++ ) { for( int j = 0; j < ( postSpacing - 1 ); j++ ) { for( int k = 0; k < 4; k++ ) { switch( k ) { case 0: { index = ( postSpacing * i ) + j; break; } case 1: { index = ( postSpacing * ( i + 1 ) ) + j; break; } case 2: { index = ( postSpacing * i ) + ( j + 1 ); break; } case 3: { index = ( postSpacing * ( i + 1 ) ) + ( j + 1 ); break; } }
Vector v; m_CoreDispInfo.GetVert( index, v ); if( v[0] < pBBox[bboxIndex].min[0] ) { pBBox[bboxIndex].min[0] = v[0]; } if( v[1] < pBBox[bboxIndex].min[1] ) { pBBox[bboxIndex].min[1] = v[1]; } if( v[2] < pBBox[bboxIndex].min[2] ) { pBBox[bboxIndex].min[2] = v[2]; } if( v[0] > pBBox[bboxIndex].max[0] ) { pBBox[bboxIndex].max[0] = v[0]; } if( v[1] > pBBox[bboxIndex].max[1] ) { pBBox[bboxIndex].max[1] = v[1]; } if( v[2] > pBBox[bboxIndex].max[2] ) { pBBox[bboxIndex].max[2] = v[2]; } }
// bloat all the boxes a little
for( int axis = 0; axis < 3; axis++ ) { pBBox[bboxIndex].min[axis] -= bloat; pBBox[bboxIndex].max[axis] += bloat; }
bboxIndex++; } } }
//-----------------------------------------------------------------------------
// Purpose:
// NOTE: Performance, look into it here. This is doing way more work than
// necessary. We should probably update a collision representation, a
// simple one at least whenever we update a displacement and use it as
// a first level cull here. But for now....it works...ship, ship, ship.
//-----------------------------------------------------------------------------
bool CMapDisp::TraceLine( Vector &vecHitPos, Vector &vecHitNormal, Vector const &vecRayStart, Vector const &vecRayEnd ) { // Just do the slow thing for now.
float flFraction; int iTri = CollideWithDispTri( vecRayStart, vecRayEnd, flFraction ); if ( iTri == -1 ) return false;
// Get hit position and normal.
Vector vecRay = vecRayEnd - vecRayStart; vecRay = vecRay * flFraction; vecHitPos = vecRayStart + vecRay;
Vector vecTriPoints[3]; GetTriPos( iTri, vecTriPoints[0], vecTriPoints[1], vecTriPoints[2] ); Vector vecEdge1 = vecTriPoints[2] - vecTriPoints[0]; Vector vecEdge2 = vecTriPoints[1] - vecTriPoints[0]; vecHitNormal = CrossProduct( vecEdge1, vecEdge2 ); VectorNormalize( vecHitNormal );
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::TraceLineSnapTo( Vector &HitPos, Vector &HitNormal, Vector const &RayStart, Vector const &RayEnd ) { #define LOWER_TOLERANCE -0.1f
#define UPPER_TOLERANCE 1.1f
// get width and height
int width = GetWidth(); int height = GetHeight();
// build the ray
Ray_t ray; ray.m_Start = RayStart; ray.m_Delta = RayEnd - RayStart; ray.m_IsRay = true;
float u, v; Tri_t tri;
// test edge 0
for( int ndx = 0; ndx < ( width - 1 ); ndx++ ) { GetVert( ndx, tri.v[0] ); GetVert( ndx + width, tri.v[1] ); GetVert( ndx + 1, tri.v[2] );
ComputeIntersectionBarycentricCoordinates( ray, tri.v[0], tri.v[1], tri.v[2], u, v ); // along edge (0.0 < v < 1.0) and below (u < 0.0)
if( ( v >= LOWER_TOLERANCE ) && ( v <= UPPER_TOLERANCE ) && ( u < 0.0f ) ) { v = clamp( v, 0.0f, 1.0f );
// snap u (u = 0.0)
HitPos = tri.v[0] + ( tri.v[2] - tri.v[0] ) * v; return true; }
// special corner 0
if( ( ndx == 0 ) && ( v < 0.0f ) && ( u < 0.0f ) ) { HitPos = tri.v[0]; return true; } }
// test edge 1
for( int ndx = 0; ndx < ( height - 1 ); ndx++ ) { GetVert( ndx * width, tri.v[0] ); GetVert( ( ndx * width )+ width, tri.v[1] ); GetVert( ( ndx * width ) + 1, tri.v[2] );
ComputeIntersectionBarycentricCoordinates( ray, tri.v[0], tri.v[1], tri.v[2], u, v ); // along edge (0.0 < u < 1.0) and left (v < 0.0)
if( ( u >= LOWER_TOLERANCE ) && ( u <= UPPER_TOLERANCE ) && ( v < 0.0f ) ) { u = clamp( u, 0.0f, 1.0f );
// snap v (v = 0.0)
HitPos = tri.v[0] + ( tri.v[1] - tri.v[0] ) * u; return true; }
// special corner 1
if( ( ndx == ( height - 2 ) ) && ( u > 1.0f ) && ( v < 0.0f ) ) { HitPos = tri.v[1]; return true; } }
// test edge 2
for( int ndx = 0; ndx < ( width - 1 ); ndx++ ) { GetVert( ( ( height - 1 ) * width ) + ndx + 1, tri.v[0] ); GetVert( ( ( height - 2 ) * width ) + ndx + 1, tri.v[1] ); GetVert( ( ( height - 1 ) * width ) + ndx, tri.v[2] );
ComputeIntersectionBarycentricCoordinates( ray, tri.v[0], tri.v[1], tri.v[2], u, v ); // along edge (0.0 < v < 1.0) and above (u < 0.0)
if( ( v >= LOWER_TOLERANCE ) && ( v <= UPPER_TOLERANCE ) && ( u < 0.0f ) ) { v = clamp( v, 0.0f, 1.0f );
// snap u (u = 0.0)
HitPos = tri.v[0] + ( tri.v[2] - tri.v[0] ) * v; return true; }
// special corner 2
if( ( ndx == ( width - 2 ) ) && ( v < 0.0f ) && ( u < 0.0f ) ) { HitPos = tri.v[0]; return true; } }
// test edge 3
for( int ndx = 0; ndx < ( height - 1 ); ndx++ ) { GetVert( ( ndx * width ) + ( ( 2 * width ) - 1 ), tri.v[0] ); GetVert( ( ndx * width ) + ( width - 1 ), tri.v[1] ); GetVert( ( ndx * width ) + ( ( 2 * width ) - 2 ), tri.v[2] );
ComputeIntersectionBarycentricCoordinates( ray, tri.v[0], tri.v[1], tri.v[2], u, v ); // along edge (0.0 < u < 1.0) and right (v < 0.0)
if( ( u >= LOWER_TOLERANCE ) && ( u <= UPPER_TOLERANCE ) && ( v < 0.0f ) ) { u = clamp( u, 0.0f, 1.0f );
// snap v (v = 0.0)
HitPos = tri.v[0] + ( tri.v[1] - tri.v[0] ) * u; return true; }
// special corner 3
if( ( ndx == 0 ) && ( u > 1.0f ) && ( v < 0.0f ) ) { HitPos = tri.v[1]; return true; } }
return false;
#undef LOWER_TOLERANCE
#undef UPPER_TOLERANCE
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Flip( int flipType ) { int width = GetWidth(); int height = GetHeight();
switch( flipType ) { case FLIP_HORIZONTAL: { return; } case FLIP_VERTICAL: { return; } case FLIP_TRANSPOSE: { for( int ndxHeight = 0; ndxHeight < height; ndxHeight++ ) { for( int ndxWidth = ndxHeight; ndxWidth < width; ndxWidth++ ) { float dist1 = GetFieldDistance( ( ndxHeight * width ) + ndxWidth ); float dist2 = GetFieldDistance( ( ndxWidth * height ) + ndxHeight ); SetFieldDistance( ( ndxHeight * width ) + ndxWidth, dist2 ); SetFieldDistance( ( ndxWidth * height ) + ndxHeight, dist1 );
Vector v1, v2; GetFieldVector( ( ndxHeight * width ) + ndxWidth, v1 ); GetFieldVector( ( ndxWidth * height ) + ndxHeight, v2 ); SetFieldVector( ( ndxHeight * width ) + ndxWidth, v2 ); SetFieldVector( ( ndxWidth * height ) + ndxHeight, v1 );
GetSubdivPosition( ( ndxHeight * width ) + ndxWidth, v1 ); GetSubdivPosition( ( ndxWidth * height ) + ndxHeight, v2 ); SetSubdivPosition( ( ndxHeight * width ) + ndxWidth, v2 ); SetSubdivPosition( ( ndxWidth * height ) + ndxHeight, v1 );
GetSubdivNormal( ( ndxHeight * width ) + ndxWidth, v1 ); GetSubdivNormal( ( ndxWidth * height ) + ndxHeight, v2 ); SetSubdivNormal( ( ndxHeight * width ) + ndxWidth, v2 ); SetSubdivNormal( ( ndxWidth * height ) + ndxHeight, v1 );
float alpha1 = GetAlpha( ( ndxHeight * width ) + ndxWidth ); float alpha2 = GetAlpha( ( ndxWidth * height ) + ndxHeight ); SetAlpha( ( ndxHeight * width ) + ndxWidth, alpha2 ); SetAlpha( ( ndxWidth * height ) + ndxHeight, alpha1 ); } } return; } default: { return; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateWalkable( void ) { // Set the walkable tag.
int nTriCount = GetTriCount(); for ( int iTri = 0; iTri < nTriCount; ++iTri ) { Vector v1, v2, v3; GetTriPos( iTri, v1, v2, v3 );
Vector vecEdge1, vecEdge2; vecEdge1 = v2 - v1; vecEdge2 = v3 - v1;
Vector vecTriNormal; CrossProduct( vecEdge2, vecEdge1, vecTriNormal ); VectorNormalize( vecTriNormal );
ResetTriTag( iTri, COREDISPTRI_TAG_WALKABLE ); if ( vecTriNormal.z >= WALKABLE_NORMAL_VALUE ) { SetTriTag( iTri, COREDISPTRI_TAG_WALKABLE ); } }
// Create the walkable render list.
m_aWalkableVerts.RemoveAll(); m_aWalkableIndices.RemoveAll(); m_aForcedWalkableIndices.RemoveAll();
for ( int iTri = 0; iTri < nTriCount; ++iTri ) { if ( !IsTriWalkable( iTri ) ) { unsigned short triIndices[3]; unsigned short newTriIndices[3]; GetTriIndices( iTri, triIndices[0], triIndices[1], triIndices[2] );
newTriIndices[0] = m_aWalkableVerts.AddToTail( m_CoreDispInfo.GetDispVert( triIndices[0] ) ); newTriIndices[1] = m_aWalkableVerts.AddToTail( m_CoreDispInfo.GetDispVert( triIndices[1] ) ); newTriIndices[2] = m_aWalkableVerts.AddToTail( m_CoreDispInfo.GetDispVert( triIndices[2] ) );
if ( IsTriTag( iTri, COREDISPTRI_TAG_FORCE_WALKABLE_BIT ) ) { m_aForcedWalkableIndices.AddToTail( newTriIndices[0] ); m_aForcedWalkableIndices.AddToTail( newTriIndices[1] ); m_aForcedWalkableIndices.AddToTail( newTriIndices[2] ); } else { m_aWalkableIndices.AddToTail( newTriIndices[0] ); m_aWalkableIndices.AddToTail( newTriIndices[1] ); m_aWalkableIndices.AddToTail( newTriIndices[2] ); } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateBuildable( void ) { // Set the buildable tag.
int nTriCount = GetTriCount(); for ( int iTri = 0; iTri < nTriCount; ++iTri ) { Vector v1, v2, v3; GetTriPos( iTri, v1, v2, v3 );
Vector vecEdge1, vecEdge2; vecEdge1 = v2 - v1; vecEdge2 = v3 - v1;
Vector vecTriNormal; CrossProduct( vecEdge2, vecEdge1, vecTriNormal ); VectorNormalize( vecTriNormal );
ResetTriTag( iTri, COREDISPTRI_TAG_BUILDABLE ); if ( vecTriNormal.z >= BUILDABLE_NORMAL_VALUE ) { SetTriTag( iTri, COREDISPTRI_TAG_BUILDABLE ); } }
// Create the buildable render list.
m_aBuildableVerts.RemoveAll(); m_aBuildableIndices.RemoveAll(); m_aForcedBuildableIndices.RemoveAll();
for ( int iTri = 0; iTri < nTriCount; ++iTri ) { if ( !IsTriBuildable( iTri ) ) { unsigned short triIndices[3]; unsigned short newTriIndices[3]; GetTriIndices( iTri, triIndices[0], triIndices[1], triIndices[2] );
newTriIndices[0] = m_aBuildableVerts.AddToTail( m_CoreDispInfo.GetDispVert( triIndices[0] ) ); newTriIndices[1] = m_aBuildableVerts.AddToTail( m_CoreDispInfo.GetDispVert( triIndices[1] ) ); newTriIndices[2] = m_aBuildableVerts.AddToTail( m_CoreDispInfo.GetDispVert( triIndices[2] ) );
if ( IsTriTag( iTri, COREDISPTRI_TAG_FORCE_BUILDABLE_BIT ) ) { m_aForcedBuildableIndices.AddToTail( newTriIndices[0] ); m_aForcedBuildableIndices.AddToTail( newTriIndices[1] ); m_aForcedBuildableIndices.AddToTail( newTriIndices[2] ); } else { m_aBuildableIndices.AddToTail( newTriIndices[0] ); m_aBuildableIndices.AddToTail( newTriIndices[1] ); m_aBuildableIndices.AddToTail( newTriIndices[2] ); } } } }
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void CMapDisp::CreateShoreOverlays( CMapFace *pFace, Shoreline_t *pShoreline ) { // Do the bounds volumes intersect?
Vector vecDispMin, vecDispMax; GetBoundingBox( vecDispMin, vecDispMax ); Vector vecSolidMin, vecSolidMax; CMapSolid *pSolid = static_cast<CMapSolid*>( pFace->GetParent() ); pSolid->GetCullBox( vecSolidMin, vecSolidMax ); if ( !IsBoxIntersectingBox( vecDispMin, vecDispMax, vecSolidMin, vecSolidMax ) ) return;
int nTriangleCount = TriangleCount(); for ( int iTri = 0; iTri < nTriangleCount; ++iTri ) { unsigned short i[3]; GetTriIndices( iTri, i[0], i[1], i[2] ); Vector v[3]; GetVert( i[0], v[0] ); GetVert( i[1], v[1] ); GetVert( i[2], v[2] ); Vector vU, vV; VectorSubtract( v[1], v[0], vU ); VectorSubtract( v[2], v[0], vV );
Vector2D vecIntersect[2]; Vector4D plane; plane.Init( pFace->plane.normal.x, pFace->plane.normal.y, pFace->plane.normal.z, pFace->plane.dist ); int nCount = IntersectTriangleWithPlaneBarycentric( v[0], vU, vV, plane, vecIntersect ); if ( nCount != 2 ) continue;
// Find the normal pointing toward the shore.
Vector vecPoints[2]; vecPoints[0] = v[0] + ( vU * vecIntersect[0].x ) + ( vV * vecIntersect[0].y ); vecPoints[1] = v[0] + ( vU * vecIntersect[1].x ) + ( vV * vecIntersect[1].y );
// Create shore edge normal.
Vector vecEdge, vecNormal; VectorSubtract( vecPoints[1], vecPoints[0], vecEdge ); VectorNormalize( vecEdge ); CrossProduct( vecEdge, pFace->plane.normal, vecNormal ); float flEdgeDist = DotProduct( vecNormal, vecPoints[0] );
for ( int iVert = 0; iVert < 3; ++iVert ) { float flDist = DotProduct( vecNormal, v[iVert] ) - flEdgeDist; if ( flDist > 0.0f ) { float flDist2 = DotProduct( pFace->plane.normal, v[iVert] ) - pFace->plane.dist; if ( flDist2 < 0.0f ) { vecNormal.Negate(); break; } } }
if ( !VectorsAreEqual( vecPoints[0], vecPoints[1], 0.1f ) ) { pShoreline->AddSegment( vecPoints[0], vecPoints[1], vecNormal, pFace->plane.dist, pFace, GetEditHandle() ); } } }
void CMapDisp::PostUpdate(Notify_Dependent_t eNotifyType) { }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static void RenderDisplacementNormals( CCoreDispInfo& coreDispInfo, int numVerts ) { Vector points[4], normal;
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh* pMesh = pRenderContext->GetDynamicMesh();
meshBuilder.Begin( pMesh, MATERIAL_LINES, numVerts );
for( int i = 0; i < numVerts; i++ ) { coreDispInfo.GetVert( i, points[0] ); coreDispInfo.GetNormal( i, normal );
meshBuilder.Color3f( 0.0f, 1.0f, 0.0f ); meshBuilder.Position3f( points[0][0], points[0][1], points[0][2] ); meshBuilder.AdvanceVertex();
meshBuilder.Color3f( 0.0f, 1.0f, 0.0f ); meshBuilder.Position3f( points[0][0] + ( normal[0] * 10.0f ), points[0][1] + ( normal[1] * 10.0f ), points[0][2] + ( normal[2] * 10.0f ) ); meshBuilder.AdvanceVertex(); } meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static void RenderDisplacementTangentsS( CCoreDispInfo &coreDispInfo, int numVerts ) { Vector points[4], tangentS;
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh();
meshBuilder.Begin( pMesh, MATERIAL_LINES, numVerts );
for( int i = 0; i < numVerts; i++ ) { coreDispInfo.GetVert( i, points[0] ); coreDispInfo.GetTangentS( i, tangentS );
meshBuilder.Color3f( 1.0f, 0.0f, 0.0f ); meshBuilder.Position3f( points[0][0], points[0][1], points[0][2] ); meshBuilder.AdvanceVertex();
meshBuilder.Color3f( 1.0f, 0.0f, 0.0f ); meshBuilder.Position3f( points[0][0] + ( tangentS[0] * 10.0f ), points[0][1] + ( tangentS[1] * 10.0f ), points[0][2] + ( tangentS[2] * 10.0f ) ); meshBuilder.AdvanceVertex(); }
meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static void RenderDisplacementTangentsT( CCoreDispInfo &coreDispInfo, int numVerts ) { Vector points[4], tangentT;
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh();
meshBuilder.Begin( pMesh, MATERIAL_LINES, numVerts );
for( int i = 0; i < numVerts; i++ ) { coreDispInfo.GetVert( i, points[0] ); coreDispInfo.GetTangentT( i, tangentT );
meshBuilder.Color3f( 0.0f, 0.0f, 1.0f ); meshBuilder.Position3f( points[0][0], points[0][1], points[0][2] ); meshBuilder.AdvanceVertex();
meshBuilder.Color3f( 0.0f, 0.0f, 1.0f ); meshBuilder.Position3f( points[0][0] + ( tangentT[0] * 10.0f ), points[0][1] + ( tangentT[1] * 10.0f ), points[0][2] + ( tangentT[2] * 10.0f ) ); meshBuilder.AdvanceVertex(); }
meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static void RenderFaceVertexNormals( CCoreDispInfo& coreDispInfo ) { Vector points[4], normal;
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_LINES, 4 );
CCoreDispSurface *pSurf = coreDispInfo.GetSurface(); for( int i = 0; i < 4; i++ ) { pSurf->GetPoint( i, points[0] ); pSurf->GetPointNormal( i, normal );
meshBuilder.Color3f( 1.0f, 0.0f, 0.0f ); meshBuilder.Position3f( points[0][0], points[0][1], points[0][2] ); meshBuilder.AdvanceVertex();
meshBuilder.Color3f( 1.0f, 0.0f, 0.0f ); meshBuilder.Position3f( points[0][0] + ( normal[0] * 25.0f ), points[0][1] + ( normal[1] * 25.0f ), points[0][2] + ( normal[2] * 25.0f ) ); meshBuilder.AdvanceVertex(); } meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static void RenderDisplacementVectorField( CCoreDispInfo& coreDispInfo, int numVerts ) { Vector points[4], normal;
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_LINES, numVerts );
for( int i = 0; i < numVerts; i++ ) { coreDispInfo.GetVert( i, points[0] ); coreDispInfo.GetFieldVector( i, normal );
meshBuilder.Color3f( 1.0f, 1.0f, 0.0f ); meshBuilder.Position3f( points[0][0], points[0][1], points[0][2] ); meshBuilder.AdvanceVertex();
meshBuilder.Color3f( 1.0f, 1.0f, 0.0f ); meshBuilder.Position3f( points[0][0] + ( normal[0] * 50.0f ), points[0][1] + ( normal[1] * 50.0f ), points[0][2] + ( normal[2] * 50.0f ) ); meshBuilder.AdvanceVertex(); } meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static void RenderSubdivPositions( CCoreDispInfo& coreDispInfo, int numVerts ) { Vector pt, normal;
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_LINES, numVerts );
for( int i = 0; i < numVerts; i++ ) { coreDispInfo.GetFlatVert( i, pt ); coreDispInfo.GetSubdivPosition( i, normal );
meshBuilder.Position3f( pt[0], pt[1], pt[2] ); meshBuilder.Color3f( 1.0f, 0.0f, 1.0f ); meshBuilder.AdvanceVertex();
meshBuilder.Position3f( pt[0] + normal[0], pt[1] + normal[1], pt[2] + normal[2] ); meshBuilder.Color3f( 1.0f, 0.0f, 1.0f ); meshBuilder.AdvanceVertex(); } meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static void RenderDisplacementEdges( CCoreDispInfo& coreDispInfo ) { Vector points[4];
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_LINES, 4 );
CCoreDispSurface *pSurf = coreDispInfo.GetSurface(); pSurf->GetPoint( 0, points[0] ); pSurf->GetPoint( 1, points[1] ); pSurf->GetPoint( 2, points[2] ); pSurf->GetPoint( 3, points[3] ); meshBuilder.Color3f( 1.0f, 0.0f, 0.0f ); meshBuilder.Position3f( points[0][0], points[0][1], points[0][2] ); meshBuilder.AdvanceVertex(); meshBuilder.Color3f( 1.0f, 0.0f, 0.0f ); meshBuilder.Position3f( points[1][0], points[1][1], points[1][2] ); meshBuilder.AdvanceVertex(); meshBuilder.Color3f( 0.0f, 1.0f, 0.0f ); meshBuilder.Position3f( points[1][0], points[1][1], points[1][2] ); meshBuilder.AdvanceVertex(); meshBuilder.Color3f( 0.0f, 1.0f, 0.0f ); meshBuilder.Position3f( points[2][0], points[2][1], points[2][2] ); meshBuilder.AdvanceVertex(); meshBuilder.Color3f( 0.0f, 0.0f, 1.0f ); meshBuilder.Position3f( points[2][0], points[2][1], points[2][2] ); meshBuilder.AdvanceVertex(); meshBuilder.Color3f( 0.0f, 0.0f, 1.0f ); meshBuilder.Position3f( points[3][0], points[3][1], points[3][2] ); meshBuilder.AdvanceVertex(); meshBuilder.Color3f( 1.0f, 0.0f, 1.0f ); meshBuilder.Position3f( points[3][0], points[3][1], points[3][2] ); meshBuilder.AdvanceVertex(); meshBuilder.Color3f( 1.0f, 0.0f, 1.0f ); meshBuilder.Position3f( points[0][0], points[0][1], points[0][2] ); meshBuilder.AdvanceVertex();
meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::RenderDisAllowedVerts( CRender3D *pRender ) { CBitVec<MAX_DISPVERTS> &allowedVerts = m_CoreDispInfo.GetAllowedVerts();
int nVertCount = GetSize(); for ( int iVert = 0; iVert < nVertCount; ++iVert ) { if ( allowedVerts.Get( iVert ) == 0 ) { Vector vecPos; GetVert( iVert, vecPos );
// Draw a box at this point!
Vector vecPointMin, vecPointMax; for ( int iAxis = 0; iAxis < 3; ++iAxis ) { vecPointMin[iAxis] = vecPos[iAxis] - 5.0f; vecPointMax[iAxis] = vecPos[iAxis] + 5.0f; } pRender->RenderBox( vecPointMin, vecPointMax, 255, 0, 255, SELECT_NONE ); } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Render3DDebug( CRender3D *pRender, bool isSelected ) { #if 0
pRender->SetRenderMode( RENDER_MODE_WIREFRAME ); RenderDisplacementNormals( m_CoreDispInfo, MAPDISP_MAX_VERTS ); RenderDisplacementTangentsS( m_CoreDispInfo, MAPDISP_MAX_VERTS ); RenderDisplacementTangentsT( m_CoreDispInfo, MAPDISP_MAX_VERTS );
// RenderFaceVertexNormals( m_CoreDispInfo );
RenderDisplacementVectorField( m_CoreDispInfo, MAPDISP_MAX_VERTS ); RenderSubdivPositions( m_CoreDispInfo, GetSize() ); // RenderDisplacementEdges( m_CoreDispInfo );
#endif
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::CalcColor( CRender3D *pRender, bool bIsSelected, SelectionState_t faceSelectionState, Color &pColor ) { // Get the current render mode.
EditorRenderMode_t renderMode = pRender->GetCurrentRenderMode(); switch ( renderMode ) { case RENDER_MODE_TEXTURED: case RENDER_MODE_TEXTURED_SHADED: case RENDER_MODE_LIGHT_PREVIEW2: case RENDER_MODE_LIGHT_PREVIEW_RAYTRACED: { break; } case RENDER_MODE_SELECTION_OVERLAY: { if ( faceSelectionState == SELECT_MULTI_PARTIAL ) { pColor[2] = 100; pColor[3] = 64; } else if ( ( faceSelectionState == SELECT_NORMAL ) || bIsSelected ) { SelectFaceColor( pColor ); pColor[3] = 64; } break; } case RENDER_MODE_LIGHTMAP_GRID: { CMapFace *pFace = ( CMapFace* )GetParent(); if ( bIsSelected ) { SelectFaceColor( pColor ); } else if (pFace->texture.nLightmapScale > DEFAULT_LIGHTMAP_SCALE) { pColor[0] = 150; } else if (pFace->texture.nLightmapScale < DEFAULT_LIGHTMAP_SCALE) { pColor[2] = 100; } break; } case RENDER_MODE_TRANSLUCENT_FLAT: case RENDER_MODE_FLAT: { if ( bIsSelected ) { SelectFaceColor( pColor ); } break; } case RENDER_MODE_WIREFRAME: { if ( bIsSelected ) { SelectEdgeColor( pColor ); } break; } case RENDER_MODE_SMOOTHING_GROUP: { // Render the non-smoothing group faces in white, yellow for the others.
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if ( pDoc ) { CMapFace *pFace = ( CMapFace* )GetParent(); int iGroup = pDoc->GetSmoothingGroupVisual(); if ( pFace->InSmoothingGroup( iGroup ) ) { pColor[2] = 0; } } break; } default: { assert( 0 ); break; } } }
void CMapDisp::Render2D(CRender2D *pRender, bool bIsSelected, SelectionState_t faceSelectionState ) { pRender->PushRenderMode( RENDER_MODE_WIREFRAME );
pRender->DrawDisplacement( &m_CoreDispInfo );
pRender->PopRenderMode(); }
void CMapDisp::AddShadowingTriangles( CUtlVector<Vector> &tri_list ) { // add lighting preview triangles
CoreDispVert_t *pVert = m_CoreDispInfo.GetDispVertList(); unsigned short *pIndex = m_CoreDispInfo.GetRenderIndexList(); int numIndices = m_CoreDispInfo.GetRenderIndexCount(); for ( int i = 0; i < numIndices; i += 3 ) { for( int v = 0; v < 3; v++ ) tri_list.AddToTail( pVert[pIndex[i+v]].m_Vert ); } }
//-----------------------------------------------------------------------------
// NOTE: most of the rendering mode is set in the parent face render call!!!
//-----------------------------------------------------------------------------
void CMapDisp::Render3D( CRender3D *pRender, bool bIsSelected, SelectionState_t faceSelectionState ) { // Get the current rendermode.
EditorRenderMode_t renderMode = pRender->GetCurrentRenderMode();
if ( renderMode == RENDER_MODE_SELECTION_OVERLAY ) { RenderOverlaySurface( pRender, bIsSelected, faceSelectionState ); } else { RenderSurface( pRender, bIsSelected, faceSelectionState );
// Note: This will cause the wireframe to render twice in selection due to
// the multiplass operations at the solid and face levels (the render
// portion of the hammer code needs to be reworked there).
if ( renderMode != RENDER_MODE_WIREFRAME && bIsSelected ) { // This renders wireframe twice in selection!
RenderWireframeSurface( pRender, bIsSelected, faceSelectionState ); } }
// Note: the rendermode == textured is so that this only gets rendered
// once per frame.
bool bDispWalkableMode = CMapDoc::GetActiveMapDoc()->IsDispDrawWalkable(); if ( bDispWalkableMode && RenderingModeIsTextured(renderMode)) { RenderWalkableSurface( pRender, bIsSelected, faceSelectionState ); }
// Note: the rendermode == textured is so that this only gets rendered
// once per frame.
bool bDispBuildableMode = CMapDoc::GetActiveMapDoc()->IsDispDrawBuildable(); if ( bDispBuildableMode && RenderingModeIsTextured( renderMode )) { RenderBuildableSurface( pRender, bIsSelected, faceSelectionState ); }
bool bDispRemovedVertMode = CMapDoc::GetActiveMapDoc()->IsDispDrawRemovedVerts(); if ( bDispRemovedVertMode && RenderingModeIsTextured( renderMode ) ) { RenderDisAllowedVerts( pRender ); }
// Render debug information.
// Render3DDebug( pRender, bIsSelected );
}
//-----------------------------------------------------------------------------
// Purpose: Render the displacement surface.
//-----------------------------------------------------------------------------
void CMapDisp::RenderOverlaySurface( CRender3D *pRender, bool bIsSelected, SelectionState_t faceSelectionState ) { if ( HasSelectMask() ) return;
Color color( 255, 255, 255, 255 ); CalcColor( pRender, bIsSelected, faceSelectionState, color );
int nVertCount = m_CoreDispInfo.GetSize(); int nIndexCount = m_CoreDispInfo.GetRenderIndexCount(); CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertCount, nIndexCount ); CoreDispVert_t *pVert = m_CoreDispInfo.GetDispVertList(); for (int i = 0; i < nVertCount; ++i ) { meshBuilder.Position3fv( pVert[i].m_Vert.Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], color[3] ); meshBuilder.Normal3fv( pVert[i].m_Normal.Base() ); meshBuilder.AdvanceVertex(); } unsigned short *pIndex = m_CoreDispInfo.GetRenderIndexList(); for ( int i = 0; i < nIndexCount; ++i ) { meshBuilder.Index( pIndex[i] ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
// Purpose: Render the displacement surface with a vertex alpha (blending).
//-----------------------------------------------------------------------------
void CMapDisp::RenderSurface( CRender3D *pRender, bool bIsSelected, SelectionState_t faceSelectionState ) { Color color( 255, 255, 255, 255 ); Vector test( 1.0f, 0.0f, 0.0f ); CalcColor( pRender, bIsSelected, faceSelectionState, color );
int numVerts = m_CoreDispInfo.GetSize(); int numIndices = m_CoreDispInfo.GetRenderIndexCount();
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, numVerts, numIndices ); CoreDispVert_t *pVert = m_CoreDispInfo.GetDispVertList(); for (int i = 0; i < numVerts; ++i ) { meshBuilder.Position3fv( pVert[i].m_Vert.Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], ( unsigned char )( pVert[i].m_Alpha ) ); meshBuilder.Normal3fv( pVert[i].m_Normal.Base() ); meshBuilder.TangentS3fv( pVert[i].m_TangentS.Base() ); meshBuilder.TangentT3fv( pVert[i].m_TangentT.Base() ); meshBuilder.TexCoord2fv( 0, pVert[i].m_TexCoord.Base() ); meshBuilder.TexCoord2fv( 1, pVert[i].m_LuxelCoords[0].Base() );
// multiblend uses these
meshBuilder.TexCoord4fv( 3, pVert[ i ].m_AlphaBlend.Base() ); Vector4D temp; temp.Init( pVert[ i ].m_vBlendColors[ 0 ], pVert[ i ].m_MultiBlend.x ); meshBuilder.TexCoord4fv( 4, temp.Base() ); temp.Init( pVert[ i ].m_vBlendColors[ 1 ], pVert[ i ].m_MultiBlend.y ); meshBuilder.TexCoord4fv( 5, temp.Base() ); temp.Init( pVert[ i ].m_vBlendColors[ 2 ], pVert[ i ].m_MultiBlend.z ); meshBuilder.TexCoord4fv( 6, temp.Base() ); temp.Init( pVert[ i ].m_vBlendColors[ 3 ], pVert[ i ].m_MultiBlend.w ); meshBuilder.TexCoord4fv( 7, temp.Base() );
// lightmapped_4wayblend uses this
meshBuilder.Specular4fv( pVert[ i ].m_MultiBlend.Base() );
meshBuilder.AdvanceVertex(); } unsigned short *pIndex = m_CoreDispInfo.GetRenderIndexList(); for ( int i = 0; i < numIndices; ++i ) { meshBuilder.Index( pIndex[i] ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); pMesh->Draw(); }
//-----------------------------------------------------------------------------
// Purpose: Render the displacement surface with walkable data.
//-----------------------------------------------------------------------------
void CMapDisp::RenderWalkableSurface( CRender3D *pRender, bool bIsSelected, SelectionState_t faceSelectionState ) { // Normal
for ( int iPass = 0; iPass < 2; ++iPass ) { Color color; if ( iPass == 0 ) { pRender->PushRenderMode( RENDER_MODE_TRANSLUCENT_FLAT ); color.SetColor( 255, 255, 0, 64 ); CalcColor( pRender, false, faceSelectionState, color ); } else { pRender->PushRenderMode( RENDER_MODE_WIREFRAME ); color.SetColor( 255, 255, 0, 255 ); CalcColor( pRender, false, faceSelectionState, color ); } int nVertCount = m_aWalkableVerts.Count(); int nIndexCount = m_aWalkableIndices.Count();
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertCount, nIndexCount ); CoreDispVert_t **ppVerts = m_aWalkableVerts.Base(); for (int i = 0; i < nVertCount; ++i ) { CoreDispVert_t *pVert = ppVerts[i]; meshBuilder.Position3fv( pVert->m_Vert.Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], color[3] ); meshBuilder.Normal3fv( pVert->m_Normal.Base() ); meshBuilder.AdvanceVertex(); } unsigned short *pIndex = m_aWalkableIndices.Base(); for ( int i = 0; i < nIndexCount; ++i ) { meshBuilder.Index( pIndex[i] ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); pMesh->Draw();
pRender->PopRenderMode(); }
// Forced
for ( int iPass = 0; iPass < 2; ++iPass ) { Color color; if ( iPass == 0 ) { pRender->PushRenderMode( RENDER_MODE_TRANSLUCENT_FLAT ); color.SetColor( 0, 255, 0, 64 ); CalcColor( pRender, false, faceSelectionState, color ); } else { pRender->PushRenderMode( RENDER_MODE_WIREFRAME ); color.SetColor( 0, 255, 0, 255 ); CalcColor( pRender, false, faceSelectionState, color ); } int nVertCount = m_aWalkableVerts.Count(); int nIndexCount = m_aForcedWalkableIndices.Count();
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertCount, nIndexCount ); CoreDispVert_t **ppVerts = m_aWalkableVerts.Base(); for (int i = 0; i < nVertCount; ++i ) { CoreDispVert_t *pVert = ppVerts[i]; meshBuilder.Position3fv( pVert->m_Vert.Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], color[3] ); meshBuilder.Normal3fv( pVert->m_Normal.Base() ); meshBuilder.AdvanceVertex(); } unsigned short *pIndex = m_aForcedWalkableIndices.Base(); for ( int i = 0; i < nIndexCount; ++i ) { meshBuilder.Index( pIndex[i] ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); pMesh->Draw();
pRender->PopRenderMode(); } }
//-----------------------------------------------------------------------------
// Purpose: Render the displacement surface with buildable data.
//-----------------------------------------------------------------------------
void CMapDisp::RenderBuildableSurface( CRender3D *pRender, bool bIsSelected, SelectionState_t faceSelectionState ) { // Normal
for ( int iPass = 0; iPass < 2; ++iPass ) { Color color; if ( iPass == 0 ) { pRender->PushRenderMode( RENDER_MODE_TRANSLUCENT_FLAT ); color.SetColor( 255, 100, 25, 64 ); CalcColor( pRender, false, faceSelectionState, color ); } else { pRender->PushRenderMode( RENDER_MODE_WIREFRAME ); color.SetColor( 255, 255, 0, 255 ); CalcColor( pRender, false, faceSelectionState, color ); } int nVertCount = m_aBuildableVerts.Count(); int nIndexCount = m_aBuildableIndices.Count();
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertCount, nIndexCount ); CoreDispVert_t **ppVerts = m_aBuildableVerts.Base(); for (int i = 0; i < nVertCount; ++i ) { CoreDispVert_t *pVert = ppVerts[i]; meshBuilder.Position3fv( pVert->m_Vert.Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], color[3] ); meshBuilder.Normal3fv( pVert->m_Normal.Base() ); meshBuilder.AdvanceVertex(); } unsigned short *pIndex = m_aBuildableIndices.Base(); for ( int i = 0; i < nIndexCount; ++i ) { meshBuilder.Index( pIndex[i] ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); pMesh->Draw();
pRender->PopRenderMode(); }
// Forced
for ( int iPass = 0; iPass < 2; ++iPass ) { Color color; if ( iPass == 0 ) { pRender->PushRenderMode( RENDER_MODE_TRANSLUCENT_FLAT ); color.SetColor( 0, 0, 255, 64 ); CalcColor( pRender, false, faceSelectionState, color ); } else { pRender->PushRenderMode( RENDER_MODE_WIREFRAME ); color.SetColor( 0, 0, 255, 255 ); CalcColor( pRender, false, faceSelectionState, color ); } int nVertCount = m_aBuildableVerts.Count(); int nIndexCount = m_aForcedBuildableIndices.Count();
CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nVertCount, nIndexCount ); CoreDispVert_t **ppVerts = m_aBuildableVerts.Base(); for (int i = 0; i < nVertCount; ++i ) { CoreDispVert_t *pVert = ppVerts[i]; meshBuilder.Position3fv( pVert->m_Vert.Base() ); meshBuilder.Color4ub( color[0], color[1], color[2], color[3] ); meshBuilder.Normal3fv( pVert->m_Normal.Base() ); meshBuilder.AdvanceVertex(); } unsigned short *pIndex = m_aForcedBuildableIndices.Base(); for ( int i = 0; i < nIndexCount; ++i ) { meshBuilder.Index( pIndex[i] ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); pMesh->Draw();
pRender->PopRenderMode(); } }
//-----------------------------------------------------------------------------
// Purpose: Render the white wireframe overlay.
//-----------------------------------------------------------------------------
void CMapDisp::RenderWireframeSurface( CRender3D *pRender, bool bIsSelected, SelectionState_t faceSelectionState ) { if ( HasGridMask() ) return;
pRender->PushRenderMode( RENDER_MODE_WIREFRAME );
Color color( 255, 255, 255, 255 ); CalcColor( pRender, bIsSelected, faceSelectionState, color ); int numVerts = m_CoreDispInfo.GetSize(); int numIndices = m_CoreDispInfo.GetRenderIndexCount(); CMeshBuilder meshBuilder; CMatRenderContextPtr pRenderContext( MaterialSystemInterface() ); IMesh *pMesh = pRenderContext->GetDynamicMesh(); meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, numVerts, numIndices ); CoreDispVert_t *pVert = m_CoreDispInfo.GetDispVertList(); for (int i = 0; i < numVerts; ++i ) { meshBuilder.Position3fv( pVert[i].m_Vert.Base() ); meshBuilder.Color3ub( 255, 255, 255 ); meshBuilder.TexCoord2fv( 0, pVert[i].m_TexCoord.Base() ); meshBuilder.TexCoord2fv( 1, pVert[i].m_LuxelCoords[0].Base() ); meshBuilder.AdvanceVertex(); } unsigned short *pIndex = m_CoreDispInfo.GetRenderIndexList(); for ( int i = 0; i < numIndices; ++i ) { meshBuilder.Index( pIndex[i] ); meshBuilder.AdvanceIndex(); } meshBuilder.End(); pMesh->Draw();
// Reset the render mode.
pRender->PopRenderMode(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateNeighborDependencies( bool bDestroy ) { if( !bDestroy ) { // reset and find new neighbors
ResetNeighbors(); FindNeighbors(); } else { //
// update edge neighbors
//
for( int i = 0; i < 4; i++ ) { EditDispHandle_t handle = GetEdgeNeighbor( i ); if( handle == EDITDISPHANDLE_INVALID ) continue;
CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->UpdateNeighborDependencies( false ); } //
// update corner neighbors
//
for( int i = 0; i < 4; i++ ) { int cornerCount = GetCornerNeighborCount( i ); for( int j = 0; j < cornerCount; j++ ) { EditDispHandle_t handle = GetCornerNeighbor( i, j ); if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->UpdateNeighborDependencies( false ); } } } } }
void CMapDisp::UpdateNeighborsOfDispsIntersectingBox( const Vector &bbMin, const Vector &bbMax, float flPadding ) { IWorldEditDispMgr *pDispMgr = GetActiveWorldEditDispManager(); if( !pDispMgr ) return;
Vector bbPaddedMin = bbMin - Vector( flPadding, flPadding, flPadding ); Vector bbPaddedMax = bbMax + Vector( flPadding, flPadding, flPadding );
int count = pDispMgr->WorldCount(); for ( int i=0; i < count; i++ ) { CMapDisp *pDisp = pDispMgr->GetFromWorld( i ); // Do the bbox test.
Vector testbbmin, testbbmax; pDisp->GetBoundingBox( testbbmin, testbbmax ); if ( QuickBoxIntersectTest( testbbmin, testbbmax, bbPaddedMin, bbPaddedMax ) ) { pDisp->ResetNeighbors(); pDispMgr->FindWorldNeighbors( pDisp->GetEditHandle() ); } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::FindNeighbors( void ) { //
// find the current neighbors to "this" displacement
//
IWorldEditDispMgr *pDispMgr = GetActiveWorldEditDispManager(); if( !pDispMgr ) return;
pDispMgr->FindWorldNeighbors( m_EditHandle );
//
// generate the vector field for neighboring surfaces (edges and corners)
//
for( int i = 0; i < NUM_EDGES_CORNERS; i++ ) { EditDispHandle_t handle = m_EdgeNeighbors[i]; if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->ResetNeighbors(); pDispMgr->FindWorldNeighbors( pNeighborDisp->GetEditHandle() ); }
int cornerCount = m_CornerNeighborCounts[i]; if( cornerCount != 0 ) { for( int j = 0; j < cornerCount; j++ ) { handle = m_CornerNeighbors[i][j]; if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->ResetNeighbors(); pDispMgr->FindWorldNeighbors( pNeighborDisp->GetEditHandle() ); } } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::UpdateBoundingBox( void ) { Vector v;
VectorFill( m_BBox[0], COORD_NOTINIT ); VectorFill( m_BBox[1], -COORD_NOTINIT );
int size = GetSize(); for( int i = 0; i < size; i++ ) { m_CoreDispInfo.GetVert( i, v ); if( v[0] < m_BBox[0][0] ) { m_BBox[0][0] = v[0]; } if( v[1] < m_BBox[0][1] ) { m_BBox[0][1] = v[1]; } if( v[2] < m_BBox[0][2] ) { m_BBox[0][2] = v[2]; }
if( v[0] > m_BBox[1][0] ) { m_BBox[1][0] = v[0]; } if( v[1] > m_BBox[1][1] ) { m_BBox[1][1] = v[1]; } if( v[2] > m_BBox[1][2] ) { m_BBox[1][2] = v[2]; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Scale( float scale ) { // check for a change in scale
if( scale == m_Scale ) return;
int size = GetSize();
// scale the surface back to its original state and re-scale with the new
// value
if( m_Scale != 1.0f ) { float adj = 1.0f / m_Scale;
for( int i = 0; i < size; i++ ) { // scale the vector field distance
float dist = GetFieldDistance( i ); dist *= adj; SetFieldDistance( i, dist );
// scale the subdivision pos
Vector vPos; GetSubdivPosition( i, vPos ); vPos *= adj; SetSubdivPosition( i, vPos ); } }
for( int i = 0; i < size; i++ ) { // scale the vector field distance
float dist = GetFieldDistance( i ); dist *= scale; SetFieldDistance( i, dist ); // scale the subdivision pos
Vector vPos; GetSubdivPosition( i, vPos ); vPos *= scale; SetSubdivPosition( i, vPos ); }
m_Scale = scale;
UpdateData(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::ApplyNoise( float min, float max, float rockiness ) { if( min == max ) return;
// initialize the paint data
Paint_Init( DISPPAINT_CHANNEL_POSITION );
//
// clamp rockiness value between 0.0 and 1.0
//
if( rockiness < 0.0f ) { rockiness = 0.0f; } if( rockiness > 1.0f ) { rockiness = 1.0f; }
float delta = max - min; float deltaBy2 = delta / 2.0f;
int size = GetSize(); for( int i = 0; i < size; i++ ) { //
// get a noise value based on the points position
//
Vector v; GetVert( i, v );
float noiseX = v.x + v.z; float noiseY = v.y + v.z; float noise = PerlinNoise2D( noiseX, noiseY, rockiness );
//
// clamp noise (can go a little higher and lower due to precision)
//
if( noise < -1.0f ) { noise = -1.0f; } if( noise > 1.0f ) { noise = 1.0f; }
noise *= deltaBy2; noise += ( deltaBy2 + min );
// apply noise to the subdivision normal direction
Vector vNoise; GetFieldVector( i, vNoise ); if( ( vNoise.x == 0 ) && ( vNoise.y == 0 ) && ( vNoise.z == 0 ) ) { GetSubdivNormal( i, vNoise ); } vNoise *= noise; vNoise += v;
// set the paint value
Paint_SetValue( i, vNoise ); }
Paint_Update( false ); }
//=============================================================================
//
// Load/Save Functions
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::PostLoad( void ) { Vector v;
//
// check the subdivision normals -- clean them up (old files)
//
bool bUpdateSubdivNormals = false;
int size = GetSize(); for( int i = 0; i < size; i++ ) { GetSubdivNormal( i, v ); if( ( v.x == 0.0f ) && ( v.y == 0.0f ) && ( v.z == 0.0f ) ) { bUpdateSubdivNormals = true; break; } }
if( bUpdateSubdivNormals ) { Vector vNormal; GetSurfNormal( vNormal );
for( int i = 0; i < size; i++ ) { SetSubdivNormal( i, vNormal ); } } }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispDistancesCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispDistancesKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : szKey -
// szValue -
// pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispDistancesKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { float dispDistance;
if (!strnicmp(szKey, "row", 3)) { char szBuf[MAX_KEYVALUE_LEN]; strcpy(szBuf, szValue);
int nCols = (1 << pDisp->GetPower()) + 1; int nRow = atoi(&szKey[3]);
char *pszNext = strtok(szBuf, " "); int nIndex = nRow * nCols;
while (pszNext != NULL) { dispDistance = (float)atof(pszNext); pDisp->m_CoreDispInfo.SetFieldDistance( nIndex, dispDistance ); pszNext = strtok(NULL, " "); nIndex++; } }
return(ChunkFile_Ok); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispOffsetsCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispOffsetsKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : szKey -
// szValue -
// pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispOffsetsKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { Vector subdivVector;
if( !strnicmp( szKey, "row", 3 ) ) { char szBuf[MAX_KEYVALUE_LEN]; strcpy( szBuf, szValue );
int nCols = ( 1 << pDisp->GetPower() ) + 1; int nRow = atoi( &szKey[3] );
char *pszNext0 = strtok( szBuf, " " ); char *pszNext1 = strtok( NULL, " " ); char *pszNext2 = strtok( NULL, " " );
int nIndex = nRow * nCols;
while( ( pszNext0 != NULL ) && ( pszNext1 != NULL ) && ( pszNext2 != NULL ) ) { subdivVector[0] = ( float )atof( pszNext0 ); subdivVector[1] = ( float )atof( pszNext1 ); subdivVector[2] = ( float )atof( pszNext2 );
pDisp->m_CoreDispInfo.SetSubdivPosition( nIndex, subdivVector );
pszNext0 = strtok( NULL, " " ); pszNext1 = strtok( NULL, " " ); pszNext2 = strtok( NULL, " " );
nIndex++; } }
return( ChunkFile_Ok ); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispOffsetNormalsCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispOffsetNormalsKeyCallback, pDisp )); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : szKey -
// szValue -
// pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispOffsetNormalsKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { Vector normalVector;
if( !strnicmp( szKey, "row", 3 ) ) { char szBuf[MAX_KEYVALUE_LEN]; strcpy( szBuf, szValue );
int nCols = ( 1 << pDisp->GetPower() ) + 1; int nRow = atoi( &szKey[3] );
char *pszNext0 = strtok( szBuf, " " ); char *pszNext1 = strtok( NULL, " " ); char *pszNext2 = strtok( NULL, " " );
int nIndex = nRow * nCols;
while( ( pszNext0 != NULL ) && ( pszNext1 != NULL ) && ( pszNext2 != NULL ) ) { normalVector[0] = ( float )atof( pszNext0 ); normalVector[1] = ( float )atof( pszNext1 ); normalVector[2] = ( float )atof( pszNext2 );
pDisp->m_CoreDispInfo.SetSubdivNormal( nIndex, normalVector );
pszNext0 = strtok( NULL, " " ); pszNext1 = strtok( NULL, " " ); pszNext2 = strtok( NULL, " " );
nIndex++; } }
return( ChunkFile_Ok ); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : szKey -
// szValue -
// pWorld -
// Output :
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { if (!stricmp(szKey, "power")) { int power; CChunkFile::ReadKeyValueInt( szValue, power ); pDisp->SetPower( power ); } else if (!stricmp(szKey, "uaxis")) { Vector mapAxis; CChunkFile::ReadKeyValueVector3( szValue, mapAxis ); pDisp->SetHasMappingAxes( true ); pDisp->m_MapAxes[0] = mapAxis; } else if (!stricmp(szKey, "vaxis")) { Vector mapAxis; CChunkFile::ReadKeyValueVector3( szValue, mapAxis ); pDisp->SetHasMappingAxes( true ); pDisp->m_MapAxes[1] = mapAxis; } else if( !stricmp( szKey, "startposition" ) ) { Vector startPosition; CChunkFile::ReadKeyValueVector3( szValue, startPosition ); CCoreDispSurface *pSurf = pDisp->m_CoreDispInfo.GetSurface(); pSurf->SetPointStart( startPosition ); } else if (!stricmp(szKey, "flags")) { int nFlags; CChunkFile::ReadKeyValueInt( szValue, nFlags ); pDisp->SetFlags( nFlags ); } #if 0
else if (!stricmp(szKey, "mintess")) { int minTess; CChunkFile::ReadKeyValueInt( szValue, minTess ); pDisp->SetMinTess( minTess ); } else if (!stricmp(szKey, "smooth")) { float smoothingAngle; CChunkFile::ReadKeyValueFloat( szValue, smoothingAngle ); pDisp->SetSmoothingAngle( smoothingAngle ); } else if( !stricmp( szKey, "alpha" ) ) { Vector4D alphaValues; CChunkFile::ReadKeyValueVector4( szValue, alphaValues );
for( int i = 0; i < 4; i++ ) { pDisp->m_CoreDispInfo.SetSurfPointAlpha( i, alphaValues[i] ); } } #endif
else if( !stricmp( szKey, "elevation" ) ) { float elevation; CChunkFile::ReadKeyValueFloat( szValue, elevation ); pDisp->SetElevation( elevation ); } else if( !stricmp( szKey, "subdiv" ) ) { int bSubdivided; CChunkFile::ReadKeyValueInt( szValue, bSubdivided ); bool bSubdiv = ( bSubdivided != 0 ); pDisp->SetSubdivided( bSubdiv ); }
return(ChunkFile_Ok); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispAlphasCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispAlphasKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispAlphasKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { float alpha;
if (!strnicmp(szKey, "row", 3)) { char szBuf[MAX_KEYVALUE_LEN]; strcpy(szBuf, szValue);
int nCols = (1 << pDisp->GetPower()) + 1; int nRow = atoi(&szKey[3]);
char *pszNext = strtok(szBuf, " ");
int nIndex = nRow * nCols;
while (pszNext != NULL) { alpha = (float)atof(pszNext);
pDisp->m_CoreDispInfo.SetAlpha( nIndex, alpha );
pszNext = strtok(NULL, " ");
nIndex++; } }
return(ChunkFile_Ok); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispMultiBlendCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispMultiBlendKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispMultiBlendKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { if (!strnicmp(szKey, "row", 3)) { char szBuf[MAX_KEYVALUE_LEN]; strcpy(szBuf, szValue);
int nCols = (1 << pDisp->GetPower()) + 1; int nRow = atoi(&szKey[3]);
char *pszNext = strtok(szBuf, " ");
int nIndex = nRow * nCols;
while (pszNext != NULL) { Vector4D vMultiBlend;
vMultiBlend.x = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlend.y = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlend.z = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlend.w = ( float )atof( pszNext ); pszNext = strtok(NULL, " ");
pDisp->m_CoreDispInfo.SetMultiBlend( nIndex, vMultiBlend );
nIndex++; } }
return(ChunkFile_Ok); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispAlphaBlendCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispAlphaBlendKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispAlphaBlendKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { if (!strnicmp(szKey, "row", 3)) { char szBuf[MAX_KEYVALUE_LEN]; strcpy(szBuf, szValue);
int nCols = (1 << pDisp->GetPower()) + 1; int nRow = atoi(&szKey[3]);
char *pszNext = strtok(szBuf, " ");
int nIndex = nRow * nCols;
while (pszNext != NULL) { Vector4D vMultiBlend;
vMultiBlend.x = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlend.y = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlend.z = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlend.w = ( float )atof( pszNext ); pszNext = strtok(NULL, " ");
pDisp->m_CoreDispInfo.SetAlphaBlend( nIndex, vMultiBlend );
nIndex++; } }
return(ChunkFile_Ok); }
static int nMultiBlendColorIndex = 0;
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispMultiBlendColorCallback0(CChunkFile *pFile, CMapDisp *pDisp) { nMultiBlendColorIndex = 0;
return(pFile->ReadChunk((KeyHandler_t)LoadDispMultiBlendColorKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispMultiBlendColorCallback1(CChunkFile *pFile, CMapDisp *pDisp) { nMultiBlendColorIndex = 1;
return(pFile->ReadChunk((KeyHandler_t)LoadDispMultiBlendColorKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispMultiBlendColorCallback2(CChunkFile *pFile, CMapDisp *pDisp) { nMultiBlendColorIndex = 2;
return(pFile->ReadChunk((KeyHandler_t)LoadDispMultiBlendColorKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispMultiBlendColorCallback3(CChunkFile *pFile, CMapDisp *pDisp) { nMultiBlendColorIndex = 3;
return(pFile->ReadChunk((KeyHandler_t)LoadDispMultiBlendColorKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispMultiBlendColorKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { if (!strnicmp(szKey, "row", 3)) { char szBuf[MAX_KEYVALUE_LEN]; strcpy(szBuf, szValue);
int nCols = (1 << pDisp->GetPower()) + 1; int nRow = atoi(&szKey[3]);
char *pszNext = strtok(szBuf, " ");
int nIndex = nRow * nCols;
while (pszNext != NULL) { Vector vMultiBlendColor;
vMultiBlendColor.x = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlendColor.y = ( float )atof( pszNext ); pszNext = strtok(NULL, " "); vMultiBlendColor.z = ( float )atof( pszNext ); pszNext = strtok(NULL, " ");
pDisp->m_CoreDispInfo.SetMultiBlendColor( nIndex, nMultiBlendColorIndex, vMultiBlendColor );
nIndex++; } }
return(ChunkFile_Ok); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispTriangleTagsCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispTriangleTagsKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispTriangleTagsKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { unsigned short nTriTag;
if ( !strnicmp( szKey, "row", 3 ) ) { char szBuf[MAX_KEYVALUE_LEN]; strcpy( szBuf, szValue );
int nCols = ( 1 << pDisp->GetPower() ); int nRow = atoi( &szKey[3] );
char *pszNext = strtok( szBuf, " " );
int nIndex = nRow * nCols; int iTri = nIndex * 2;
while ( pszNext != NULL ) { nTriTag = ( unsigned int )atoi( pszNext ); pDisp->m_CoreDispInfo.SetTriTagValue( iTri, nTriTag ); pszNext = strtok( NULL, " " ); iTri++; } }
return( ChunkFile_Ok ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispAllowedVertsCallback( CChunkFile *pFile, CMapDisp *pDisp ) { return( pFile->ReadChunk( ( KeyHandler_t )LoadDispAllowedVertsKeyCallback, pDisp ) ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispAllowedVertsKeyCallback( const char *szKey, const char *szValue, CMapDisp *pDisp ) { if ( !strnicmp( szKey, "10", 2 ) ) { char szBuf[MAX_KEYVALUE_LEN]; strcpy( szBuf, szValue ); int iValue = 0;
char *pszNext = strtok( szBuf, " " ); while ( pszNext != NULL ) { unsigned int nValue = ( unsigned int )atoi( pszNext ); unsigned long ulValue = ( unsigned long )nValue; pDisp->m_CoreDispInfo.AllowedVerts_SetDWord( iValue, ulValue ); pszNext = strtok( NULL, " " ); iValue++; } }
return( ChunkFile_Ok ); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispNormalsCallback(CChunkFile *pFile, CMapDisp *pDisp) { return(pFile->ReadChunk((KeyHandler_t)LoadDispNormalsKeyCallback, pDisp)); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *szKey -
// *szValue -
// *pDisp -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadDispNormalsKeyCallback(const char *szKey, const char *szValue, CMapDisp *pDisp) { Vector vectorFieldVector;
if (!strnicmp(szKey, "row", 3)) { char szBuf[MAX_KEYVALUE_LEN]; strcpy(szBuf, szValue);
int nCols = (1 << pDisp->GetPower()) + 1; int nRow = atoi(&szKey[3]);
char *pszNext0 = strtok(szBuf, " "); char *pszNext1 = strtok(NULL, " "); char *pszNext2 = strtok(NULL, " ");
int nIndex = nRow * nCols;
while ((pszNext0 != NULL) && (pszNext1 != NULL) && (pszNext2 != NULL)) { vectorFieldVector[0] = (float)atof(pszNext0); vectorFieldVector[1] = (float)atof(pszNext1); vectorFieldVector[2] = (float)atof(pszNext2);
pDisp->m_CoreDispInfo.SetFieldVector( nIndex, vectorFieldVector );
pszNext0 = strtok(NULL, " "); pszNext1 = strtok(NULL, " "); pszNext2 = strtok(NULL, " ");
nIndex++; } }
return(ChunkFile_Ok); }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *pFile -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::LoadVMF(CChunkFile *pFile) { //
// Set up handlers for the subchunks that we are interested in.
//
CChunkHandlerMap Handlers; Handlers.AddHandler("normals", (ChunkHandler_t)LoadDispNormalsCallback, this); Handlers.AddHandler("distances", (ChunkHandler_t)LoadDispDistancesCallback, this); Handlers.AddHandler("offsets", (ChunkHandler_t)LoadDispOffsetsCallback, this); Handlers.AddHandler("offset_normals", (ChunkHandler_t)LoadDispOffsetNormalsCallback, this); Handlers.AddHandler("alphas", (ChunkHandler_t)LoadDispAlphasCallback, this); Handlers.AddHandler("triangle_tags", (ChunkHandler_t)LoadDispTriangleTagsCallback, this ); Handlers.AddHandler("allowed_verts", (ChunkHandler_t)LoadDispAllowedVertsCallback, this ); Handlers.AddHandler("multiblend", (ChunkHandler_t)LoadDispMultiBlendCallback, this ); Handlers.AddHandler("alphablend", (ChunkHandler_t)LoadDispAlphaBlendCallback, this );
Assert( MAX_MULTIBLEND_CHANNELS == 4 ); Handlers.AddHandler("multiblend_color_0", (ChunkHandler_t)LoadDispMultiBlendColorCallback0, this ); Handlers.AddHandler("multiblend_color_1", (ChunkHandler_t)LoadDispMultiBlendColorCallback1, this ); Handlers.AddHandler("multiblend_color_2", (ChunkHandler_t)LoadDispMultiBlendColorCallback2, this ); Handlers.AddHandler("multiblend_color_3", (ChunkHandler_t)LoadDispMultiBlendColorCallback3, this );
pFile->PushHandlers(&Handlers); ChunkFileResult_t eResult = pFile->ReadChunk((KeyHandler_t)LoadDispKeyCallback, this); pFile->PopHandlers();
return(eResult); }
//-----------------------------------------------------------------------------
// Purpose: Saves the displacement info into a special chunk in the MAP file.
// Input : *pFile -
// Output : ChunkFileResult_t
//-----------------------------------------------------------------------------
ChunkFileResult_t CMapDisp::SaveVMF(CChunkFile *pFile, CSaveInfo *pSaveInfo) { ChunkFileResult_t eResult = pFile->BeginChunk("dispinfo");
int power = GetPower(); float elevation = GetElevation(); int nFlags = GetFlags();
Vector startPosition; CCoreDispSurface *pSurf = m_CoreDispInfo.GetSurface(); pSurf->GetPoint( 0, startPosition );
int bSubdivided = ( int )IsSubdivided();
#if 0 // old
Vector4D alphaValues; for( int i = 0; i < 4; i++ ) { alphaValues[i] = m_CoreDispInfo.GetSurfPointAlpha( i ); } #endif
if (eResult == ChunkFile_Ok) { eResult = pFile->WriteKeyValueInt("power", power); }
#if 0 // old
if (eResult == ChunkFile_Ok) { eResult = pFile->WriteKeyValueVector3("uaxis", m_BDSurf.uAxis); }
if (eResult == ChunkFile_Ok) { eResult = pFile->WriteKeyValueVector3("vaxis", m_BDSurf.vAxis); } #endif
if( eResult == ChunkFile_Ok ) { eResult = pFile->WriteKeyValueVector3( "startposition", startPosition ); }
if (eResult == ChunkFile_Ok) { eResult = pFile->WriteKeyValueInt("flags", nFlags ); }
#if 0
// old
if (eResult == ChunkFile_Ok) { eResult = pFile->WriteKeyValueInt("mintess", minTess); }
if (eResult == ChunkFile_Ok) { eResult = pFile->WriteKeyValueFloat("smooth", smoothingAngle); } //
// save the corner alpha values
//
if( eResult == ChunkFile_Ok ) { eResult = pFile->WriteKeyValueVector4( "alpha", alphaValues ); } #endif
if( eResult == ChunkFile_Ok ) { eResult = pFile->WriteKeyValueFloat( "elevation", elevation ); }
if (eResult == ChunkFile_Ok) { eResult = pFile->WriteKeyValueInt( "subdiv", bSubdivided ); }
//
// Save displacement map normals.
//
if (eResult == ChunkFile_Ok) { Vector vectorFieldVector;
eResult = pFile->BeginChunk("normals"); if (eResult == ChunkFile_Ok) { char szBuf[MAX_KEYVALUE_LEN]; char szTemp[80];
int nRows = (1 << power) + 1;; int nCols = nRows; for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[0] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if (!bFirst) { strcat(szBuf, " "); }
bFirst = false; m_CoreDispInfo.GetFieldVector( nIndex, vectorFieldVector ); sprintf(szTemp, "%g %g %g", (double)vectorFieldVector[0], (double)vectorFieldVector[1], (double)vectorFieldVector[2]); strcat(szBuf, szTemp); }
char szKey[10]; sprintf(szKey, "row%d", nRow); eResult = pFile->WriteKeyValue(szKey, szBuf); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } }
//
// Save displacement map distances.
//
if (eResult == ChunkFile_Ok) { float dispDistance;
eResult = pFile->BeginChunk("distances"); if (eResult == ChunkFile_Ok) { char szBuf[MAX_KEYVALUE_LEN]; char szTemp[80];
int nRows = (1 << power) + 1; int nCols = nRows;
for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[0] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if (!bFirst) { strcat(szBuf, " "); }
bFirst = false; dispDistance = m_CoreDispInfo.GetFieldDistance( nIndex ); sprintf(szTemp, "%g", (double)dispDistance); strcat(szBuf, szTemp); }
char szKey[10]; sprintf(szKey, "row%d", nRow); eResult = pFile->WriteKeyValue(szKey, szBuf); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } }
//
// Save displacement map offset.
//
if (eResult == ChunkFile_Ok) { Vector subdivPos;
eResult = pFile->BeginChunk( "offsets" ); if( eResult == ChunkFile_Ok ) { char szBuf[MAX_KEYVALUE_LEN]; char szTemp[80];
int nRows = (1 << power) + 1; int nCols = nRows;
for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[0] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if (!bFirst) { strcat(szBuf, " "); }
bFirst = false; m_CoreDispInfo.GetSubdivPosition( nIndex, subdivPos ); sprintf(szTemp, "%g %g %g", (double)subdivPos[0], (double)subdivPos[1], (double)subdivPos[2]); strcat(szBuf, szTemp); }
char szKey[10]; sprintf(szKey, "row%d", nRow); eResult = pFile->WriteKeyValue(szKey, szBuf); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } }
//
// Save displacement subdivision normals
//
if (eResult == ChunkFile_Ok) { Vector subdivNormal;
eResult = pFile->BeginChunk( "offset_normals" ); if( eResult == ChunkFile_Ok ) { char szBuf[MAX_KEYVALUE_LEN]; char szTemp[80];
int nRows = (1 << power) + 1; int nCols = nRows;
for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[0] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if (!bFirst) { strcat(szBuf, " "); }
bFirst = false; m_CoreDispInfo.GetSubdivNormal( nIndex, subdivNormal ); sprintf(szTemp, "%g %g %g", (double)subdivNormal[0], (double)subdivNormal[1], (double)subdivNormal[2]); strcat(szBuf, szTemp); }
char szKey[10]; sprintf(szKey, "row%d", nRow); eResult = pFile->WriteKeyValue(szKey, szBuf); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } }
//
// Save displacement alphas
//
if (eResult == ChunkFile_Ok) { float alpha;
eResult = pFile->BeginChunk( "alphas" ); if( eResult == ChunkFile_Ok ) { char szBuf[MAX_KEYVALUE_LEN]; char szTemp[80];
int nRows = (1 << power) + 1; int nCols = nRows;
for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[0] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if (!bFirst) { strcat(szBuf, " "); }
bFirst = false; alpha = m_CoreDispInfo.GetAlpha( nIndex ); sprintf(szTemp, "%g", (double)alpha); strcat(szBuf, szTemp); }
char szKey[10]; sprintf(szKey, "row%d", nRow); eResult = pFile->WriteKeyValue(szKey, szBuf); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } }
// Save Triangle data.
if (eResult == ChunkFile_Ok) { unsigned short nTriTag;
eResult = pFile->BeginChunk( "triangle_tags" ); if( eResult == ChunkFile_Ok ) { char szBuf[MAX_KEYVALUE_LEN]; char szTemp[80];
int nRows = ( 1 << power ); // ( 1 << power ) + 1 - 1
int nCols = nRows;
for ( int iRow = 0; iRow < nRows; ++iRow ) { bool bFirst = true; szBuf[0] = '\0';
for ( int iCol = 0; iCol < nCols; ++iCol ) { int nIndex = iRow * nCols + iCol; int iTri = nIndex * 2;
if ( !bFirst ) { strcat( szBuf, " " ); } bFirst = false;
nTriTag = m_CoreDispInfo.GetTriTagValue( iTri ); sprintf( szTemp, "%d", (int)nTriTag ); strcat( szBuf, szTemp );
nTriTag = m_CoreDispInfo.GetTriTagValue( iTri + 1 ); sprintf( szTemp, " %d", (int)nTriTag ); strcat( szBuf, szTemp ); }
char szKey[10]; sprintf( szKey, "row%d", iRow ); eResult = pFile->WriteKeyValue( szKey, szBuf ); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } }
// Save allowed vert data.
if ( eResult == ChunkFile_Ok ) { eResult = pFile->BeginChunk( "allowed_verts" ); if ( eResult == ChunkFile_Ok ) { char szBuf[MAX_KEYVALUE_LEN]; char szTemp[80];
szBuf[0] = '\0';
int nCount = m_CoreDispInfo.AllowedVerts_GetNumDWords(); for ( int iCount = 0; iCount < nCount; ++iCount ) { if ( iCount != 0 ) { strcat( szBuf, " " ); } unsigned long ulValue = m_CoreDispInfo.AllowedVerts_GetDWord( iCount ); sprintf( szTemp, "%d", ( int )ulValue ); strcat( szBuf, szTemp ); } char szKey[8]; sprintf( szKey, "%d", nCount ); eResult = pFile->WriteKeyValue( szKey, szBuf ); }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } }
//
// Save multi blends
//
if ( eResult == ChunkFile_Ok ) { int nRows = (1 << power) + 1; int nCols = nRows; bool bHasMultiBlend = false;
for (int nRow = 0; nRow < nRows; nRow++) { for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol; Vector4D vMultiBlend;
m_CoreDispInfo.GetMultiBlend( nIndex, vMultiBlend );
if ( vMultiBlend != Vector4D( 0.0f, 0.0f, 0.0f, 0.0f ) ) { bHasMultiBlend = true; break; } } }
if ( bHasMultiBlend == true ) { eResult = pFile->BeginChunk( "multiblend" ); if( eResult == ChunkFile_Ok ) { char szBuf[ MAX_KEYVALUE_LEN ]; char szTemp[ 256 ];
for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[ 0 ] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if ( bFirst == false ) { strcat( szBuf, " " ); }
bFirst = false; Vector4D vMultiBlend;
m_CoreDispInfo.GetMultiBlend( nIndex, vMultiBlend ); Assert( MAX_MULTIBLEND_CHANNELS == 4 ); sprintf( szTemp, "%g %g %g %g", vMultiBlend.x, vMultiBlend.y, vMultiBlend.z, vMultiBlend.w ); strcat( szBuf, szTemp ); }
char szKey[ 10 ]; sprintf( szKey, "row%d", nRow ); eResult = pFile->WriteKeyValue( szKey, szBuf ); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); }
eResult = pFile->BeginChunk( "alphablend" ); if( eResult == ChunkFile_Ok ) { char szBuf[ MAX_KEYVALUE_LEN ]; char szTemp[ 256 ];
for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[ 0 ] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if ( bFirst == false ) { strcat( szBuf, " " ); }
bFirst = false; Vector4D vAlphaBlend;
m_CoreDispInfo.GetAlphaBlend( nIndex, vAlphaBlend ); Assert( MAX_MULTIBLEND_CHANNELS == 4 ); sprintf( szTemp, "%g %g %g %g", vAlphaBlend.x, vAlphaBlend.y, vAlphaBlend.z, vAlphaBlend.w ); strcat( szBuf, szTemp ); }
char szKey[ 10 ]; sprintf( szKey, "row%d", nRow ); eResult = pFile->WriteKeyValue( szKey, szBuf ); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); }
for( int i = 0; i < MAX_MULTIBLEND_CHANNELS; i++ ) { char temp[ 128 ];
sprintf( temp, "multiblend_color_%d", i ); eResult = pFile->BeginChunk( temp ); if( eResult == ChunkFile_Ok ) { char szBuf[ MAX_KEYVALUE_LEN ]; char szTemp[ 256 ];
for (int nRow = 0; nRow < nRows; nRow++) { bool bFirst = true; szBuf[ 0 ] = '\0';
for (int nCol = 0; nCol < nCols; nCol++) { int nIndex = nRow * nCols + nCol;
if ( bFirst == false ) { strcat( szBuf, " " ); }
bFirst = false; Vector4D vMultiBlend, vAlphaBlend; Vector vColorBlend[ MAX_MULTIBLEND_CHANNELS ];
m_CoreDispInfo.GetMultiBlend( nIndex, vMultiBlend, vAlphaBlend, vColorBlend[ 0 ], vColorBlend[ 1 ], vColorBlend[ 2 ], vColorBlend[ 3 ] ); sprintf( szTemp, "%g %g %g", vColorBlend[ i ].x, vColorBlend[ i ].y, vColorBlend[ i ].z ); strcat( szBuf, szTemp ); }
char szKey[ 10 ]; sprintf( szKey, "row%d", nRow ); eResult = pFile->WriteKeyValue( szKey, szBuf ); } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); } } } }
if (eResult == ChunkFile_Ok) { eResult = pFile->EndChunk(); }
return(eResult); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::SerializedLoadMAP( std::fstream &file, CMapFace *pFace, UINT version ) { int power; float maxData = 1.0f; int minTess; float smoothingAngle; Vector vectorFieldVector; float distance;
//
// read off the first line -- burn it!!! and get the second
//
static char buf[256]; file.getline( buf, 256 ); file.getline( buf, 256 );
if( version < 350 ) { sscanf( buf, "%d [ %f %f %f ] [ %f %f %f ] %f %d %f", &power, &m_MapAxes[0][0], &m_MapAxes[0][1], &m_MapAxes[0][2], &m_MapAxes[1][0], &m_MapAxes[1][1], &m_MapAxes[1][2], &maxData, &minTess, &smoothingAngle ); } else { sscanf( buf, "%d [ %f %f %f ] [ %f %f %f ] %d %f", &power, &m_MapAxes[0][0], &m_MapAxes[0][1], &m_MapAxes[0][2], &m_MapAxes[1][0], &m_MapAxes[1][1], &m_MapAxes[1][2], &minTess, &smoothingAngle ); }
m_CoreDispInfo.SetPower( power );
m_bHasMappingAxes = true;
//
// displacement normals
//
int size = GetSize(); for( int i = 0; i < size; i++ ) { file >> vectorFieldVector[0]; file >> vectorFieldVector[1]; file >> vectorFieldVector[2];
m_CoreDispInfo.SetFieldVector( i, vectorFieldVector ); } file.getline( buf, 256 );
//
// displacement distances
//
for( int i = 0; i < size; i++ ) { if( version < 350 ) { file >> distance; distance *= maxData; } else { file >> distance; }
m_CoreDispInfo.SetFieldDistance( i, distance ); } file.getline( buf, 256 );
// finish the last bit of the "chunk"
file.getline( buf, 256 );
// save the parent info
SetParent( pFace );
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::SerializedLoadRMF( std::fstream &file, CMapFace *pFace, float version ) { int power; int minTess; float smoothingAngle; Vector vectorFieldVectors[MAPDISP_MAX_VERTS]; float distances[MAPDISP_MAX_VERTS];
//
// get displacement information
//
file.read( ( char* )&power, sizeof( int ) ); file.read( ( char* )m_MapAxes[0].Base(), 3 * sizeof( float ) ); file.read( ( char* )m_MapAxes[1].Base(), 3 * sizeof( float ) ); file.read( ( char* )&minTess, sizeof( int ) ); file.read( ( char* )&smoothingAngle, sizeof( float ) );
m_CoreDispInfo.SetPower( power );
m_bHasMappingAxes = true;
//
// get displacement map normals and distances
//
int size = GetSize(); int i; for ( i = 0; i < size; ++i) { file.read( ( char* )&vectorFieldVectors[i], 3 * sizeof( float ) ); } file.read( ( char* )distances, size * sizeof( float ) );
for( i = 0; i < size; i++ ) { m_CoreDispInfo.SetFieldVector( i, vectorFieldVectors[i] ); m_CoreDispInfo.SetFieldDistance( i, distances[i] ); }
// set the parent
SetParent( pFace );
// displacement info loaded
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CMapDisp::GetEndIndexFromLevel( int levelIndex ) { switch( levelIndex ) { case 2: { return 20; } case 3: { return 84; } case 4: { return 340; } default: { return 0; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CMapDisp::GetStartIndexFromLevel( int levelIndex ) { switch( levelIndex ) { case 2: { return 5; } case 3: { return 21; } case 4: { return 85; } default: { return 0; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::DoTransform(const VMatrix &matrix) { // get the face
CCoreDispSurface *pSurf = m_CoreDispInfo.GetSurface(); CMapFace *pFace = ( CMapFace* )GetParent();
if( !pFace || !pSurf ) return;
Assert( pFace->GetPointCount() == 4 );
bool bFlip = (matrix[0][0]*matrix[1][1]*matrix[2][2]) < 0;
if ( bFlip ) { // get the displacement starting point, relative to the newly "flipped" points
// NOTE: this seems a bit hacky -- if flip goes NUTS later -- look here!!!
int iStartIndex = pSurf->GetPointStartIndex(); pSurf->SetPointStartIndex( 3-iStartIndex ); Flip( FLIP_TRANSPOSE ); }
Vector v; int size = GetSize(); for( int i = 0; i < size; i++ ) { GetFieldVector( i, v ); TransformPoint( matrix, v ); SetFieldVector( i, v );
GetSubdivPosition( i, v ); TransformPoint( matrix, v ); SetSubdivPosition( i, v );
GetSubdivNormal( i, v ); TransformPoint( matrix, v ); SetSubdivNormal( i, v ); }
UpdateSurfData( pFace ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool SphereTriEdgePlanesIntersection( Vector const &ptCenter, float radius, cplane_t *pPlanes ) { // check all planes
for( int ndxPlane = 0; ndxPlane < 3; ndxPlane++ ) { float dist = pPlanes[ndxPlane].normal.Dot( ptCenter ) - pPlanes[ndxPlane].dist; if( dist > radius ) return false; }
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::PointSurfIntersection( Vector const &ptCenter, float radius, float &distMin, Vector &ptMin ) { // initialize the min data
distMin = radius; ptMin.Init();
//
// get the render list size -- created triangles
//
unsigned short *pTriList = m_CoreDispInfo.GetRenderIndexList(); int listSize = m_CoreDispInfo.GetRenderIndexCount(); for( int i = 0; i < listSize; i += 3 ) { // get the triangle
Vector v[3]; GetVert( pTriList[i], v[0] ); GetVert( pTriList[i+1], v[1] ); GetVert( pTriList[i+2], v[2] );
//
// create a triangle plane
//
Vector seg0, seg1; seg0 = v[1] - v[0]; seg1 = v[2] - v[0]; cplane_t triPlane; triPlane.normal = seg1.Cross( seg0 ); VectorNormalize( triPlane.normal ); triPlane.dist = triPlane.normal.Dot( v[0] );
//
// plane sphere intersection
//
float dist = triPlane.normal.Dot( ptCenter ) - triPlane.dist; if( fabs( dist ) < distMin ) { //
// create edge plane data
//
cplane_t edgePlanes[3]; Vector edges[3]; edges[0] = v[1] - v[0]; edges[1] = v[2] - v[1]; edges[2] = v[0] - v[2];
for( int j = 0; j < 3; j++ ) { edgePlanes[j].normal = triPlane.normal.Cross( edges[j] ); VectorNormalize( edgePlanes[j].normal ); edgePlanes[j].dist = edgePlanes[j].normal.Dot( v[j] );
// check normal facing
float distPt = edgePlanes[j].normal.Dot( v[(j+2)%3] ) - edgePlanes[j].dist; if( distPt > 0.0f ) { edgePlanes[j].normal.Negate(); edgePlanes[j].dist = -edgePlanes[j].dist; } }
// intersect sphere with triangle
bool bSphereIntersect = SphereTriEdgePlanesIntersection( ptCenter, distMin, edgePlanes );
//
// check to see if the center lies behind all the edge planes
//
if( bSphereIntersect ) { bool bPointInside = SphereTriEdgePlanesIntersection( ptCenter, 0.0f, edgePlanes );
if( bPointInside ) { distMin = fabs( dist ); ptMin = ptCenter - ( triPlane.normal * dist ); } else { // check distance to points
for( int k = 0; k < 3; k++ ) { Vector vTmp; vTmp = ptCenter - v[k]; float distPt = ( float )sqrt( vTmp.Dot( vTmp ) ); if( distPt < distMin ) { distMin = distPt; ptMin = v[k]; } } } } } }
if( distMin != radius ) return true;
return false; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
EditDispHandle_t CMapDisp::GetHitDispMap( void ) { if( m_HitDispIndex == -1 ) { CMapFace *pFace = ( CMapFace* )GetParent(); return pFace->GetDisp(); }
if( m_HitDispIndex <= 3 ) { return m_EdgeNeighbors[m_HitDispIndex]; }
return m_CornerNeighbors[m_HitDispIndex-4][2]; }
//-----------------------------------------------------------------------------
// Purpose: UNDO is messy to begin with, and now with handles it gets even
// more fun!!! Call through here to setup undo!!
//-----------------------------------------------------------------------------
void EditDisp_ForUndo( EditDispHandle_t editHandle, char *pszPositionName, bool bNeighborsUndo ) { // sanity check on handle
if( editHandle == EDITDISPHANDLE_INVALID ) return;
// get the current displacement given the handle
CMapDisp *pDisp = EditDispMgr()->GetDisp( editHandle );
//
// set the undo name if necessary
//
if( pszPositionName ) { GetHistory()->MarkUndoPosition( NULL, pszPositionName ); }
//
// get the solid (face) for the UNDO history
//
CMapFace *pFace = ( CMapFace* )pDisp->GetParent(); CMapSolid *pSolid = ( CMapSolid* )pFace->GetParent(); GetHistory()->Keep( ( CMapClass* )pSolid ); //
// neighbors in undo as well
//
if ( bNeighborsUndo ) { for ( int ndxNeighbor = 0; ndxNeighbor < 4; ndxNeighbor++ ) { // displacement pointer could have changed due to the undo/copyfrom above
pDisp = EditDispMgr()->GetDisp( editHandle );
//
// edge neighbors
//
int neighborOrient; EditDispHandle_t neighborHandle; pDisp->GetEdgeNeighbor( ndxNeighbor, neighborHandle, neighborOrient ); if( neighborHandle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( neighborHandle ); CMapFace *pNeighborFace = ( CMapFace* )pNeighborDisp->GetParent(); CMapSolid *pNeighborSolid = ( CMapSolid* )pNeighborFace->GetParent(); GetHistory()->Keep( ( CMapClass* )pNeighborSolid );
// displacement pointer could have changed due to the undo/copyfrom above
pDisp = EditDispMgr()->GetDisp( editHandle ); }
//
// corner neighbors
//
int cornerCount = pDisp->GetCornerNeighborCount( ndxNeighbor ); if( cornerCount > 0 ) { for( int ndxCorner = 0; ndxCorner < cornerCount; ndxCorner++ ) { pDisp->GetCornerNeighbor( ndxNeighbor, ndxCorner, neighborHandle, neighborOrient ); CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( neighborHandle ); CMapFace *pNeighborFace = ( CMapFace* )pNeighborDisp->GetParent(); CMapSolid *pNeighborSolid = ( CMapSolid* )pNeighborFace->GetParent(); GetHistory()->Keep( ( CMapClass* )pNeighborSolid );
// displacement pointer could have changed due to the undo/copyfrom above
pDisp = EditDispMgr()->GetDisp( editHandle ); } } } } }
//=============================================================================
//
// Painting Functions
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Paint_Init( int nType ) { m_Canvas.m_nType = nType; m_Canvas.m_bDirty = false;
int nVertCount = GetSize(); for( int iVert = 0; iVert < nVertCount; iVert++ ) { m_Canvas.m_Values[iVert].Init(); m_Canvas.m_bValuesDirty[iVert] = false; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Paint_InitSelfAndNeighbors( int nType ) { // Initialiuze self.
Paint_Init( nType );
// Initialize neighbors.
for( int iEdge = 0; iEdge < 4; iEdge++ ) { EditDispHandle_t handle = GetEdgeNeighbor( iEdge ); if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->Paint_Init( nType ); }
int nCornerCount = GetCornerNeighborCount( iEdge ); if( nCornerCount > 0 ) { for( int iCorner = 0; iCorner < nCornerCount; iCorner++ ) { handle = GetCornerNeighbor( iEdge, iCorner ); if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->Paint_Init( nType ); } } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Paint_SetValue( int iVert, Vector const &vPaint ) { Assert( iVert >= 0 ); Assert( iVert < MAPDISP_MAX_VERTS );
VectorCopy( vPaint, m_Canvas.m_Values[iVert] ); m_Canvas.m_bValuesDirty[iVert] = true; m_Canvas.m_bDirty = true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::PaintAlpha_Update( int iVert ) { SetAlpha( iVert, m_Canvas.m_Values[iVert].x ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::PaintPosition_Update( int iVert ) { Vector vSPos, vFlat; GetFlatVert( iVert, vFlat ); GetSubdivPosition( iVert, vSPos ); Vector vSeg; vSeg = m_Canvas.m_Values[iVert] - vFlat; vSeg -= vSPos; // Subtract out the elevation.
float elev = GetElevation(); if( elev != 0.0 ) { Vector vNormal; GetSurfNormal( vNormal ); vNormal *= elev; vSeg -= vNormal; } float flDistance = VectorNormalize( vSeg ); SetFieldVector( iVert, vSeg ); SetFieldDistance( iVert, flDistance ); }
void CMapDisp::UpdateVertPositionForSubdiv( int iVert, const Vector &vecNewSubdivPos ) { Vector vecSubdivPos, vecFlatPos, vecPos; GetFlatVert( iVert, vecFlatPos ); GetSubdivPosition( iVert, vecSubdivPos ); GetVert( iVert, vecPos );
Vector vecSegment1; vecPos -= vecSubdivPos; vecSegment1 = vecPos - vecFlatPos;
// Subtract out the elevation.
float flElevation = GetElevation(); Vector vecFaceNormal( 0.0f, 0.0f, 0.0f ); if( flElevation != 0.0 ) { GetSurfNormal( vecFaceNormal ); vecFaceNormal *= flElevation; vecSegment1 -= vecFaceNormal; }
float flDistance = VectorNormalize( vecSegment1 );
SetFieldVector( iVert, vecSegment1 ); SetFieldDistance( iVert, flDistance );
SetSubdivPosition( iVert, vecNewSubdivPos );
// Have to update in place.
Vector vecNewPos = vecFlatPos; vecNewPos += ( vecFaceNormal * flElevation ); vecNewPos += vecNewSubdivPos; vecNewPos += ( vecSegment1 * flDistance ); SetVert( iVert, vecNewPos ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Paint_Update( bool bSplit ) { // Check for changes to the canvas.
if ( !m_Canvas.m_bDirty ) return;
int nVertCount = GetSize(); for ( int iVert = 0; iVert < nVertCount; iVert++ ) { // Check for changes at the vertex.
if ( m_Canvas.m_bValuesDirty[iVert] ) { if ( m_Canvas.m_nType == DISPPAINT_CHANNEL_POSITION ) { PaintPosition_Update( iVert ); } else if ( m_Canvas.m_nType == DISPPAINT_CHANNEL_ALPHA ) { PaintAlpha_Update( iVert ); } } }
// Update the displacement surface.
UpdateData();
if ( !bSplit ) { CheckAndUpdateOverlays( false ); } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::Paint_UpdateSelfAndNeighbors( bool bSplit ) { // Update self.
Paint_Update( bSplit );
// Update neighbors.
for( int iEdge = 0; iEdge < 4; iEdge++ ) { EditDispHandle_t handle = GetEdgeNeighbor( iEdge ); if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->Paint_Update( bSplit ); }
int nCornerCount = GetCornerNeighborCount( iEdge ); if( nCornerCount > 0 ) { for( int iCorner = 0; iCorner < nCornerCount; iCorner++ ) { handle = GetCornerNeighbor( iEdge, iCorner ); if( handle != EDITDISPHANDLE_INVALID ) { CMapDisp *pNeighborDisp = EditDispMgr()->GetDisp( handle ); pNeighborDisp->Paint_Update( bSplit ); } } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::SetSelectMask( bool bSelectMask ) { m_bSelectMask = bSelectMask; } //-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::HasSelectMask( void ) { return m_bSelectMask; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CMapDisp::SetGridMask( bool bGridMask ) { m_bGridMask = bGridMask; } //-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CMapDisp::HasGridMask( void ) { return m_bGridMask; }
//-----------------------------------------------------------------------------
// Purpose: Do the slow thing first and optimize later??
//-----------------------------------------------------------------------------
int CMapDisp::CollideWithDispTri( const Vector &rayStart, const Vector &rayEnd, float &flFraction, bool OneSided ) { int iTriangle = -1; flFraction = 1.0f;
int nTriCount = GetTriCount(); for ( int iTri = 0; iTri < nTriCount; ++iTri ) { unsigned short v1, v2, v3; GetTriIndices( iTri, v1, v2, v3 ); Vector vec1, vec2, vec3; GetVert( v1, vec1 ); GetVert( v2, vec2 ); GetVert( v3, vec3 );
Ray_t ray; ray.Init( rayStart, rayEnd, Vector( 0.0f, 0.0f, 0.0f ), Vector ( 0.0f, 0.0f, 0.0f ) );
float flFrac = IntersectRayWithTriangle( ray, vec1, vec2, vec3, OneSided ); if ( flFrac == -1.0f ) continue;
if ( flFrac < flFraction ) { flFraction = flFrac; iTriangle = iTri; } }
return iTriangle; }
bool CMapDisp::SaveDXF(ExportDXFInfo_s *pInfo) { char szName[128]; sprintf(szName, "OBJECT%03d", pInfo->nObject);
// count number of triangulated faces
int nVertCount = GetSize(); int nTriFaces = TriangleCount();
fprintf(pInfo->fp,"0\nPOLYLINE\n8\n%s\n66\n1\n70\n64\n71\n%u\n72\n%u\n", szName, nVertCount, nTriFaces); fprintf(pInfo->fp,"62\n50\n");
// Write out vertices...
int i; for (i = 0; i < nVertCount; i++) { Vector pos; GetVert( i, pos ); fprintf(pInfo->fp, "0\nVERTEX\n8\n%s\n10\n%.6f\n20\n%.6f\n30\n%.6f\n70\n192\n", szName, pos[0], pos[1], pos[2]); }
// triangulate each face and write
int nWidth = GetWidth(); int nHeight = GetHeight(); for (i = 0; i < nHeight - 1; ++i) { for (int j = 0; j < nWidth - 1; ++j) { // DXF files are 1 based, not 0 based. That's what the extra 1 is for
int idx = i * nHeight + j + 1;
fprintf(pInfo->fp, "0\nVERTEX\n8\n%s\n10\n0\n20\n0\n30\n" "0\n70\n128\n71\n%d\n72\n%d\n73\n%d\n", szName, idx, idx + nHeight, idx + nHeight + 1 );
fprintf(pInfo->fp, "0\nVERTEX\n8\n%s\n10\n0\n20\n0\n30\n" "0\n70\n128\n71\n%d\n72\n%d\n73\n%d\n", szName, idx, idx + nHeight + 1, idx + 1 ); } }
fprintf(pInfo->fp, "0\nSEQEND\n8\n%s\n", szName);
return true; }
|