|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include <stdafx.h>
#include "MainFrm.h"
#include "MapDoc.h"
#include "GlobalFunctions.h"
#include "Subdiv.h"
#include "History.h"
//=============================================================================
//
// Subdivision Point Functions
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivPoint::Clear( void ) { VectorClear( m_Point ); VectorClear( m_NewPoint ); VectorClear( m_Normal ); VectorClear( m_NewNormal );
m_Type = -1; m_Valence = 0;
for( int i = 0; i < NUM_SUBDIV_EDGES; i++ ) { m_pEdges[i] = NULL; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivPoint::Copy( const CSubdivPoint *pFrom ) { m_Point = pFrom->m_Point; m_NewPoint = pFrom->m_NewPoint; m_Normal = pFrom->m_Normal; m_NewNormal = pFrom->m_NewNormal;
m_Type = pFrom->m_Type; m_Valence = pFrom->m_Valence;
for( int i = 0; i < NUM_SUBDIV_EDGES; i++ ) { m_pEdges[i] = pFrom->m_pEdges[i]; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivPoint::CalcNewVertexNormal( void ) { switch( m_Type ) { case POINT_CORNER: { m_NewNormal = m_Normal; break; } case POINT_CREASE: { Vector edgeAccum; VectorClear( edgeAccum ); for( int i = 0; i < m_Valence; i++ ) { if( m_pEdges[i]->m_Sharpness > 0.0f ) { VectorAdd( edgeAccum, m_pEdges[i]->m_NewEdgeNormal, edgeAccum ); } }
//
// normal
//
VectorScale( m_Normal, 6.0f, m_NewNormal ); VectorAdd( m_NewNormal, edgeAccum, m_NewNormal ); VectorScale( m_NewNormal, 0.125f, m_NewNormal );
break; } case POINT_ORDINARY: { //
// accumulate edge data and multiply by valence ratio
//
Vector edgeAccum; VectorClear( edgeAccum ); for( int i = 0; i < m_Valence; i++ ) { VectorAdd( edgeAccum, m_pEdges[i]->m_NewEdgeNormal, edgeAccum ); } float ratio = ( 1.0f / ( float )( m_Valence * m_Valence ) ); VectorScale( edgeAccum, ratio, edgeAccum );
//
// accumulate centroid data and multiply by valence ratio
//
int quadCount = 0; CSubdivQuad *quadList[16]; for( i = 0; i < m_Valence; i++ ) { for( int j = 0; j < 2; j++ ) { if( m_pEdges[i]->m_pQuads[j] ) { for( int k = 0; k < quadCount; k++ ) { if( m_pEdges[i]->m_pQuads[j] == quadList[k] ) break; }
if( k != quadCount ) continue;
quadList[quadCount] = m_pEdges[i]->m_pQuads[j]; quadCount++; } } }
Vector centroidAccum; VectorClear( centroidAccum ); for( i = 0; i < quadCount; i++ ) { Vector centroid; quadList[i]->GetNormal( centroid ); VectorAdd( centroidAccum, centroid, centroidAccum ); } VectorScale( centroidAccum, ratio, centroidAccum );
//
// normal
//
VectorScale( m_Normal, ratio, m_NewNormal ); VectorAdd( m_NewNormal, edgeAccum, m_NewNormal ); VectorAdd( m_NewNormal, centroidAccum, m_NewNormal );
break; } default: break; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivPoint::CalcNewVertexPoint( void ) { switch( m_Type ) { case POINT_CORNER: { m_NewPoint = m_Point; break; } case POINT_CREASE: { Vector edgeAccum; VectorClear( edgeAccum ); for( int i = 0; i < m_Valence; i++ ) { if( m_pEdges[i]->m_Sharpness > 0.0f ) { VectorAdd( edgeAccum, m_pEdges[i]->m_NewEdgePoint, edgeAccum ); } }
//
// point
//
VectorScale( m_Point, 6.0f, m_NewPoint ); VectorAdd( m_NewPoint, edgeAccum, m_NewPoint ); VectorScale( m_NewPoint, 0.125f, m_NewPoint );
break; } case POINT_ORDINARY: { //
// accumulate edge data and multiply by valence ratio
//
Vector edgeAccum; VectorClear( edgeAccum ); for( int i = 0; i < m_Valence; i++ ) { VectorAdd( edgeAccum, m_pEdges[i]->m_NewEdgePoint, edgeAccum ); } float ratio = ( 1.0f / ( float )( m_Valence * m_Valence ) ); VectorScale( edgeAccum, ratio, edgeAccum );
//
// accumulate centroid data and multiply by valence ratio
//
int quadCount = 0; CSubdivQuad *quadList[16]; for( i = 0; i < m_Valence; i++ ) { for( int j = 0; j < 2; j++ ) { if( m_pEdges[i]->m_pQuads[j] ) { for( int k = 0; k < quadCount; k++ ) { if( m_pEdges[i]->m_pQuads[j] == quadList[k] ) break; }
if( k != quadCount ) continue;
quadList[quadCount] = m_pEdges[i]->m_pQuads[j]; quadCount++; } } }
Vector centroidAccum; VectorClear( centroidAccum ); for( i = 0; i < quadCount; i++ ) { Vector centroid; quadList[i]->GetCentroid( centroid ); VectorAdd( centroidAccum, centroid, centroidAccum ); } VectorScale( centroidAccum, ratio, centroidAccum );
//
// point contribution to eqtn.
//
ratio = ( ( float )m_Valence - 2.0f ) / ( float )m_Valence; VectorScale( m_Point, ratio, m_NewPoint );
VectorAdd( m_NewPoint, edgeAccum, m_NewPoint ); VectorAdd( m_NewPoint, centroidAccum, m_NewPoint );
break; } default: break; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CompareSubdivPoints( const CSubdivPoint *pPoint1, const CSubdivPoint *pPoint2, float tolerance ) { for( int i = 0 ; i < 3 ; i++ ) { if( fabs( pPoint1->m_Point[i] - pPoint2->m_Point[i] ) > tolerance ) return false; } return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CompareSubdivPointToPoint( const CSubdivPoint *pSubdivPoint, const Vector& point, float tolerance ) { for( int i = 0 ; i < 3 ; i++ ) { if( fabs( pSubdivPoint->m_Point[i] - point[i] ) > tolerance ) return false; } return true; }
//=============================================================================
//
// Subdivision Edge Functions
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivEdge::Clear( void ) { for( int i = 0; i < 2; i++ ) { m_ndxPoint[i] = -1; m_pQuads[i] = NULL; m_ndxQuadEdge[i] = -1; }
m_Sharpness = 1.0f; VectorClear( m_NewEdgePoint ); m_Active = false; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivEdge::Copy( const CSubdivEdge *pFrom ) { for( int i = 0; i < 2; i++ ) { m_ndxPoint[i] = pFrom->m_ndxPoint[i]; m_pQuads[i] = pFrom->m_pQuads[i]; m_ndxQuadEdge[i] = pFrom->m_ndxQuadEdge[i]; }
m_Sharpness = pFrom->m_Sharpness; m_NewEdgePoint = pFrom->m_NewEdgePoint; m_Active = pFrom->m_Active; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivEdge::CalcNewEdgeNormal( void ) { if( !m_Active ) return;
//
// get the subdivision mesh
//
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return;
CSubdivMesh *pMesh = pDoc->GetSubdivMesh();
//
// get the edge data
//
Vector normal0, normal1; pMesh->GetNormal( m_ndxPoint[0], normal0 ); pMesh->GetNormal( m_ndxPoint[1], normal1 );
//
// calculate the "sharp" new edge point
//
Vector vSharp; VectorClear( vSharp ); VectorAdd( normal0, normal1, vSharp ); VectorScale( vSharp, 0.5f, vSharp );
//
// calculate the "smooth" new edge point if necessary
//
Vector vSmooth; VectorClear( vSmooth ); if( m_pQuads[1] && ( m_Sharpness != 1.0f ) ) { Vector quadNormals[2]; m_pQuads[0]->GetNormal( quadNormals[0] ); m_pQuads[1]->GetNormal( quadNormals[1] ); VectorAdd( normal0, normal1, vSmooth ); VectorAdd( vSmooth, quadNormals[0], vSmooth ); VectorAdd( vSmooth, quadNormals[1], vSmooth ); VectorScale( vSmooth, 0.25f, vSmooth ); } else { // make sure -- if here because of no neighboring quad
m_Sharpness = 1.0f; m_pQuads[0]->CalcNormal(); } //
// calculate the new edge point
//
// ( 1 - edge(sharpness) ) * vSmooth + edge(sharpness) * vSharp
//
VectorScale( vSmooth, ( 1.0f - m_Sharpness ), vSmooth ); VectorScale( vSharp, m_Sharpness, vSharp ); VectorAdd( vSmooth, vSharp, m_NewEdgeNormal ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivEdge::CalcNewEdgePoint( void ) { if( !m_Active ) return;
//
// get the subdivision mesh
//
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return;
CSubdivMesh *pMesh = pDoc->GetSubdivMesh();
//
// get the edge data
//
Vector edgePt0, edgePt1; pMesh->GetPoint( m_ndxPoint[0], edgePt0 ); pMesh->GetPoint( m_ndxPoint[1], edgePt1 );
//
// calculate the "sharp" new edge point
//
Vector vSharp; VectorClear( vSharp ); VectorAdd( edgePt0, edgePt1, vSharp ); VectorScale( vSharp, 0.5f, vSharp );
//
// calculate the "smooth" new edge point if necessary
//
Vector vSmooth; VectorClear( vSmooth ); if( m_pQuads[1] && ( m_Sharpness != 1.0f ) ) { Vector centroids[2]; m_pQuads[0]->GetCentroid( centroids[0] ); m_pQuads[1]->GetCentroid( centroids[1] ); VectorAdd( edgePt0, edgePt1, vSmooth ); VectorAdd( vSmooth, centroids[0], vSmooth ); VectorAdd( vSmooth, centroids[1], vSmooth ); VectorScale( vSmooth, 0.25f, vSmooth ); } else { // make sure -- if here because of no neighboring quad
m_Sharpness = 1.0f; m_pQuads[0]->CalcCentroid(); } //
// calculate the new edge point
//
// ( 1 - edge(sharpness) ) * vSmooth + edge(sharpness) * vSharp
//
VectorScale( vSmooth, ( 1.0f - m_Sharpness ), vSmooth ); VectorScale( vSharp, m_Sharpness, vSharp ); VectorAdd( vSmooth, vSharp, m_NewEdgePoint ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CompareSubdivEdges( const CSubdivEdge *pEdge1, const CSubdivEdge *pEdge2 ) { if( ( ( pEdge1->m_ndxPoint[0] == pEdge2->m_ndxPoint[0] ) && ( pEdge1->m_ndxPoint[1] == pEdge2->m_ndxPoint[1] ) ) || ( ( pEdge1->m_ndxPoint[0] == pEdge2->m_ndxPoint[1] ) && ( pEdge1->m_ndxPoint[1] == pEdge2->m_ndxPoint[0] ) ) ) return true;
return false; }
//=============================================================================
//
// Subdivision Quad Functions
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivQuad::GetCentroid( Vector& centroid ) { // get the subdivision mesh
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return;
CSubdivMesh *pMesh = pDoc->GetSubdivMesh();
VectorClear( centroid ); for( int i = 0; i < 4; i++ ) { Vector point; pMesh->GetPoint( m_ndxVert[i], point ); VectorAdd( centroid, point, centroid ); }
VectorScale( centroid, 0.25f, centroid );
// keep to surface creation
m_Centroid = centroid; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivQuad::CalcCentroid( void ) { // get the subdivision mesh
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return;
CSubdivMesh *pMesh = pDoc->GetSubdivMesh();
VectorClear( m_Centroid ); for( int i = 0; i < 4; i++ ) { Vector point; pMesh->GetPoint( m_ndxVert[i], point ); VectorAdd( m_Centroid, point, m_Centroid ); }
VectorScale( m_Centroid, 0.25f, m_Centroid ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivQuad::GetNormal( Vector& normal ) { // get the subdivision mesh
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return;
CSubdivMesh *pMesh = pDoc->GetSubdivMesh();
Vector points[3]; Vector segs[2];
pMesh->GetPoint( m_ndxVert[0], points[0] ); pMesh->GetPoint( m_ndxVert[1], points[1] ); pMesh->GetPoint( m_ndxVert[2], points[2] );
VectorSubtract( points[1], points[0], segs[0] ); VectorSubtract( points[2], points[0], segs[1] );
CrossProduct( segs[1], segs[0], normal ); VectorNormalize( normal );
m_Normal = normal; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivQuad::CalcNormal( void ) { // get the subdivision mesh
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return;
CSubdivMesh *pMesh = pDoc->GetSubdivMesh();
Vector points[3]; Vector segs[2];
pMesh->GetPoint( m_ndxVert[0], points[0] ); pMesh->GetPoint( m_ndxVert[1], points[1] ); pMesh->GetPoint( m_ndxVert[2], points[2] );
VectorSubtract( points[1], points[0], segs[0] ); VectorSubtract( points[2], points[0], segs[1] );
CrossProduct( segs[1], segs[0], m_Normal ); VectorNormalize( m_Normal ); }
//=============================================================================
//
// Subdivision Mesh Functions
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
CSubdivMesh::CSubdivMesh() { Clear(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
CSubdivMesh::~CSubdivMesh() { }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CSubdivMesh::AddPoint( const Vector& point, const Vector& normal ) { //
// check for existing point within CSubdivPoints
//
for( int i = 0; i < m_PointCount; i++ ) { if( CompareSubdivPointToPoint( &m_pPoints[i], point, 0.01f ) ) return i; }
if( m_PointCount >= m_MaxPointCount ) { // error message!
return -1; }
m_pPoints[m_PointCount].m_Point = point; m_pPoints[m_PointCount].m_Normal = normal; m_PointCount++;
return ( m_PointCount - 1 ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::RemovePoint( Vector& point ) { //
// find point in list (and remove it)
//
for( int i = 0; i < m_PointCount; i++ ) { if( !CompareSubdivPointToPoint( &m_pPoints[i], point, 0.01f ) ) continue;
if( i == ( m_PointCount - 1 ) ) { m_pPoints[i].Clear(); } else { m_pPoints[i].Copy( &m_pPoints[m_PointCount-1] ); m_pPoints[m_PointCount-1].Clear(); } m_PointCount--; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CSubdivMesh::AddEdge( CSubdivEdge *edge ) { //
// check for existing edge
//
for( int i = 0; i < m_EdgeCount; i++ ) { if( CompareSubdivEdges( edge, &m_pEdges[i] ) ) { //
// check for "quads" on both sides of edge (add if necessary)
//
if( ( !m_pEdges[i].m_pQuads[1] ) && ( edge->m_pQuads[0] != m_pEdges[i].m_pQuads[0] ) ) { m_pEdges[i].m_pQuads[1] = edge->m_pQuads[0]; m_pEdges[i].m_ndxQuadEdge[1] = edge->m_ndxQuadEdge[0]; m_pEdges[i].m_Sharpness = 0.0f; }
return i; } }
if( m_EdgeCount >= m_MaxEdgeCount ) { // error message!
return -1; }
m_pEdges[m_EdgeCount].Copy( edge ); m_pEdges[m_EdgeCount].m_Active = true; m_EdgeCount++;
return ( m_EdgeCount - 1 ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::RemoveEdge( CSubdivEdge *edge ) { return; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::CatmullClarkSubdivide( void ) { //
// calculate the "new edge points"
//
for( int i = 0; i < m_EdgeCount; i++ ) { m_pEdges[i].CalcNewEdgePoint(); m_pEdges[i].CalcNewEdgeNormal(); }
//
// if point index if part of edge, add to point edge list and increment valence
//
for( i = 0; i < m_PointCount; i++ ) { for( int j = 0; j < m_EdgeCount; j++ ) { if( !m_pEdges[j].m_Active ) continue;
if( ( i == m_pEdges[j].m_ndxPoint[0] ) || ( i == m_pEdges[j].m_ndxPoint[1] ) ) { m_pPoints[i].m_pEdges[m_pPoints[i].m_Valence] = &m_pEdges[j]; m_pPoints[i].m_Valence++; } } }
//
// determine the point's "type"
//
for( i = 0; i < m_PointCount; i++ ) { //
// get the number of sharp incident edges and neighbor data
//
int sharpnessCount = 0; int sharpnessThreshold = m_pPoints[i].m_Valence - 1; bool bHasNeighbors = false;
for( int j = 0; j < m_pPoints[i].m_Valence; j++ ) { if( m_pPoints[i].m_pEdges[j]->m_Sharpness > 0.0f ) { sharpnessCount++; }
if( m_pPoints[i].m_pEdges[j]->m_pQuads[1] ) { bHasNeighbors = true; } }
//
// determine point type
//
if( ( sharpnessCount >= sharpnessThreshold ) || !bHasNeighbors ) // if( ( sharpnessCount > 2 ) || !bHasNeighbors )
{ m_pPoints[i].m_Type = CSubdivPoint::POINT_CORNER; continue; }
if( sharpnessCount > 1 ) // if( sharpnessCount == 2 )
{ m_pPoints[i].m_Type = CSubdivPoint::POINT_CREASE; continue; }
m_pPoints[i].m_Type = CSubdivPoint::POINT_ORDINARY; }
//
// calculate the new vertex point
//
for( i = 0; i < m_PointCount; i++ ) { m_pPoints[i].CalcNewVertexPoint(); m_pPoints[i].CalcNewVertexNormal(); }
//
// move all new points to points
//
for( i = 0; i < m_PointCount; i++ ) { m_pPoints[i].m_Point = m_pPoints[i].m_NewPoint; m_pPoints[i].m_Normal = m_pPoints[i].m_NewNormal; VectorClear( m_pPoints[i].m_NewPoint ); VectorClear( m_pPoints[i].m_NewNormal ); m_pPoints[i].m_Valence = 0; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CSubdivMesh::AddTree( CSubdivQuad *pTree ) { //
// check to see if tree already exists in list
//
for( int i = 0; i < m_TreeCount; i++ ) { if( pTree == m_ppTrees[i] ) return i; }
//
// check tree count
//
if( m_TreeCount >= m_MaxTreeCount ) { // error message
_asm int 3; return -1; }
//
// add tree to list
//
m_ppTrees[m_TreeCount] = pTree; m_TreeCount++;
return ( m_TreeCount - 1 ); }
static HCURSOR preSubdivCursor;
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CSubdivMesh::PreSubdivide( void ) { // change the mouse to hourglass -- so level designers know something is
// happening
preSubdivCursor = SetCursor( LoadCursor( NULL, IDC_WAIT ) );
// clear the mesh
Clear();
//
// get the selection set
//
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return false;
CDispManager *pDispManager = pDoc->GetDispManager(); if( !pDispManager ) return false;
// get number of displacements in selection
int selectionCount = pDispManager->GetSelectionListCount();
// allocate memory
if( !AllocCache( selectionCount ) ) return false;
// mark the subdivision undo
GetHistory()->MarkUndoPosition( NULL, "Subdivision" ); //
// add all surfaces to mesh to subdivide
//
for( int i = 0; i < selectionCount; i++ ) { // get the current displacement surface
CMapDisp *pDisp = pDispManager->GetFromSelectionList( i ); if( !pDisp ) continue; //
// setup for undo
//
CMapFace *pFace = ( CMapFace* )pDisp->GetParent(); CMapSolid *pSolid = ( CMapSolid* )pFace->GetParent(); GetHistory()->Keep( ( CMapClass* )pSolid );
//
// add displacement's subdivision tree to mesh list
//
if( AddTree( pDisp->PreSubdivide( this ) ) == -1 ) return false; }
return true; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::SetEdgeData( CSubdivQuad *pRoot, int index, int parentIndex, int subdivIndex ) { for( int i = 0; i < 4; i++ ) { CSubdivEdge edge; //
// add vert indices
//
edge.m_ndxPoint[0] = pRoot[index].m_ndxVert[i]; edge.m_ndxPoint[1] = pRoot[index].m_ndxVert[(i+1)%4]; //
// set initial quads and edges data
//
edge.m_pQuads[0] = &pRoot[index]; edge.m_pQuads[1] = NULL; edge.m_ndxQuadEdge[0] = i; edge.m_ndxQuadEdge[1] = -1;
//
// set edge sharpness
//
if( ( i == subdivIndex ) || ( i == ( (subdivIndex+3)%4 ) ) ) { edge.m_Sharpness = m_pEdges[pRoot[parentIndex].m_ndxEdge[i]].m_Sharpness; } else { edge.m_Sharpness = 0.0f; } // add edge to global list
pRoot[index].m_ndxEdge[i] = AddEdge( &edge ); } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::CreateChildQuad4( CSubdivQuad *pRoot, int index, int parentIndex ) { //
// set quad indices -- displacement index values
//
pRoot[index].m_ndxQuad[0] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[3] ) / 2 ); pRoot[index].m_ndxQuad[1] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[2] ) / 2 ); pRoot[index].m_ndxQuad[2] = ( ( pRoot[parentIndex].m_ndxQuad[2] + pRoot[parentIndex].m_ndxQuad[3] ) / 2 ); pRoot[index].m_ndxQuad[3] = pRoot[parentIndex].m_ndxQuad[3];
//
// set vert indices
//
pRoot[index].m_ndxVert[0] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[3]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[3]].m_NewEdgeNormal ); pRoot[index].m_ndxVert[1] = AddPoint( pRoot[parentIndex].m_Centroid, pRoot[parentIndex].m_Normal ); pRoot[index].m_ndxVert[2] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[2]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[2]].m_NewEdgeNormal ); pRoot[index].m_ndxVert[3] = pRoot[parentIndex].m_ndxVert[3];
// set edge data
SetEdgeData( pRoot, index, parentIndex, 3 ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::CreateChildQuad3( CSubdivQuad *pRoot, int index, int parentIndex ) { //
// set quad indices -- displacement index values
//
pRoot[index].m_ndxQuad[0] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[2] ) / 2 ); pRoot[index].m_ndxQuad[1] = ( ( pRoot[parentIndex].m_ndxQuad[1] + pRoot[parentIndex].m_ndxQuad[2] ) / 2 ); pRoot[index].m_ndxQuad[2] = pRoot[parentIndex].m_ndxQuad[2]; pRoot[index].m_ndxQuad[3] = ( ( pRoot[parentIndex].m_ndxQuad[2] + pRoot[parentIndex].m_ndxQuad[3] ) / 2 );
//
// set vert indices
//
pRoot[index].m_ndxVert[0] = AddPoint( pRoot[parentIndex].m_Centroid, pRoot[parentIndex].m_Normal ); pRoot[index].m_ndxVert[1] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[1]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[1]].m_NewEdgeNormal ); pRoot[index].m_ndxVert[2] = pRoot[parentIndex].m_ndxVert[2]; pRoot[index].m_ndxVert[3] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[2]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[2]].m_NewEdgeNormal );
// set edge data
SetEdgeData( pRoot, index, parentIndex, 2 ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::CreateChildQuad2( CSubdivQuad *pRoot, int index, int parentIndex ) { //
// set quad indices -- displacement index values
//
pRoot[index].m_ndxQuad[0] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[1] ) / 2 ); pRoot[index].m_ndxQuad[1] = pRoot[parentIndex].m_ndxQuad[1]; pRoot[index].m_ndxQuad[2] = ( ( pRoot[parentIndex].m_ndxQuad[1] + pRoot[parentIndex].m_ndxQuad[2] ) / 2 ); pRoot[index].m_ndxQuad[3] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[2] ) / 2 );
//
// set vert indices
//
pRoot[index].m_ndxVert[0] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[0]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[0]].m_NewEdgeNormal ); pRoot[index].m_ndxVert[1] = pRoot[parentIndex].m_ndxVert[1]; pRoot[index].m_ndxVert[2] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[1]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[1]].m_NewEdgeNormal ); pRoot[index].m_ndxVert[3] = AddPoint( pRoot[parentIndex].m_Centroid, pRoot[parentIndex].m_Normal );
// set edge data
SetEdgeData( pRoot, index, parentIndex, 1 ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::CreateChildQuad1( CSubdivQuad *pRoot, int index, int parentIndex ) { //
// set quad indices -- displacement index values
//
pRoot[index].m_ndxQuad[0] = pRoot[parentIndex].m_ndxQuad[0]; pRoot[index].m_ndxQuad[1] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[1] ) / 2 ); pRoot[index].m_ndxQuad[2] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[2] ) / 2 ); pRoot[index].m_ndxQuad[3] = ( ( pRoot[parentIndex].m_ndxQuad[0] + pRoot[parentIndex].m_ndxQuad[3] ) / 2 );
//
// set vert indices
//
pRoot[index].m_ndxVert[0] = pRoot[parentIndex].m_ndxVert[0]; pRoot[index].m_ndxVert[1] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[0]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[0]].m_NewEdgeNormal ); pRoot[index].m_ndxVert[2] = AddPoint( pRoot[parentIndex].m_Centroid, pRoot[parentIndex].m_Normal ); pRoot[index].m_ndxVert[3] = AddPoint( m_pEdges[pRoot[parentIndex].m_ndxEdge[3]].m_NewEdgePoint, m_pEdges[pRoot[parentIndex].m_ndxEdge[3]].m_NewEdgeNormal );
// set edge data
SetEdgeData( pRoot, index, parentIndex, 0 ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::CreateChildQuads( CSubdivQuad *pRoot, int quadIndex ) { //
// create children
//
CreateChildQuad1( pRoot, ( ( quadIndex << 2 ) + 1 ), quadIndex ); CreateChildQuad2( pRoot, ( ( quadIndex << 2 ) + 2 ), quadIndex ); CreateChildQuad3( pRoot, ( ( quadIndex << 2 ) + 3 ), quadIndex ); CreateChildQuad4( pRoot, ( ( quadIndex << 2 ) + 4 ), quadIndex );
for( int i = 0; i < 4; i++ ) { m_pEdges[pRoot[quadIndex].m_ndxEdge[i]].m_Active = false; } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::AddQuadToMesh( CSubdivQuad *pQuad ) { return; }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CSubdivMesh::GetEndIndexFromLevel( int levelIndex ) { switch( levelIndex ) { case 0: { return 0; } case 1: { return 4; } case 2: { return 20; } case 3: { return 84; } default: { return 0; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
int CSubdivMesh::GetStartIndexFromLevel( int levelIndex ) { switch( levelIndex ) { case 0: { return 0; } case 1: { return 1; } case 2: { return 5; } case 3: { return 21; } default: { return 0; } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::Subdivide( void ) { //
// subdivide to four levels always (what the trees hold)
//
for( int subdivLevel = 0; subdivLevel < 4; subdivLevel++ ) { int startIndex = GetStartIndexFromLevel( subdivLevel ); int endIndex = GetEndIndexFromLevel( subdivLevel );
// subdivide
CatmullClarkSubdivide();
//
// add subdivision data to subdivision tree
//
for( int treeIndex = 0; treeIndex < m_TreeCount; treeIndex++ ) { //
// get the current tree
//
CSubdivQuad *pTree = m_ppTrees[treeIndex]; if( !pTree ) continue; //
// for each quad in the tree (at the given level)
//
for( int index = startIndex; index <= endIndex; index++ ) { CreateChildQuads( pTree, index ); } } } }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::PostSubdivide( void ) { //
// get the selection set
//
CMapDoc *pDoc = CMapDoc::GetActiveMapDoc(); if( !pDoc ) return;
CDispManager *pDispManager = pDoc->GetDispManager(); if( !pDispManager ) return;
//
// add all surfaces to mesh to subdivide
//
int selectionCount = pDispManager->GetSelectionListCount(); for( int i = 0; i < selectionCount; i++ ) { // get the current displacement surface
CMapDisp *pDisp = pDispManager->GetFromSelectionList( i ); if( !pDisp ) continue;
// post subdivide
pDisp->PostSubdivide( this ); }
// destroy cache!!!
FreeCache();
// set the cursor back to its previous state (before subdivision
SetCursor( preSubdivCursor ); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::DoSubdivide( void ) { PreSubdivide(); Subdivide(); PostSubdivide(); }
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CSubdivMesh::AllocCache( int dispCount ) { #define POINTS_PER_DISP 512
#define EDGES_PER_DISP 1024
m_MaxPointCount = POINTS_PER_DISP * dispCount; m_MaxEdgeCount = EDGES_PER_DISP * dispCount; m_MaxTreeCount = dispCount;
m_pPoints = new CSubdivPoint[m_MaxPointCount]; m_pEdges = new CSubdivEdge[m_MaxEdgeCount]; m_ppTrees = new CSubdivQuad*[m_MaxTreeCount];
if( !m_pPoints || !m_pEdges || !m_ppTrees ) { FreeCache(); return false; }
//
// clear cache
//
for( int i = 0; i < m_MaxPointCount; i++ ) { m_pPoints[i].Clear(); }
for( i = 0; i < m_MaxEdgeCount; i++ ) { m_pEdges[i].Clear(); }
//
// tell size of cache
//
int size = m_MaxPointCount * sizeof( CSubdivPoint ); size += m_MaxEdgeCount * sizeof( CSubdivEdge ); size += m_MaxTreeCount * sizeof( CSubdivQuad );
TRACE1( "Subdiv Cache: %d\n", size );
return true;
#undef POINTS_PER_DISP
#undef EDGES_PER_DISP
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CSubdivMesh::FreeCache( void ) { if( m_pPoints ) { delete [] m_pPoints; m_pPoints = NULL; m_PointCount = 0; }
if( m_pEdges ) { delete [] m_pEdges; m_pEdges = NULL; m_EdgeCount = 0; }
if( m_ppTrees ) { delete [] m_ppTrees; m_ppTrees = NULL; m_TreeCount = 0; }
// tell cache destroyed!!
TRACE0( "Subdiv Cache Destroyed!\n" ); }
|