|
|
//============ Copyright (c) Valve Corporation, All rights reserved. ============
//
// glmgr.cpp
//
//===============================================================================
#include "glmgr/glmgr.h"
#include "glmgr/glmdisplay.h"
#include "tier0/icommandline.h"
#include "../shaderapidx9/dxabstract.h" // need to be able to see D3D enums
#include "appframework/icocoamgr.h"
#include "convar.h"
// memdbgon -must- be the last include file in a .cpp file.
#include "tier0/memdbgon.h"
//===============================================================================
char g_nullFragmentProgramText [] = { "!!ARBfp1.0 \n" "PARAM black = { 0.0, 0.0, 0.0, 1.0 }; \n" // opaque black
"MOV result.color, black; \n" "END \n\n\n" "//GLSLfp\n" "void main()\n" "{\n" "gl_FragColor = vec4( 0.0, 0.0, 0.0, 1.0 );\n" "}\n" };
// make dummy programs for doing texture preload via dummy draw
char g_preloadTexVertexProgramText[] = { "//GLSLvp \n" "#version 120 \n" "varying vec4 otex; \n" "void main() \n" "{ \n" "vec4 pos = ftransform(); // vec4( 0.1, 0.1, 0.1, 0.1 ); \n" "vec4 tex = vec4( 0.0, 0.0, 0.0, 0.0 ); \n" " \n" "gl_Position = pos; \n" "otex = tex; \n" "} \n" };
char g_preload2DTexFragmentProgramText[] = { "//GLSLfp \n" "#version 120 \n" "varying vec4 otex; \n" "//SAMPLERMASK-8000 // may not be needed \n" "//HIGHWATER-30 // may not be needed \n" " \n" "uniform vec4 pc[31]; \n" "uniform sampler2D sampler15; \n" " \n" "void main() \n" "{ \n" "vec4 r0; \n" "r0 = texture2D( sampler15, otex.xy ); \n" "gl_FragColor = r0; //discard; \n" "} \n" };
char g_preload3DTexFragmentProgramText[] = { "//GLSLfp \n" "#version 120 \n" "varying vec4 otex; \n" "//SAMPLERMASK-8000 // may not be needed \n" "//HIGHWATER-30 // may not be needed \n" " \n" "uniform vec4 pc[31]; \n" "uniform sampler3D sampler15; \n" " \n" "void main() \n" "{ \n" "vec4 r0; \n" "r0 = texture3D( sampler15, otex.xyz ); \n" "gl_FragColor = r0; //discard; \n" "} \n" };
char g_preloadCubeTexFragmentProgramText[] = { "//GLSLfp \n" "#version 120 \n" "varying vec4 otex; \n" "//SAMPLERMASK-8000 // may not be needed \n" "//HIGHWATER-30 // may not be needed \n" " \n" "uniform vec4 pc[31]; \n" "uniform samplerCube sampler15; \n" " \n" "void main() \n" "{ \n" "vec4 r0; \n" "r0 = textureCube( sampler15, otex.xyz ); \n" "gl_FragColor = r0; //discard; \n" "} \n" };
//===============================================================================
// helper routines for debug
static bool hasnonzeros( float *values, int count ) { for( int i=0; i<count; i++) { if (values[i] != 0.0) { return true; } } return false; }
static void printmat( char *label, int baseSlotNumber, int slots, float *m00 ) { // print label..
// fetch 4 from row, print as a row
// fetch 4 from column, print as a row
float row[4]; float col[4]; if (hasnonzeros( m00, slots*4) ) { GLMPRINTF(("-D- %s", label )); for( int islot=0; islot<4; islot++ ) // we always run this loop til 4, but we special case the printing if there are only 3 submitted
{ // extract row and column floats
for( int slotcol=0; slotcol<4; slotcol++) { //copy
row[slotcol] = m00[(islot*4)+slotcol]; // transpose
col[slotcol] = m00[(slotcol*4)+islot]; } if (slots==4) { GLMPRINTF(( "-D- %03d: [ %10.5f %10.5f %10.5f %10.5f ] T=> [ %10.5f %10.5f %10.5f %10.5f ]", baseSlotNumber+islot, row[0],row[1],row[2],row[3], col[0],col[1],col[2],col[3] )); } else { if (islot<3) { GLMPRINTF(( "-D- %03d: [ %10.5f %10.5f %10.5f %10.5f ] T=> [ %10.5f %10.5f %10.5f ]", baseSlotNumber+islot, row[0],row[1],row[2],row[3], col[0],col[1],col[2] )); } else { GLMPRINTF(( "-D- %03d: T=> [ %10.5f %10.5f %10.5f ]", baseSlotNumber+islot, col[0],col[1],col[2] )); } } } GLMPRINTSTR(("-D-")); } else { GLMPRINTF(("-D- %s - (all 0.0)", label )); }
}
static void transform_dp4( float *in4, float *m00, int slots, float *out4 ) { // m00 points to a column.
// each DP is one column of the matrix ( m00[4*n]
// if we are passed a three slot matrix, this is three columns, the source W plays into all three columns, but we must set the final output W to 1 ?
for( int n=0; n<slots; n++) { float col4[4]; col4[0] = m00[(4*n)+0]; col4[1] = m00[(4*n)+1]; col4[2] = m00[(4*n)+2]; col4[3] = m00[(4*n)+3]; out4[n] = 0.0; for( int inner = 0; inner < 4; inner++ ) { out4[n] += in4[inner] * col4[inner]; } } if (slots==3) { out4[3] = 1.0; } }
//===============================================================================
extern ICocoaMgr *g_extCocoaMgr;
//===============================================================================
// GLMgr static methods
GLMgr *g_glmgr = NULL;
void GLMgr::NewGLMgr( void ) { if (!g_glmgr) { GLMSetupExtensions(); #if GLMDEBUG
// check debug mode early in program lifetime
GLMDebugInitialize( true ); #endif
g_glmgr = new GLMgr; } }
GLMgr *GLMgr::aGLMgr( void ) { assert( g_glmgr != NULL); return g_glmgr; }
void GLMgr::DelGLMgr( void ) { if (g_glmgr) { delete g_glmgr; g_glmgr = NULL; } }
// GLMgr class methods
GLMgr::GLMgr() { }
GLMgr::~GLMgr() { }
//===============================================================================
GLMContext *GLMgr::NewContext( GLMDisplayParams *params ) { // this now becomes really simple. We just pass through the params.
return new GLMContext( params ); }
void GLMgr::DelContext( GLMContext *context ) { delete context; }
void GLMgr::SetCurrentContext( GLMContext *context ) { CGLError cgl_err; cgl_err = CGLSetCurrentContext( context->m_ctx ); if (cgl_err) { // give up
GLMStop(); } }
GLMContext *GLMgr::GetCurrentContext( void ) { CGLContextObj ctx = CGLGetCurrentContext(); GLint glm_context_link = 0; CGLGetParameter( ctx, kCGLCPClientStorage, &glm_context_link ); if ( glm_context_link ) { return (GLMContext*) glm_context_link; } else { return NULL; } }
//===============================================================================
// GLMContext public methods
void GLMContext::MakeCurrent( void ) { // GLM_FUNC;
CGLSetCurrentContext( m_ctx ); }
void GLMContext::CheckCurrent( void ) { #if 1
// GLM_FUNC;
// probably want to make this a no-op for release builds
// but we can't, because someone is messing with current context and not sure where yet
CGLContextObj curr = CGLGetCurrentContext(); if (curr != m_ctx) { if (!CommandLine()->FindParm("-hushasserts")) { Assert( !"Current context mismatch"); #if GLMDEBUG
Debugger(); #endif
} MakeCurrent(); // you're welcome
} #endif
}
const GLMRendererInfoFields& GLMContext::Caps( void ) { return m_caps; }
void GLMContext::DumpCaps( void ) { /*
#define dumpfield( fff ) printf( "\n "#fff" : %d", (int) m_caps.fff )
#define dumpfield_hex( fff ) printf( "\n "#fff" : 0x%08x", (int) m_caps.fff )
#define dumpfield_str( fff ) printf( "\n "#fff" : %s", m_caps.fff )
*/
#define dumpfield( fff ) printf( "\n %-30s : %d", #fff, (int) m_caps.fff )
#define dumpfield_hex( fff ) printf( "\n %-30s : 0x%08x", #fff, (int) m_caps.fff )
#define dumpfield_str( fff ) printf( "\n %-30s : %s", #fff, m_caps.fff )
printf("\n-------------------------------- context caps for context %08x", (uint)this);
dumpfield( m_fullscreen ); dumpfield( m_accelerated ); dumpfield( m_windowed ); dumpfield_hex( m_rendererID ); dumpfield( m_displayMask ); dumpfield( m_bufferModes ); dumpfield( m_colorModes ); dumpfield( m_accumModes ); dumpfield( m_depthModes ); dumpfield( m_stencilModes ); dumpfield( m_maxAuxBuffers ); dumpfield( m_maxSampleBuffers ); dumpfield( m_maxSamples ); dumpfield( m_sampleModes ); dumpfield( m_sampleAlpha ); dumpfield_hex( m_vidMemory ); dumpfield_hex( m_texMemory );
dumpfield_hex( m_pciVendorID ); dumpfield_hex( m_pciDeviceID ); dumpfield_str( m_pciModelString ); dumpfield_str( m_driverInfoString );
printf( "\n m_osComboVersion: 0x%08x (%d.%d.%d)", m_caps.m_osComboVersion, (m_caps.m_osComboVersion>>16)&0xFF, (m_caps.m_osComboVersion>>8)&0xFF, (m_caps.m_osComboVersion)&0xFF );
dumpfield( m_ati ); if (m_caps.m_ati) { dumpfield( m_atiR5xx ); dumpfield( m_atiR6xx ); dumpfield( m_atiR7xx ); dumpfield( m_atiR8xx ); dumpfield( m_atiNewer ); }
dumpfield( m_intel ); if (m_caps.m_intel) { dumpfield( m_intel95x ); dumpfield( m_intel3100 ); dumpfield( m_intelNewer ); }
dumpfield( m_nv ); if (m_caps.m_nv) { //dumpfield( m_nvG7x );
dumpfield( m_nvG8x ); dumpfield( m_nvNewer ); }
dumpfield( m_hasGammaWrites ); dumpfield( m_hasSRGBDecode ); dumpfield( m_hasMixedAttachmentSizes ); dumpfield( m_hasBGRA ); dumpfield( m_hasNewFullscreenMode ); dumpfield( m_hasNativeClipVertexMode ); dumpfield( m_maxAniso ); dumpfield( m_hasBindableUniforms ); dumpfield( m_hasUniformBuffers ); dumpfield( m_hasPerfPackage1 ); dumpfield( m_cantBlitReliably ); dumpfield( m_cantAttachSRGB ); dumpfield( m_cantResolveFlipped ); dumpfield( m_cantResolveScaled ); dumpfield( m_costlyGammaFlips ); dumpfield( m_badDriver1064NV );
printf("\n--------------------------------"); #undef dumpfield
#undef dumpfield_hex
#undef dumpfield_str
}
void DefaultSamplingParams( GLMTexSamplingParams *samp, GLMTexLayoutKey *key ) { memset( samp, 0, sizeof(*samp) ); // Default to black, it may make drivers happier
samp->m_borderColor[0] = 0.0f; samp->m_borderColor[0] = 0.0f; samp->m_borderColor[0] = 0.0f; samp->m_borderColor[0] = 1.0f;
// generally speaking..
// if it's a render target, default it to GL_CLAMP_TO_BORDER, else GL_REPEAT
// if it has mipmaps, default the min filter to GL_LINEAR_MIPMAP_LINEAR, else GL_LINEAR
// ** none of these really matter all that much because the first time we go to render, the d3d sampler state will be consulted
// and applied directly to the tex object without regard to any previous values..
GLenum rtclamp = GL_CLAMP_TO_EDGE; //GL_CLAMP_TO_BORDER
switch( key->m_texFlags & (kGLMTexRenderable|kGLMTexMipped) ) { case 0: // -- mipped, -- renderable
samp->m_addressModes[0] = GL_REPEAT; samp->m_addressModes[1] = GL_REPEAT; samp->m_addressModes[2] = GL_REPEAT; samp->m_magFilter = GL_LINEAR; samp->m_minFilter = GL_LINEAR; break;
case kGLMTexRenderable: // -- mipped, ++ renderable
samp->m_addressModes[0] = rtclamp; samp->m_addressModes[1] = rtclamp; samp->m_addressModes[2] = rtclamp; samp->m_magFilter = GL_LINEAR; samp->m_minFilter = GL_LINEAR; break;
case kGLMTexMipped: // ++ mipped, -- renderable
samp->m_addressModes[0] = GL_REPEAT; samp->m_addressModes[1] = GL_REPEAT; samp->m_addressModes[2] = GL_REPEAT; samp->m_magFilter = GL_LINEAR; samp->m_minFilter = GL_LINEAR_MIPMAP_LINEAR; // was GL_NEAREST_MIPMAP_LINEAR;
break;
case kGLMTexRenderable | kGLMTexMipped: // ++ mipped, ++ renderable
samp->m_addressModes[0] = rtclamp; samp->m_addressModes[1] = rtclamp; samp->m_addressModes[2] = rtclamp; samp->m_magFilter = GL_LINEAR; samp->m_minFilter = GL_LINEAR_MIPMAP_LINEAR; // was GL_NEAREST_MIPMAP_LINEAR;
break;
}
samp->m_mipmapBias = 0.0f;
samp->m_minMipLevel = 0; // this drives GL_TEXTURE_MIN_LOD - i.e. lowest MIP selection index clamp (largest size), not "slice defined" boundary
samp->m_maxMipLevel = 16; // this drives GL_TEXTURE_MAX_LOD - i.e. highest MIP selection clamp (smallest size), not "slice defined" boundary
samp->m_maxAniso = 1; samp->m_compareMode = GL_NONE; // only for depth or stencil tex
samp->m_srgb = false; }
CGLMTex *GLMContext::NewTex( GLMTexLayoutKey *key, const char *debugLabel ) { //hushed GLM_FUNC;
MakeCurrent(); // get a layout based on the key
GLMTexLayout *layout = m_texLayoutTable->NewLayoutRef( key ); GLMTexSamplingParams defsamp; DefaultSamplingParams( &defsamp, key ); CGLMTex *tex = new CGLMTex( this, layout, &defsamp, debugLabel ); return tex; }
void GLMContext::DelTex( CGLMTex *tex ) { //hushed GLM_FUNC;
MakeCurrent();
for( int i=0; i<GLM_SAMPLER_COUNT; i++) { // clear out any reference in the drawing sampler array
if (m_samplers[i].m_drawTex == tex) { m_samplers[i].m_drawTex = NULL; }
if (m_samplers[i].m_boundTex == tex) { this->BindTexToTMU( NULL, i ); m_samplers[i].m_boundTex = NULL; // for clarity
tex->m_bindPoints[i] = 0; } } if (tex->m_rtAttachCount !=0) { // leak it and complain - we may have to implement a deferred-delete system for tex like these
GLMPRINTF(("-D- ################## Leaking tex %08x [ %s ] - was attached for drawing at time of delete",tex, tex->m_layout->m_layoutSummary ));
#if 0
// can't actually do this yet as the draw calls will tank
FOR_EACH_VEC( m_fboTable, i ) { CGLMFBO *fbo = m_fboTable[i]; fbo->TexScrub( tex ); } tex->m_rtAttachCount = 0; #endif
} else { delete tex; } }
// push and pop attrib when blit has mixed srgb source and dest?
ConVar gl_radar7954721_workaround_mixed ( "gl_radar7954721_workaround_mixed", "1" );
// push and pop attrib on any blit?
ConVar gl_radar7954721_workaround_all ( "gl_radar7954721_workaround_all", "0" );
// what attrib mask to use ?
ConVar gl_radar7954721_workaround_maskval ( "gl_radar7954721_workaround_maskval", "0" );
enum eBlitFormatClass { eColor, eDepth, // may not get used. not sure..
eDepthStencil };
uint glAttachFromClass[ 3 ] = { GL_COLOR_ATTACHMENT0_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_DEPTH_STENCIL_ATTACHMENT_EXT };
void glScrubFBO ( GLenum target ) { glFramebufferRenderbufferEXT ( target, GL_COLOR_ATTACHMENT0_EXT, GL_RENDERBUFFER_EXT, 0); GLMCheckError(); glFramebufferRenderbufferEXT ( target, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, 0); GLMCheckError(); glFramebufferRenderbufferEXT ( target, GL_STENCIL_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, 0); GLMCheckError();
glFramebufferTexture2DEXT ( target, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, 0, 0 ); GLMCheckError(); glFramebufferTexture2DEXT ( target, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, 0, 0 ); GLMCheckError(); glFramebufferTexture2DEXT ( target, GL_STENCIL_ATTACHMENT_EXT, GL_TEXTURE_2D, 0, 0 ); GLMCheckError(); }
void glAttachRBOtoFBO ( GLenum target, eBlitFormatClass formatClass, uint rboName ) { switch( formatClass ) { case eColor: glFramebufferRenderbufferEXT ( target, GL_COLOR_ATTACHMENT0_EXT, GL_RENDERBUFFER_EXT, rboName); GLMCheckError(); break; case eDepth: glFramebufferRenderbufferEXT ( target, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, rboName); GLMCheckError(); break; case eDepthStencil: glFramebufferRenderbufferEXT ( target, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, rboName); GLMCheckError(); glFramebufferRenderbufferEXT ( target, GL_STENCIL_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, rboName); GLMCheckError(); break; } }
void glAttachTex2DtoFBO ( GLenum target, eBlitFormatClass formatClass, uint texName, uint texMip ) { switch( formatClass ) { case eColor: glFramebufferTexture2DEXT ( target, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, texName, texMip ); GLMCheckError(); break; case eDepth: glFramebufferTexture2DEXT ( target, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, texName, texMip ); GLMCheckError(); break; case eDepthStencil: glFramebufferTexture2DEXT ( target, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, texName, texMip ); GLMCheckError(); glFramebufferTexture2DEXT ( target, GL_STENCIL_ATTACHMENT_EXT, GL_TEXTURE_2D, texName, texMip ); GLMCheckError(); break; } }
ConVar gl_can_resolve_flipped("gl_can_resolve_flipped", "0" ); ConVar gl_cannot_resolve_flipped("gl_cannot_resolve_flipped", "0" );
// these are only consulted if the m_cant_resolve_scaled cap bool is false.
ConVar gl_minify_resolve_mode("gl_minify_resolve_mode", "1" ); // if scaled resolve available, for downscaled resolve blits only (i.e. internal blits)
ConVar gl_magnify_resolve_mode("gl_magnify_resolve_mode", "2" ); // if scaled resolve available, for upscaled resolve blits only
// 0 == old style, two steps
// 1 == faster, one step blit aka XGL_SCALED_RESOLVE_FASTEST_EXT - if available.
// 2 == faster, one step blit aka XGL_SCALED_RESOLVE_NICEST_EXT - if available.
unsigned short foo[4];
void GLMContext::Blit2( CGLMTex *srcTex, GLMRect *srcRect, int srcFace, int srcMip, CGLMTex *dstTex, GLMRect *dstRect, int dstFace, int dstMip, uint filter ) { Assert( srcFace == 0 ); Assert( dstFace == 0 );
// glColor4usv( foo );
//----------------------------------------------------------------- format assessment
eBlitFormatClass formatClass; uint blitMask= 0;
switch( srcTex->m_layout->m_format->m_glDataFormat ) { case GL_BGRA: case GL_RGB: case GL_RGBA: case GL_ALPHA: case GL_LUMINANCE: case GL_LUMINANCE_ALPHA: formatClass = eColor; blitMask = GL_COLOR_BUFFER_BIT; break;
case GL_DEPTH_COMPONENT: formatClass = eDepth; blitMask = GL_DEPTH_BUFFER_BIT; break; case GL_DEPTH_STENCIL_EXT: formatClass = eDepthStencil; blitMask = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT; break;
default: Assert(!"Unsupported format for blit" ); GLMStop(); break; }
//----------------------------------------------------------------- blit assessment
bool blitResolves = srcTex->m_rboName != 0; bool blitScales = ((srcRect->xmax - srcRect->xmin) != (dstRect->xmax - dstRect->xmin)) || ((srcRect->ymax - srcRect->ymin) != (dstRect->ymax - dstRect->ymin));
bool blitToBack = (dstTex == NULL); bool blitFlips = blitToBack; // implicit y-flip upon blit to GL_BACK supplied
//should we support blitFromBack ?
bool srcGamma = srcTex && ((srcTex->m_layout->m_key.m_texFlags & kGLMTexSRGB) != 0); bool dstGamma = dstTex && ((dstTex->m_layout->m_key.m_texFlags & kGLMTexSRGB) != 0);
bool doPushPop = (srcGamma != dstGamma) && gl_radar7954721_workaround_mixed.GetInt() && m_caps.m_nv; // workaround for cross gamma blit problems on NV
// ^^ need to re-check this on some post-10.6.3 build on NV to see if it was fixed
if (doPushPop) { glPushAttrib( 0 ); } //----------------------------------------------------------------- figure out the plan
bool blitTwoStep = false; // think positive
// each subsequent segment here can only set blitTwoStep, not clear it.
// the common case where these get hit is resolve out to presentation
// there may be GL extensions or driver revisions which start doing these safely.
// ideally many blits internally resolve without scaling and can thus go direct without using the scratch tex.
if (blitResolves && (blitFlips||blitToBack)) // flips, blit to back, same thing (for now)
{ if( gl_cannot_resolve_flipped.GetInt() ) { blitTwoStep = true; } else if (!gl_can_resolve_flipped.GetInt()) { blitTwoStep = blitTwoStep || m_caps.m_cantResolveFlipped; // if neither convar renders an opinion, fall back to the caps to decide if we have to two-step.
} }
// only consider trying to use the scaling resolve filter,
// if we are confident we are not headed for two step mode already.
if (!blitTwoStep) { if (blitResolves && blitScales) { if (m_caps.m_cantResolveScaled) { // filter is unchanged, two step mode switches on
blitTwoStep = true; } else { bool blitScalesDown = ((srcRect->xmax - srcRect->xmin) > (dstRect->xmax - dstRect->xmin)) || ((srcRect->ymax - srcRect->ymin) > (dstRect->ymax - dstRect->ymin)); int mode = (blitScalesDown) ? gl_minify_resolve_mode.GetInt() : gl_magnify_resolve_mode.GetInt(); // roughly speaking, resolve blits that minify represent setup for special effects ("copy framebuffer to me")
// resolve blits that magnify are almost always on the final present in the case where remder size < display size
switch( mode ) { case 0: default: // filter is unchanged, two step mode
blitTwoStep = true; break; case 1: // filter goes to fastest, one step mode
blitTwoStep = false; filter = XGL_SCALED_RESOLVE_FASTEST_EXT; break; case 2: // filter goes to nicest, one step mode
blitTwoStep = false; filter = XGL_SCALED_RESOLVE_NICEST_EXT; break; } } } }
//----------------------------------------------------------------- save old scissor state and disable scissor
GLScissorEnable_t oldsciss,newsciss; m_ScissorEnable.Read( &oldsciss, 0 );
// turn off scissor
newsciss.enable = false; m_ScissorEnable.Write( &newsciss, true, true );
//----------------------------------------------------------------- fork in the road, depending on two-step or not
if (blitTwoStep) { // a resolve that can't be done directly due to constraints on scaling or flipping.
// bind scratch FBO0 to read, scrub it, attach RBO
BindFBOToCtx ( m_scratchFBO[0], GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); glScrubFBO ( GL_READ_FRAMEBUFFER_EXT ); glAttachRBOtoFBO ( GL_READ_FRAMEBUFFER_EXT, formatClass, srcTex->m_rboName ); // bind scratch FBO1 to write, scrub it, attach scratch tex
BindFBOToCtx ( m_scratchFBO[1], GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError(); glScrubFBO ( GL_DRAW_FRAMEBUFFER_EXT ); glAttachTex2DtoFBO ( GL_DRAW_FRAMEBUFFER_EXT, formatClass, srcTex->m_texName, 0 );
// set read and draw buffers appropriately
glReadBuffer ( glAttachFromClass[formatClass] ); glDrawBuffer ( glAttachFromClass[formatClass] ); // blit#1 - to resolve to scratch
// implicitly means no scaling, thus will be done with NEAREST sampling
GLenum resolveFilter = GL_NEAREST; glBlitFramebufferEXT( 0, 0, srcTex->m_layout->m_key.m_xSize, srcTex->m_layout->m_key.m_ySize, 0, 0, srcTex->m_layout->m_key.m_xSize, srcTex->m_layout->m_key.m_ySize, // same source and dest rect, whole surface
blitMask, resolveFilter ); GLMCheckError(); // FBO1 now holds the interesting content.
// scrub FBO0, bind FBO1 to READ, fall through to next stage of blit where 1 goes onto 0 (or BACK)
glScrubFBO ( GL_READ_FRAMEBUFFER_EXT ); // zap FBO0
BindFBOToCtx ( m_scratchFBO[1], GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); } else { // arrange source surface on FBO1 for blit directly to dest (which could be FBO0 or BACK)
BindFBOToCtx ( m_scratchFBO[1], GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); glScrubFBO ( GL_READ_FRAMEBUFFER_EXT ); if (blitResolves) { glAttachRBOtoFBO( GL_READ_FRAMEBUFFER_EXT, formatClass, srcTex->m_rboName ); } else { glAttachTex2DtoFBO( GL_READ_FRAMEBUFFER_EXT, formatClass, srcTex->m_texName, srcMip ); } glReadBuffer( glAttachFromClass[formatClass] ); } //----------------------------------------------------------------- zero or one blits may have happened above, whichever took place, FBO1 is now on read
bool yflip = false; if (blitToBack) { // backbuffer is special - FBO0 is left out (either scrubbed already, or not used)
BindFBOToCtx ( NULL, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError(); glDrawBuffer ( GL_BACK ); GLMCheckError(); yflip = true; } else { // not going to GL_BACK - use FBO0. set up dest tex or RBO on it. i.e. it's OK to blit from MSAA to MSAA if needed, though unlikely.
Assert( dstTex != NULL );
BindFBOToCtx ( m_scratchFBO[0], GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError(); glScrubFBO ( GL_DRAW_FRAMEBUFFER_EXT );
if (dstTex->m_rboName) { glAttachRBOtoFBO( GL_DRAW_FRAMEBUFFER_EXT, formatClass, dstTex->m_rboName ); } else { glAttachTex2DtoFBO( GL_DRAW_FRAMEBUFFER_EXT, formatClass, dstTex->m_texName, dstMip ); }
glDrawBuffer ( glAttachFromClass[formatClass] ); GLMCheckError(); }
// final blit
// i think in general, if we are blitting same size, gl_nearest is the right filter to pass.
// this re-steering won't kick in if there is scaling or a special scaled resolve going on.
if (!blitScales) { // steer it
// printf("\n re-setting blit filter from %x/%s to GL_NEAREST", filter, GLMDecode(eGL_ENUM, filter) );
filter = GL_NEAREST; } // this is blit #1 or #2 depending on what took place above.
if (yflip) { glBlitFramebufferEXT( srcRect->xmin, srcRect->ymin, srcRect->xmax, srcRect->ymax, dstRect->xmin, dstRect->ymax, dstRect->xmax, dstRect->ymin, // note dest Y's are flipped
blitMask, filter ); } else { glBlitFramebufferEXT( srcRect->xmin, srcRect->ymin, srcRect->xmax, srcRect->ymax, dstRect->xmin, dstRect->ymin, dstRect->xmax, dstRect->ymax, blitMask, filter ); } GLMCheckError();
//----------------------------------------------------------------- scrub READ and maybe DRAW FBO, and unbind
glScrubFBO ( GL_READ_FRAMEBUFFER_EXT ); BindFBOToCtx ( NULL, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); if (!blitToBack) { glScrubFBO ( GL_DRAW_FRAMEBUFFER_EXT ); BindFBOToCtx ( NULL, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError(); } //----------------------------------------------------------------- restore GLM's drawing FBO
// restore GLM drawing FBO
BindFBOToCtx( m_drawingFBO, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); BindFBOToCtx( m_drawingFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
if (doPushPop) { glPopAttrib( ); }
//----------------------------------------------------------------- restore old scissor state
m_ScissorEnable.Write( &oldsciss, true, true ); }
void GLMContext::BlitTex( CGLMTex *srcTex, GLMRect *srcRect, int srcFace, int srcMip, CGLMTex *dstTex, GLMRect *dstRect, int dstFace, int dstMip, GLenum filter, bool useBlitFB ) { switch( srcTex->m_layout->m_format->m_glDataFormat ) { case GL_BGRA: case GL_RGB: case GL_RGBA: case GL_ALPHA: case GL_LUMINANCE: case GL_LUMINANCE_ALPHA: #if 0
if (GLMKnob("caps-key",NULL) > 0.0) { useBlitFB = false; } #endif
if ( m_caps.m_cantBlitReliably ) // this is referring to a problem with the x3100..
{ useBlitFB = false; } break; } if (0) { GLMPRINTF(("-D- Blit from %d %d %d %d to %d %d %d %d", srcRect->xmin, srcRect->ymin, srcRect->xmax, srcRect->ymax, dstRect->xmin, dstRect->ymin, dstRect->xmax, dstRect->ymax )); GLMPRINTF(( "-D- src tex layout is %s", srcTex->m_layout->m_layoutSummary )); GLMPRINTF(( "-D- dst tex layout is %s", dstTex->m_layout->m_layoutSummary )); }
int pushed = 0; uint pushmask = gl_radar7954721_workaround_maskval.GetInt(); //GL_COLOR_BUFFER_BIT
//| GL_CURRENT_BIT
//| GL_ENABLE_BIT
//| GL_FOG_BIT
//| GL_PIXEL_MODE_BIT
//| GL_SCISSOR_BIT
//| GL_STENCIL_BUFFER_BIT
//| GL_TEXTURE_BIT
//GL_VIEWPORT_BIT
//;
if (gl_radar7954721_workaround_all.GetInt()!=0) { glPushAttrib( pushmask ); pushed++; } else { bool srcGamma = (srcTex->m_layout->m_key.m_texFlags & kGLMTexSRGB) != 0; bool dstGamma = (dstTex->m_layout->m_key.m_texFlags & kGLMTexSRGB) != 0;
if (srcGamma != dstGamma) { if (gl_radar7954721_workaround_mixed.GetInt()) { glPushAttrib( pushmask ); pushed++; } } }
if (useBlitFB) { // state we need to save
// current setting of scissor
// current setting of the drawing fbo (no explicit save, it's in the context)
GLScissorEnable_t oldsciss,newsciss; m_ScissorEnable.Read( &oldsciss, 0 );
// remember to restore m_drawingFBO at end of effort
// setup
// turn off scissor
newsciss.enable = false; m_ScissorEnable.Write( &newsciss, true, true );
// select which attachment enum we're going to use for the blit
// default to color0, unless it's a depth or stencil flava
Assert( srcTex->m_layout->m_format->m_glDataFormat == dstTex->m_layout->m_format->m_glDataFormat ); EGLMFBOAttachment attachIndex = (EGLMFBOAttachment)0; GLenum attachIndexGL = 0; GLuint blitMask = 0; switch( srcTex->m_layout->m_format->m_glDataFormat ) { case GL_BGRA: case GL_RGB: case GL_RGBA: case GL_ALPHA: case GL_LUMINANCE: case GL_LUMINANCE_ALPHA: attachIndex = kAttColor0; attachIndexGL = GL_COLOR_ATTACHMENT0_EXT; blitMask = GL_COLOR_BUFFER_BIT; break;
case GL_DEPTH_COMPONENT: attachIndex = kAttDepth; attachIndexGL = GL_DEPTH_ATTACHMENT_EXT; blitMask = GL_DEPTH_BUFFER_BIT; break; case GL_DEPTH_STENCIL_EXT: attachIndex = kAttDepthStencil; attachIndexGL = GL_DEPTH_STENCIL_ATTACHMENT_EXT; blitMask = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT; break;
default: Assert(0); break; }
// set the read fb, attach read tex at appropriate attach point, set read buffer
BindFBOToCtx( m_blitReadFBO, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError();
GLMFBOTexAttachParams attparams; attparams.m_tex = srcTex; attparams.m_face = srcFace; attparams.m_mip = srcMip; attparams.m_zslice = 0; m_blitReadFBO->TexAttach( &attparams, attachIndex, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError();
glReadBuffer( attachIndexGL ); GLMCheckError();
// set the write fb and buffer, and attach write tex
BindFBOToCtx( m_blitDrawFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
attparams.m_tex = dstTex; attparams.m_face = dstFace; attparams.m_mip = dstMip; attparams.m_zslice = 0; m_blitDrawFBO->TexAttach( &attparams, attachIndex, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
glDrawBuffer( attachIndexGL ); GLMCheckError();
// do the blit
glBlitFramebufferEXT( srcRect->xmin, srcRect->ymin, srcRect->xmax, srcRect->ymax, dstRect->xmin, dstRect->ymin, dstRect->xmax, dstRect->ymax, blitMask, filter ); GLMCheckError(); // cleanup
// unset the read fb and buffer, detach read tex
// unset the write fb and buffer, detach write tex
m_blitReadFBO->TexDetach( attachIndex, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError();
m_blitDrawFBO->TexDetach( attachIndex, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
// put the original FB back in place (both read and draw)
// this bind will hit both read and draw bindings
BindFBOToCtx( m_drawingFBO, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); BindFBOToCtx( m_drawingFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
// set the read and write buffers back to... what ? does it matter for anything but copies ? don't worry about it
// restore the scissor state
m_ScissorEnable.Write( &oldsciss, true, true ); } else { // textured quad style
// we must attach the dest tex as the color buffer on the blit draw FBO
// so that means we need to re-set the drawing FBO on exit
EGLMFBOAttachment attachIndex = (EGLMFBOAttachment)0; GLenum attachIndexGL = 0; switch( srcTex->m_layout->m_format->m_glDataFormat ) { case GL_BGRA: case GL_RGB: case GL_RGBA: case GL_ALPHA: case GL_LUMINANCE: case GL_LUMINANCE_ALPHA: attachIndex = kAttColor0; attachIndexGL = GL_COLOR_ATTACHMENT0_EXT; break;
default: Assert(!"Can't blit that format"); break; } BindFBOToCtx( m_blitDrawFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
GLMFBOTexAttachParams attparams; attparams.m_tex = dstTex; attparams.m_face = dstFace; attparams.m_mip = dstMip; attparams.m_zslice = 0; m_blitDrawFBO->TexAttach( &attparams, attachIndex, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
glDrawBuffer( attachIndexGL ); GLMCheckError(); // attempt to just set states directly the way we want them, then use the latched states to repair them afterward.
this->NullProgram(); // out of program mode
glDisable ( GL_ALPHA_TEST ); glDisable ( GL_CULL_FACE ); glDisable ( GL_POLYGON_OFFSET_FILL ); glDisable ( GL_SCISSOR_TEST );
glDisable ( GL_CLIP_PLANE0 ); glDisable ( GL_CLIP_PLANE1 ); glColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE ); glDisable ( GL_BLEND );
glDepthMask ( GL_FALSE ); glDisable ( GL_DEPTH_TEST );
glDisable ( GL_STENCIL_TEST ); glStencilMask ( GL_FALSE );
GLMCheckError();
// now do the unlit textured quad...
glActiveTexture( GL_TEXTURE0 ); glBindTexture( GL_TEXTURE_2D, srcTex->m_texName ); GLMCheckError();
glEnable(GL_TEXTURE_2D); GLMCheckError();
// immediate mode is fine
float topv = 1.0; float botv = 0.0; glBegin(GL_QUADS); glTexCoord2f ( 0.0, botv ); glVertex3f ( -1.0, -1.0, 0.0 ); glTexCoord2f ( 1.0, botv ); glVertex3f ( 1.0, -1.0, 0.0 ); glTexCoord2f ( 1.0, topv ); glVertex3f ( 1.0, 1.0, 0.0 );
glTexCoord2f ( 0.0, topv ); glVertex3f ( -1.0, 1.0, 0.0 ); glEnd(); GLMCheckError();
glBindTexture( GL_TEXTURE_2D, 0 ); GLMCheckError();
glDisable(GL_TEXTURE_2D); GLMCheckError();
// invalidate tex binding 0 so it gets reset
m_samplers[0].m_boundTex = NULL; // leave active program empty - flush draw states will fix
// then restore states using the scoreboard
m_AlphaTestEnable.Flush( true ); m_AlphaToCoverageEnable.Flush( true ); m_CullFaceEnable.Flush( true ); m_DepthBias.Flush( true ); m_ScissorEnable.Flush( true ); m_ClipPlaneEnable.FlushIndex( 0, true ); m_ClipPlaneEnable.FlushIndex( 1, true ); m_ColorMaskSingle.Flush( true ); m_BlendEnable.Flush( true );
m_DepthMask.Flush( true ); m_DepthTestEnable.Flush( true ); m_StencilWriteMask.Flush( true ); m_StencilTestEnable.Flush( true );
// unset the write fb and buffer, detach write tex
m_blitDrawFBO->TexDetach( attachIndex, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
// put the original FB back in place (both read and draw)
BindFBOToCtx( m_drawingFBO, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); BindFBOToCtx( m_drawingFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError(); } while(pushed) { glPopAttrib(); pushed--; } }
void GLMContext::ResolveTex( CGLMTex *tex, bool forceDirty ) { // only run resolve if it's (a) possible and (b) dirty or force-dirtied
if ( (tex->m_rboName) && ((tex->m_rboDirty)||forceDirty) ) { // state we need to save
// current setting of scissor
// current setting of the drawing fbo (no explicit save, it's in the context)
GLScissorEnable_t oldsciss,newsciss; m_ScissorEnable.Read( &oldsciss, 0 );
// remember to restore m_drawingFBO at end of effort
// setup
// turn off scissor
newsciss.enable = false; m_ScissorEnable.Write( &newsciss, true, true );
// select which attachment enum we're going to use for the blit
// default to color0, unless it's a depth or stencil flava
// for resolve, only handle a modest subset of the possible formats
EGLMFBOAttachment attachIndex = (EGLMFBOAttachment)0; GLenum attachIndexGL = 0; GLuint blitMask = 0; switch( tex->m_layout->m_format->m_glDataFormat ) { case GL_BGRA: case GL_RGB: case GL_RGBA: // case GL_ALPHA:
// case GL_LUMINANCE:
// case GL_LUMINANCE_ALPHA:
attachIndex = kAttColor0; attachIndexGL = GL_COLOR_ATTACHMENT0_EXT; blitMask = GL_COLOR_BUFFER_BIT; break;
// case GL_DEPTH_COMPONENT:
// attachIndex = kAttDepth;
// attachIndexGL = GL_DEPTH_ATTACHMENT_EXT;
// blitMask = GL_DEPTH_BUFFER_BIT;
// break;
case GL_DEPTH_STENCIL_EXT: attachIndex = kAttDepthStencil; attachIndexGL = GL_DEPTH_STENCIL_ATTACHMENT_EXT; blitMask = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT; break;
default: Assert(!"Unsupported format for MSAA resolve" ); break; }
// set the read fb, attach read RBO at appropriate attach point, set read buffer
BindFBOToCtx( m_blitReadFBO, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError();
// going to avoid the TexAttach / TexDetach calls due to potential confusion, implement it directly here
//-----------------------------------------------------------------------------------
// put tex->m_rboName on the read FB's attachment
if (attachIndexGL==GL_DEPTH_STENCIL_ATTACHMENT_EXT) { // you have to attach it both places...
// http://www.opengl.org/wiki/GL_EXT_framebuffer_object
// bind the RBO to the GL_RENDERBUFFER_EXT target - is this extraneous ?
//glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, tex->m_rboName );
//GLMCheckError();
// attach the GL_RENDERBUFFER_EXT target to the depth and stencil attach points
glFramebufferRenderbufferEXT( GL_READ_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, tex->m_rboName); GLMCheckError(); glFramebufferRenderbufferEXT( GL_READ_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, tex->m_rboName); GLMCheckError();
// no need to leave the RBO hanging on
//glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, 0 );
//GLMCheckError();
} else { //glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, tex->m_rboName );
//GLMCheckError();
glFramebufferRenderbufferEXT( GL_READ_FRAMEBUFFER_EXT, attachIndexGL, GL_RENDERBUFFER_EXT, tex->m_rboName); GLMCheckError();
//glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, 0 );
//GLMCheckError();
}
glReadBuffer( attachIndexGL ); GLMCheckError();
//-----------------------------------------------------------------------------------
// put tex->m_texName on the draw FBO attachment
// set the write fb and buffer, and attach write tex
BindFBOToCtx( m_blitDrawFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
// regular path - attaching a texture2d
if (attachIndexGL==GL_DEPTH_STENCIL_ATTACHMENT_EXT) { glFramebufferTexture2DEXT( GL_DRAW_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, tex->m_texName, 0 ); GLMCheckError();
glFramebufferTexture2DEXT( GL_DRAW_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT, GL_TEXTURE_2D, tex->m_texName, 0 ); GLMCheckError(); } else { glFramebufferTexture2DEXT( GL_DRAW_FRAMEBUFFER_EXT, attachIndexGL, GL_TEXTURE_2D, tex->m_texName, 0 ); GLMCheckError(); }
glDrawBuffer( attachIndexGL ); GLMCheckError();
//-----------------------------------------------------------------------------------
// blit
glBlitFramebufferEXT( 0, 0, tex->m_layout->m_key.m_xSize, tex->m_layout->m_key.m_ySize, 0, 0, tex->m_layout->m_key.m_xSize, tex->m_layout->m_key.m_ySize, blitMask, GL_NEAREST ); // or should it be GL_LINEAR? does it matter ?
GLMCheckError(); //-----------------------------------------------------------------------------------
// cleanup
//-----------------------------------------------------------------------------------
// unset the read fb and buffer, detach read RBO
//glBindRenderbufferEXT( GL_RENDERBUFFER_EXT, 0 );
//GLMCheckError();
if (attachIndexGL==GL_DEPTH_STENCIL_ATTACHMENT_EXT) { // detach the GL_RENDERBUFFER_EXT target from the depth and stencil attach points
glFramebufferRenderbufferEXT( GL_READ_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, 0); GLMCheckError(); glFramebufferRenderbufferEXT( GL_READ_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, 0); GLMCheckError(); } else { glFramebufferRenderbufferEXT( GL_READ_FRAMEBUFFER_EXT, attachIndexGL, GL_RENDERBUFFER_EXT, 0); GLMCheckError(); }
//-----------------------------------------------------------------------------------
// unset the write fb and buffer, detach write tex
if (attachIndexGL==GL_DEPTH_STENCIL_ATTACHMENT_EXT) { glFramebufferTexture2DEXT( GL_DRAW_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_TEXTURE_2D, 0, 0 ); GLMCheckError();
glFramebufferTexture2DEXT( GL_DRAW_FRAMEBUFFER_EXT, GL_STENCIL_ATTACHMENT_EXT, GL_TEXTURE_2D, 0, 0 ); GLMCheckError(); } else { glFramebufferTexture2DEXT( GL_DRAW_FRAMEBUFFER_EXT, attachIndexGL, GL_TEXTURE_2D, 0, 0 ); GLMCheckError(); }
// put the original FB back in place (both read and draw)
// this bind will hit both read and draw bindings
BindFBOToCtx( m_drawingFBO, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); BindFBOToCtx( m_drawingFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
// set the read and write buffers back to... what ? does it matter for anything but copies ? don't worry about it
// restore the scissor state
m_ScissorEnable.Write( &oldsciss, true, true ); // mark the RBO clean on the resolved tex
tex->m_rboDirty = false; } }
void GLMContext::PreloadTex( CGLMTex *tex, bool force ) { // if conditions allow (i.e. a drawing surface is active)
// bind the texture on TMU 15
// set up a dummy program to sample it but not write (use 'discard')
// draw a teeny little triangle that won't generate a lot of fragments
if (!m_pairCache) return; if (!m_drawingFBO) return; if (!m_drawingFBO) return; if (tex->m_texPreloaded && !force) // only do one preload unless forced to re-do
{ //printf("\nnot-preloading %s", tex->m_debugLabel ? tex->m_debugLabel : "(unknown)");
return; }
//printf("\npreloading %s", tex->m_debugLabel ? tex->m_debugLabel : "(unknown)");
CGLMProgram *vp = m_preloadTexVertexProgram; CGLMProgram *fp = NULL; switch(tex->m_layout->m_key.m_texGLTarget) { case GL_TEXTURE_2D: fp = m_preload2DTexFragmentProgram; break; case GL_TEXTURE_3D: fp = m_preload3DTexFragmentProgram; break; case GL_TEXTURE_CUBE_MAP: fp = m_preloadCubeTexFragmentProgram; break; } if (!fp) return; CGLMShaderPair *preloadPair = m_pairCache->SelectShaderPair( vp, fp, 0 ); if (!preloadPair) return;
GLhandleARB pairProgram = preloadPair->m_program; uint pairRevision = preloadPair->m_revision; m_boundPair = preloadPair; m_boundPairProgram = pairProgram; m_boundPairRevision = pairRevision;
glUseProgram( (GLuint)pairProgram ); GLMCheckError(); // note the binding (not really bound.. just sitting in the linked active GLSL program)
m_boundProgram[ kGLMVertexProgram ] = vp; m_boundProgram[ kGLMFragmentProgram ] = fp;
// almost ready to draw...
int tmuForPreload = 15; if(!m_boundPair->m_samplersFixed) { if (m_boundPair->m_locSamplers[tmuForPreload] >=0) { glUniform1iARB( m_boundPair->m_locSamplers[tmuForPreload], tmuForPreload ); GLMCheckError(); } m_boundPair->m_samplersFixed = true; } // shut down all the generic attribute arrays on the detention level - next real draw will activate them again
m_lastKnownVertexAttribMask = 0; for( int index=0; index < kGLMVertexAttributeIndexMax; index++ ) { glDisableVertexAttribArray( index ); GLMCheckError(); }
// bind texture
this->BindTexToTMU( tex, 15 ); // unbind vertex/index buffers
this->BindBufferToCtx( kGLMVertexBuffer, NULL ); this->BindBufferToCtx( kGLMIndexBuffer, NULL ); // draw
static float posns[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
static int indices[] = { 0, 1, 2 };
glEnableVertexAttribArray( 0 ); GLMCheckError();
glVertexAttribPointer( 0, 3, GL_FLOAT, 0, 0, posns ); GLMCheckError();
glDrawRangeElements( GL_TRIANGLES, 0, 3, 3, GL_UNSIGNED_INT, indices); GLMCheckError();
glDisableVertexAttribArray( 0 ); GLMCheckError();
m_lastKnownVertexAttribMask = 0; m_lastKnownVertexAttribs[0].m_bufferRevision -= 1; // force mismatch so next FlushDrawStates restores the right attrib source
this->BindTexToTMU( NULL, 15 );
tex->m_texPreloaded = true; }
void GLMContext::SetSamplerTex( int sampler, CGLMTex *tex ) { GLM_FUNC; CheckCurrent();
m_samplers[sampler].m_drawTex = tex; }
void GLMContext::SetSamplerParams( int sampler, GLMTexSamplingParams *params ) { GLM_FUNC; CheckCurrent();
m_samplers[sampler].m_samp = *params; }
CGLMFBO *GLMContext::NewFBO( void ) { GLM_FUNC; MakeCurrent();
CGLMFBO *fbo = new CGLMFBO( this );
m_fboTable.AddToTail( fbo ); return fbo; }
void GLMContext::DelFBO( CGLMFBO *fbo ) { GLM_FUNC; MakeCurrent();
if (m_drawingFBO == fbo) { m_drawingFBO = NULL; //poof!
} if (m_boundReadFBO == fbo ) { this->BindFBOToCtx( NULL, GL_READ_FRAMEBUFFER_EXT ); m_boundReadFBO = NULL; }
if (m_boundDrawFBO == fbo ) { this->BindFBOToCtx( NULL, GL_DRAW_FRAMEBUFFER_EXT ); m_boundDrawFBO = NULL; }
m_fboTable.FastRemove( m_fboTable.Find( fbo ) ); delete fbo; }
void GLMContext::SetDrawingFBO( CGLMFBO *fbo ) { GLM_FUNC; CheckCurrent();
// might want to validate that fbo object?
m_drawingFBO = fbo; }
//===============================================================================
CGLMProgram *GLMContext::NewProgram( EGLMProgramType type, char *progString ) { //hushed GLM_FUNC;
MakeCurrent();
CGLMProgram *prog = new CGLMProgram( this, type ); prog->SetProgramText( progString ); bool compile_ok = prog->CompileActiveSources();
AssertOnce( compile_ok );
return prog; }
void GLMContext::DelProgram( CGLMProgram *prog ) { GLM_FUNC;
this->MakeCurrent();
if (m_drawingProgram[ prog->m_type ] == prog) { m_drawingProgram[ prog->m_type ] = NULL; }
// make sure to eliminate any cached pairs using this shader
bool purgeResult = m_pairCache->PurgePairsWithShader( prog ); Assert( !purgeResult ); // very unlikely to trigger
this->NullProgram(); delete prog; }
void GLMContext::NullProgram( void ) { // just unbind everything on a prog delete
glSetEnable( GL_VERTEX_PROGRAM_ARB, false ); glSetEnable( GL_FRAGMENT_PROGRAM_ARB, false ); glBindProgramARB( GL_VERTEX_PROGRAM_ARB, 0 ); glBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, 0 );
glUseProgram( 0 ); m_boundPair = NULL; m_boundPairRevision = 0xFFFFFFFF; m_boundPairProgram = (GLhandleARB)0xFFFFFFFF; m_boundProgram[ kGLMVertexProgram ] = NULL; m_boundProgram[ kGLMFragmentProgram ] = NULL; }
void GLMContext::SetDrawingProgram( EGLMProgramType type, CGLMProgram *prog ) { GLM_FUNC;
this->MakeCurrent();
if (prog) // OK to pass NULL..
{ if (type != prog->m_type) { Debugger(); } } else { // if a null fragment program is passed, we activate our special null program
// thus FP is always always enabled.
if (type==kGLMFragmentProgram) { prog = m_nullFragmentProgram; } else { //Assert(!"Tried to set NULL vertex program");
} } m_drawingProgram[type] = prog; }
void GLMContext::SetDrawingLang( EGLMProgramLang lang, bool immediate ) { if ( !m_caps.m_hasDualShaders ) return; // ignore attempts to change language when -glmdualshaders is not engaged
m_drawingLangAtFrameStart = lang; if (immediate) { this->NullProgram();
m_drawingLang = m_drawingLangAtFrameStart; } }
void GLMContext::LinkShaderPair( CGLMProgram *vp, CGLMProgram *fp ) { if ( (m_pairCache) && (m_drawingLang==kGLMGLSL) && (vp && vp->m_descs[kGLMGLSL].m_valid) && (fp && fp->m_descs[kGLMGLSL].m_valid) ) { CGLMShaderPair *pair = m_pairCache->SelectShaderPair( vp, fp, 0 ); Assert( pair != NULL );
this->NullProgram(); // clear out any binds that were done - next draw will set it right
} }
void GLMContext::ClearShaderPairCache( void ) { if (m_pairCache) { this->NullProgram(); m_pairCache->Purge(); // bye bye all linked pairs
this->NullProgram(); } }
void GLMContext::QueryShaderPair( int index, GLMShaderPairInfo *infoOut ) { if (m_pairCache) { m_pairCache->QueryShaderPair( index, infoOut ); } else { memset( infoOut, sizeof( *infoOut ), 0 ); infoOut->m_status = -1; } }
void GLMContext::SetProgramParametersF( EGLMProgramType type, uint baseSlot, float *slotData, uint slotCount ) { GLM_FUNC;
Assert( baseSlot < kGLMProgramParamFloat4Limit ); Assert( baseSlot+slotCount <= kGLMProgramParamFloat4Limit ); GLMPRINTF(("-S-GLMContext::SetProgramParametersF %s slots %d - %d: ", (type==kGLMVertexProgram) ? "VS" : "FS", baseSlot, baseSlot + slotCount - 1 )); for( int i=0; i<slotCount; i++ ) { GLMPRINTF(( "-S- %03d: [ %7.4f %7.4f %7.4f %7.4f ]", baseSlot+i, slotData[i*4], slotData[i*4+1], slotData[i*4+2], slotData[i*4+3] )); } // copy to mirror
// actual delivery happens in FlushDrawStates now
memcpy( &m_programParamsF[type].m_values[baseSlot][0], slotData, (4 * sizeof(float)) * slotCount );
// adjust dirty count
if ( (baseSlot+slotCount) > m_programParamsF[type].m_dirtySlotCount) { m_programParamsF[type].m_dirtySlotCount = baseSlot+slotCount; } }
void GLMContext::SetProgramParametersB( EGLMProgramType type, uint baseSlot, int *slotData, uint boolCount ) { GLM_FUNC;
Assert( m_drawingLang == kGLMGLSL ); Assert( type==kGLMVertexProgram ); Assert( baseSlot < kGLMProgramParamBoolLimit ); Assert( baseSlot+boolCount <= kGLMProgramParamBoolLimit ); GLMPRINTF(("-S-GLMContext::SetProgramParametersB %s bools %d - %d: ", (type==kGLMVertexProgram) ? "VS" : "FS", baseSlot, baseSlot + boolCount - 1 )); for( int i=0; i<boolCount; i++ ) { GLMPRINTF(( "-S- %03d: %d (bool)", baseSlot+i, slotData[i] )); } // copy to mirror
// actual delivery happens in FlushDrawStates now
memcpy( &m_programParamsB[type].m_values[baseSlot], slotData, sizeof(int) * boolCount ); // adjust dirty count
if ( (baseSlot+boolCount) > m_programParamsB[type].m_dirtySlotCount) { m_programParamsB[type].m_dirtySlotCount = baseSlot+boolCount; } }
void GLMContext::SetProgramParametersI( EGLMProgramType type, uint baseSlot, int *slotData, uint slotCount ) // groups of 4 ints...
{ GLM_FUNC;
Assert( m_drawingLang == kGLMGLSL ); Assert( type==kGLMVertexProgram ); Assert( baseSlot < kGLMProgramParamInt4Limit ); Assert( baseSlot+slotCount <= kGLMProgramParamInt4Limit ); GLMPRINTF(("-S-GLMContext::SetProgramParametersI %s slots %d - %d: ", (type==kGLMVertexProgram) ? "VS" : "FS", baseSlot, baseSlot + slotCount - 1 )); for( int i=0; i<slotCount; i++ ) { GLMPRINTF(( "-S- %03d: %d %d %d %d (int4)", baseSlot+i, slotData[i*4],slotData[i*4+1],slotData[i*4+2],slotData[i*4+3] )); } // copy to mirror
// actual delivery happens in FlushDrawStates now
memcpy( &m_programParamsI[type].m_values[baseSlot][0], slotData, (4*sizeof(int)) * slotCount );
// adjust dirty count
if ( (baseSlot+slotCount) > m_programParamsI[type].m_dirtySlotCount) { m_programParamsI[type].m_dirtySlotCount = baseSlot+slotCount; } }
CGLMBuffer *GLMContext::NewBuffer( EGLMBufferType type, uint size, uint options ) { //hushed GLM_FUNC;
MakeCurrent(); CGLMBuffer *prog = new CGLMBuffer( this, type, size, options );
return prog; }
void GLMContext::DelBuffer( CGLMBuffer *buff ) { GLM_FUNC;
this->MakeCurrent();
for( int index=0; index < kGLMVertexAttributeIndexMax; index++ ) { if (m_drawVertexSetup.m_attrs[index].m_buffer == buff) { // just clear the enable mask - this will force all the attrs to get re-sent on next sync
m_drawVertexSetup.m_attrMask = 0; } }
if (m_drawIndexBuffer == buff) { m_drawIndexBuffer = NULL; } if (m_lastKnownBufferBinds[ buff->m_type ] == buff) { // shoot it down
this->BindBufferToCtx( buff->m_type, NULL ); m_lastKnownBufferBinds[ buff->m_type ] = NULL; } delete buff; }
void GLMContext::SetIndexBuffer( CGLMBuffer *buff ) { GLM_FUNC; CheckCurrent(); m_drawIndexBuffer = buff;
// draw time is welcome to re-check, but we bind it immediately.
this->BindBufferToCtx( kGLMIndexBuffer, buff ); }
GLMVertexSetup g_blank_setup;
void GLMContext::SetVertexAttributes( GLMVertexSetup *setup ) { GLM_FUNC;
// we now just latch the vert setup and then execute on it at flushdrawstatestime if shaders are enabled.
if (setup) { m_drawVertexSetup = *setup; } else { memset( &m_drawVertexSetup, 0, sizeof(m_drawVertexSetup) ); }
return; }
void GLMContext::Clear( bool color, unsigned long colorValue, bool depth, float depthValue, bool stencil, unsigned int stencilValue, GLScissorBox_t *box ) { GLM_FUNC; m_debugBatchIndex++; // clears are batches too (maybe blits should be also...)
#if GLMDEBUG
GLMDebugHookInfo info; memset( &info, 0, sizeof(info) ); info.m_caller = eClear; do { #endif
uint mask = 0;
GLClearColor_t clearcol; GLClearDepth_t cleardep = { depthValue }; GLClearStencil_t clearsten = { stencilValue };
// depth write mask must be saved&restored
GLDepthMask_t olddepthmask; GLDepthMask_t newdepthmask = { true };
// stencil write mask must be saved and restored
GLStencilWriteMask_t oldstenmask; GLStencilWriteMask_t newstenmask = { 0xFFFFFFFF }; GLColorMaskSingle_t oldcolormask; GLColorMaskSingle_t newcolormask = { -1,-1,-1,-1 }; // D3D clears do not honor color mask, so force it
if (color) { // #define D3DCOLOR_ARGB(a,r,g,b) ((D3DCOLOR)((((a)&0xff)<<24)|(((r)&0xff)<<16)|(((g)&0xff)<<8)|((b)&0xff)))
clearcol.r = ((colorValue >> 16) & 0xFF) / 255.0f; //R
clearcol.g = ((colorValue >> 8) & 0xFF) / 255.0f; //G
clearcol.b = ((colorValue ) & 0xFF) / 255.0f; //B
clearcol.a = ((colorValue >> 24) & 0xFF) / 255.0f; //A
m_ClearColor.Write( &clearcol, true, true ); // no check, no wait
mask |= GL_COLOR_BUFFER_BIT; // save and set color mask
m_ColorMaskSingle.Read( &oldcolormask, 0 ); m_ColorMaskSingle.Write( &newcolormask, true, true ); }
if (depth) { // get old depth write mask
m_DepthMask.Read( &olddepthmask, 0 ); m_DepthMask.Write( &newdepthmask, true, true ); m_ClearDepth.Write( &cleardep, true, true ); // no check, no wait
mask |= GL_DEPTH_BUFFER_BIT; }
if (stencil) { m_ClearStencil.Write( &clearsten, true, true ); // no check, no wait
mask |= GL_STENCIL_BUFFER_BIT;
// save and set sten mask
m_StencilWriteMask.Read( &oldstenmask, 0 ); m_StencilWriteMask.Write( &newstenmask, true, true ); }
bool subrect = (box != NULL); GLScissorEnable_t scissorEnableSave; GLScissorEnable_t scissorEnableNew = { true }; GLScissorBox_t scissorBoxSave; GLScissorBox_t scissorBoxNew; if (subrect) { // save current scissorbox and enable
m_ScissorEnable.Read( &scissorEnableSave, 0 ); m_ScissorBox.Read( &scissorBoxSave, 0 ); if(0) { // calc new scissorbox as intersection against *box
// max of the mins
scissorBoxNew.x = MAX(scissorBoxSave.x, box->x); scissorBoxNew.y = MAX(scissorBoxSave.y, box->y); // min of the maxes
scissorBoxNew.width = ( MIN(scissorBoxSave.x+scissorBoxSave.width, box->x+box->width)) - scissorBoxNew.x; // height is just min of the max y's, minus the new base Y
scissorBoxNew.height = ( MIN(scissorBoxSave.y+scissorBoxSave.height, box->y+box->height)) - scissorBoxNew.y; } else { // ignore old scissor box completely.
scissorBoxNew = *box; } // set new box and enable
m_ScissorEnable.Write( &scissorEnableNew, true, true ); m_ScissorBox.Write( &scissorBoxNew, true, true ); } glClear( mask );
if (subrect) { // put old scissor box and enable back
m_ScissorEnable.Write( &scissorEnableSave, true, true ); m_ScissorBox.Write( &scissorBoxSave, true, true ); } if (depth) { // put old depth write mask
m_DepthMask.Write( &olddepthmask ); } if (color) { // put old color write mask
m_ColorMaskSingle.Write( &oldcolormask, true, true ); } if (stencil) { // put old sten mask
m_StencilWriteMask.Write( &oldstenmask, true, true ); }
#if GLMDEBUG
this->DebugHook( &info ); } while (info.m_loop); #endif
}
// stolen from glmgrbasics.cpp
extern "C" uint GetCurrentKeyModifiers( void ); enum ECarbonModKeyIndex { EcmdKeyBit = 8, /* command key down?*/ EshiftKeyBit = 9, /* shift key down?*/ EalphaLockBit = 10, /* alpha lock down?*/ EoptionKeyBit = 11, /* option key down?*/ EcontrolKeyBit = 12 /* control key down?*/ };
enum ECarbonModKeyMask { EcmdKey = 1 << EcmdKeyBit, EshiftKey = 1 << EshiftKeyBit, EalphaLock = 1 << EalphaLockBit, EoptionKey = 1 << EoptionKeyBit, EcontrolKey = 1 << EcontrolKeyBit };
static ConVar gl_flushpaircache ("gl_flushpaircache", "0"); static ConVar gl_paircachestats ("gl_paircachestats", "0"); static ConVar gl_mtglflush_at_tof ("gl_mtglflush_at_tof", "0"); static ConVar gl_texlayoutstats ("gl_texlayoutstats", "0" );
void GLMContext::BeginFrame( void ) { GLM_FUNC;
MakeCurrent();
m_debugFrameIndex++; m_debugBatchIndex = -1;
// check for lang change at TOF
if (m_caps.m_hasDualShaders) { if (m_drawingLang != m_drawingLangAtFrameStart) { // language change. unbind everything..
this->NullProgram();
m_drawingLang = m_drawingLangAtFrameStart; } }
// scrub some critical shock absorbers
for( int i=0; i< 16; i++) { glDisableVertexAttribArray( i ); // enable GLSL attribute- this is just client state - will be turned back off
GLMCheckError(); } m_lastKnownVertexAttribMask = 0; //FIXME should we also zap the m_lastKnownAttribs array ? (worst case it just sets them all again on first batch)
BindBufferToCtx( kGLMVertexBuffer, NULL, true ); BindBufferToCtx( kGLMIndexBuffer, NULL, true );
if (gl_flushpaircache.GetInt()) { // do the flush and then set back to zero
this->ClearShaderPairCache(); printf("\n\n##### shader pair cache cleared\n\n"); gl_flushpaircache.SetValue( 0 ); } if (gl_paircachestats.GetInt()) { // do the flush and then set back to zero
this->m_pairCache->DumpStats(); gl_paircachestats.SetValue( 0 ); } if (gl_texlayoutstats.GetInt()) { this->m_texLayoutTable->DumpStats(); gl_texlayoutstats.SetValue( 0 ); } if (gl_mtglflush_at_tof.GetInt()) { glFlush(); // TOF flush - skip this if benchmarking, enable it if human playing (smoothness)
} #if GLMDEBUG
// init debug hook information
GLMDebugHookInfo info; memset( &info, 0, sizeof(info) ); info.m_caller = eBeginFrame; do { this->DebugHook( &info ); } while (info.m_loop);
#endif
}
void GLMContext::EndFrame( void ) { GLM_FUNC;
#if GLMDEBUG
// init debug hook information
GLMDebugHookInfo info; memset( &info, 0, sizeof(info) ); info.m_caller = eEndFrame; do { #endif
if (!m_oneCtxEnable) // if using dual contexts, this flush is needed
{ glFlush(); } #if GLMDEBUG
this->DebugHook( &info ); } while (info.m_loop); #endif
}
//===============================================================================
CGLMQuery *GLMContext::NewQuery( GLMQueryParams *params ) { CGLMQuery *query = new CGLMQuery( this, params ); return query; }
void GLMContext::DelQuery( CGLMQuery *query ) { // may want to do some finish/
delete query; }
static ConVar mat_vsync( "mat_vsync", "0", FCVAR_NONE, "Force sync to vertical retrace", true, 0.0, true, 1.0 );
//===============================================================================
ConVar glm_nullrefresh_capslock( "glm_nullrefresh_capslock", "0" ); ConVar glm_literefresh_capslock( "glm_literefresh_capslock", "0" );
extern ConVar gl_blitmode;
void GLMContext::Present( CGLMTex *tex ) { GLM_FUNC;
MakeCurrent();
bool newRefreshMode = false; // two ways to go:
// old school, do the resolve, had the tex down to cocoamgr to actually blit.
// that way is required if you are not in one-context mode (10.5.8)
if ( m_oneCtxEnable && (gl_blitmode.GetInt() != 0) ) { newRefreshMode = true; } // this is the path whether full screen or windowed... we always blit.
CShowPixelsParams showparams; memset( &showparams, 0, sizeof(showparams) );
showparams.m_srcTexName = tex->m_texName; showparams.m_width = tex->m_layout->m_key.m_xSize; showparams.m_height = tex->m_layout->m_key.m_ySize; showparams.m_vsyncEnable = m_displayParams.m_vsyncEnable = mat_vsync.GetBool(); showparams.m_fsEnable = m_displayParams.m_fsEnable; showparams.m_useBlit = m_caps.m_hasFramebufferBlit;
// we call showpixels once with the "only sync view" arg set, so we know what the latest surface size is, before trying to do our own blit !
showparams.m_onlySyncView = true; g_extCocoaMgr->ShowPixels(&showparams); // doesn't actually show anything, just syncs window/fs state (would make a useful separate call)
showparams.m_onlySyncView = false; bool refresh = true; if ( (glm_nullrefresh_capslock.GetInt()) && (GetCurrentKeyModifiers() & EalphaLock) ) { refresh = false; } static int counter; counter ++;
if ( (glm_literefresh_capslock.GetInt()) && (GetCurrentKeyModifiers() & EalphaLock) && (counter & 127) ) { // just show every 128th frame
refresh = false; } if (refresh) { if (newRefreshMode) { // blit to GL_BACK done here, not in CocoaMgr, this lets us do resolve directly if conditions are right
GLMRect srcRect, dstRect; uint dstWidth,dstHeight; g_extCocoaMgr->DisplayedSize( dstWidth,dstHeight );
srcRect.xmin = 0; srcRect.ymin = 0; srcRect.xmax = showparams.m_width; srcRect.ymax = showparams.m_height;
dstRect.xmin = 0; dstRect.ymin = 0; dstRect.xmax = dstWidth; dstRect.ymax = dstHeight; // do not ask for LINEAR if blit is unscaled
// NULL means targeting GL_BACK. Blit2 will break it down into two steps if needed, and will handle resolve, scale, flip.
bool blitScales = (showparams.m_width != dstWidth) || (showparams.m_height != dstHeight); this->Blit2( tex, &srcRect, 0,0, NULL, &dstRect, 0,0, blitScales ? GL_LINEAR : GL_NEAREST );
// we set showparams.m_noBlit, and just let CocoaMgr handle the swap (flushbuffer / page flip)
showparams.m_noBlit = true;
if (m_oneCtxEnable) // if using single context, we need to blast some state so GLM will recover after the FBO fiddlin'
{ BindFBOToCtx( NULL, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); BindFBOToCtx( NULL, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError(); } } else { ResolveTex( tex, true ); // dxabstract used to do this unconditionally.we still do if new refresh mode doesn't engage.
if (m_oneCtxEnable) // if using single context, we need to blast some state so GLM will recover after the FBO fiddlin'
{ BindFBOToCtx( NULL, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); BindFBOToCtx( NULL, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError(); } else { glFlush(); // this call is needed for dual context mode to get pixels flushed
} // showparams.m_noBlit is left set to 0. CocoaMgr does the blit.
}
g_extCocoaMgr->ShowPixels(&showparams); }
if (m_oneCtxEnable) { // put the original FB back in place (both read and draw)
// this bind will hit both read and draw bindings
BindFBOToCtx( m_drawingFBO, GL_READ_FRAMEBUFFER_EXT ); GLMCheckError(); BindFBOToCtx( m_drawingFBO, GL_DRAW_FRAMEBUFFER_EXT ); GLMCheckError();
// put em back !!
m_ScissorEnable.Flush( true ); m_ScissorBox.Flush( true ); m_ViewportBox.Flush( true ); } else { MakeCurrent(); } }
//===============================================================================
// GLMContext protected methods
// a naive implementation of this would just clear-drawable on the context at entry,
// and then capture and set fullscreen if requested.
// however that would glitch thescreen every time the user changed resolution while staying in full screen.
// but in windowed mode there's really not much to do in here. Yeah, this routine centers around obtaining
// drawables for fullscreen mode, and/or dropping those drawables if we're going back to windowed.
// um, are we expected to re-make the standard surfaces (color, depthstencil) if the res changes? is that now this routine's job ?
// so, kick it off with an assessment of whather we were FS previously or not.
// if there was no prior display params latched, then it wasn't.
// changes in here take place immediately. If you want to defer display changes then that's going to be a different method.
// common assumption is that there will be two places that call this: context create and the implementation of the DX9 Reset method.
// in either case the client code is aware of what it signed up for.
bool GLMContext::SetDisplayParams( GLMDisplayParams *params ) { m_displayParams = *params; // latch em
m_displayParamsValid = true; }
extern ConVar gl_singlecontext; // single context mode go-ahead if 10.6.3 or higher
ConVar gl_can_query_fast("gl_can_query_fast", "0");
GLMContext::GLMContext( GLMDisplayParams *params ) { // flag our copy of display params as blank
m_displayParamsValid = false;
// peek at any CLI options
m_slowAssertEnable = CommandLine()->FindParm("-glmassertslow"); m_slowSpewEnable = CommandLine()->FindParm("-glmspewslow"); m_slowCheckEnable = m_slowAssertEnable || m_slowSpewEnable;
m_drawingLangAtFrameStart = m_drawingLang = kGLMGLSL; // default to GLSL
// this affects FlushDrawStates which will route program bindings, uniform delivery, sampler setup, and enables accordingly.
if ( CommandLine()->FindParm("-glslmode") ) { m_drawingLangAtFrameStart = m_drawingLang = kGLMGLSL; } if ( CommandLine()->FindParm("-arbmode") && !CommandLine()->FindParm("-glslcontrolflow") ) { m_drawingLangAtFrameStart = m_drawingLang = kGLMARB; }
// proceed with rest of init
m_nsctx = NULL; m_ctx = NULL; // call Cocoa manager, ask for the attrib list (also naming the specific renderer ID) and use that to make our context
CGLPixelFormatAttribute *selAttribs = NULL; uint selWords = 0;
memset( &m_caps, 0, sizeof( m_caps ) ); g_extCocoaMgr->GetDesiredPixelFormatAttribsAndRendererInfo( (uint**)&selAttribs, &selWords, &m_caps ); uint selBytes = selWords * sizeof( uint );
// call Cocoa manager, ask it about the window we're targeting, get the NSGLContext back, share against that
PseudoNSGLContextPtr shareNsCtx = g_extCocoaMgr->GetNSGLContextForWindow( (void*)params->m_focusWindow );
// decide if we're going to try single context mode.
m_oneCtxEnable = (m_caps.m_osComboVersion >= 0x000A0603) && (gl_singlecontext.GetInt() );
bool success = false; //NewNSGLContext( (unsigned long*)selAttribs, shareNsCtx, &m_nsctx, &m_ctx );
if(m_oneCtxEnable) { // just steal the window's context
m_nsctx = shareNsCtx; m_ctx = GetCGLContextFromNSGL( shareNsCtx ); success = (m_nsctx != NULL) && (m_ctx != NULL); } else { success = NewNSGLContext( (unsigned long*)selAttribs, shareNsCtx, &m_nsctx, &m_ctx ); } if (success) { //write a cookie into the CGL context leading back to the GLM context object
GLint glm_context_link = (GLint) this; CGLSetParameter( m_ctx, kCGLCPClientStorage, &glm_context_link ); // save off the pixel format attributes we used
memcpy(m_pixelFormatAttribs, selAttribs, selBytes ); } else { Debugger(); //FIXME #PMB# bad news, maybe exit to shell if this happens
}
if (CommandLine()->FindParm("-glmspewcaps")) { DumpCaps(); } SetDisplayParams( params );
m_texLayoutTable = new CGLMTexLayoutTable; memset( m_samplers, 0, sizeof( m_samplers ) ); m_activeTexture = -1; m_texLocks.EnsureCapacity( 16 ); // should be sufficient
// FIXME need a texture tracking table so we can reliably delete CGLMTex objects at context teardown
m_boundReadFBO = NULL; m_boundDrawFBO = NULL; m_drawingFBO = NULL; memset( m_boundProgram, 0, sizeof(m_boundProgram) ); memset( m_drawingProgram, 0, sizeof(m_boundProgram) ); memset( m_programParamsF , 0, sizeof (m_programParamsF) ); memset( m_programParamsB , 0, sizeof (m_programParamsB) ); memset( m_programParamsI , 0, sizeof (m_programParamsI) );
m_paramWriteMode = eParamWriteDirtySlotRange; // default to fastest mode
if (CommandLine()->FindParm("-glmwriteallslots")) m_paramWriteMode = eParamWriteAllSlots; if (CommandLine()->FindParm("-glmwriteshaderslots")) m_paramWriteMode = eParamWriteShaderSlots; if (CommandLine()->FindParm("-glmwriteshaderslotsoptional")) m_paramWriteMode = eParamWriteShaderSlotsOptional; if (CommandLine()->FindParm("-glmwritedirtyslotrange")) m_paramWriteMode = eParamWriteDirtySlotRange; m_attribWriteMode = eAttribWriteDirty;
if (CommandLine()->FindParm("-glmwriteallattribs")) m_attribWriteMode = eAttribWriteAll; if (CommandLine()->FindParm("-glmwritedirtyattribs")) m_attribWriteMode = eAttribWriteDirty;
m_pairCache = new CGLMShaderPairCache( this ); m_boundPair = NULL; m_boundPairRevision = 0xFFFFFFFF; m_boundPairProgram = (GLhandleARB)0xFFFFFFFF; // GLSL only
memset( m_lastKnownBufferBinds, 0, sizeof(m_lastKnownBufferBinds) ); memset( m_lastKnownVertexAttribs, 0, sizeof(m_lastKnownVertexAttribs) ); m_lastKnownVertexAttribMask = 0;
// make a null program for use when client asks for NULL FP
m_nullFragmentProgram = this->NewProgram(kGLMFragmentProgram, g_nullFragmentProgramText );
// make dummy programs for doing texture preload via dummy draw
m_preloadTexVertexProgram = this->NewProgram(kGLMVertexProgram, g_preloadTexVertexProgramText ); m_preload2DTexFragmentProgram = this->NewProgram(kGLMFragmentProgram, g_preload2DTexFragmentProgramText ); m_preload3DTexFragmentProgram = this->NewProgram(kGLMFragmentProgram, g_preload3DTexFragmentProgramText ); m_preloadCubeTexFragmentProgram = this->NewProgram(kGLMFragmentProgram, g_preloadCubeTexFragmentProgramText ); m_drawIndexBuffer = NULL;
//memset( &m_drawVertexSetup, 0, sizeof(m_drawVertexSetup) );
SetVertexAttributes( NULL ); // will set up all the entries in m_drawVertexSetup
m_debugFontTex = NULL;
// debug state
m_debugFrameIndex = -1; m_debugBatchIndex = -1;
#if GLMDEBUG
// #######################################################################################
// DebugHook state - we could set these to more interesting values in response to a CLI arg like "startpaused" or something if desired
//m_paused = false;
m_holdFrameBegin = -1; m_holdFrameEnd = -1; m_holdBatch = m_holdBatchFrame = -1; m_debugDelayEnable = false; m_debugDelay = 1<<19; // ~0.5 sec delay
m_autoClearColor = m_autoClearDepth = m_autoClearStencil = false; m_autoClearColorValues[0] = 0.0; //red
m_autoClearColorValues[1] = 1.0; //green
m_autoClearColorValues[2] = 0.0; //blue
m_autoClearColorValues[3] = 1.0; //alpha
m_selKnobIndex = 0; m_selKnobMinValue = -10.0f; m_selKnobMaxValue = 10.0f; m_selKnobIncrement = 1/256.0f;
// #######################################################################################
#endif
// make two scratch FBO's for blit purposes
m_blitReadFBO = this->NewFBO(); m_blitDrawFBO = this->NewFBO();
for( int i=0; i<kGLMScratchFBOCount; i++) { m_scratchFBO[i] = this->NewFBO(); } bool new_mtgl = m_caps.m_hasPerfPackage1; // i.e. 10.6.4 plus new driver
if ( CommandLine()->FindParm("-glmenablemtgl2") ) { new_mtgl = true; }
if ( CommandLine()->FindParm("-glmdisablemtgl2") ) { new_mtgl = false; }
bool mtgl_on = params->m_mtgl; if (CommandLine()->FindParm("-glmenablemtgl")) { mtgl_on = true; } if (CommandLine()->FindParm("-glmdisablemtgl")) { mtgl_on = false; }
CGLError result = (CGLError)0; if (mtgl_on) { bool ready = false; if (new_mtgl) { // afterburner
CGLContextEnable kCGLCPGCDMPEngine = ((CGLContextEnable)1314); result = CGLEnable( m_ctx, kCGLCPGCDMPEngine ); if (!result) { ready = true; // succeeded - no need to try non-MTGL
printf("\nMTGL detected.\n"); } else { printf("\nMTGL *not* detected, falling back.\n"); } }
if (!ready) { // try old MTGL
result = CGLEnable( m_ctx, kCGLCEMPEngine ); if (!result) { printf("\nMTGL has been detected.\n"); ready = true; // succeeded - no need to try non-MTGL
} } } // also, set the remote convar "gl_can_query_fast" to 1 if perf package present, else 0.
gl_can_query_fast.SetValue( m_caps.m_hasPerfPackage1?1:0 ); GLMCheckError(); }
GLMContext::~GLMContext () { // a lot of stuff that needs to be freed / destroyed
if (m_debugFontTex) { this->DelTex( m_debugFontTex ); m_debugFontTex = NULL; }
if ( m_nullFragmentProgram ) { this->DelProgram( m_nullFragmentProgram ); m_nullFragmentProgram = NULL; } // walk m_fboTable and free them up..
FOR_EACH_VEC( m_fboTable, i ) { CGLMFBO *fbo = m_fboTable[i]; this->DelFBO( fbo ); } m_fboTable.SetSize( 0 );
if (m_pairCache) { delete m_pairCache; m_pairCache = NULL; } // we need a m_texTable I think..
// m_texLayoutTable can be scrubbed once we know that all the tex are freed
if (m_nsctx && (!m_oneCtxEnable) ) { DelNSGLContext( m_nsctx ); m_nsctx = NULL; m_ctx = NULL; } }
void GLMContext::SelectTMU( int tmu ) { //GLM_FUNC;
CheckCurrent(); if (tmu != m_activeTexture) { glActiveTexture( GL_TEXTURE0+tmu ); GLMCheckError();
m_activeTexture = tmu; } }
int GLMContext::BindTexToTMU( CGLMTex *tex, int tmu, bool noCheck ) { GLM_FUNC; GLMPRINTF(("--- GLMContext::BindTexToTMU tex %p GL name %d -> TMU %d ", tex, tex ? tex->m_texName : -1, tmu ));
CheckCurrent();
#if GLMDEBUG
if ( tex && tex->m_debugLabel && (!strcmp( tex->m_debugLabel, "error" ) ) ) { static char stop_here = 0; if (stop_here) { stop_here = 1; } } #endif
if (tex && (tex->m_layout->m_key.m_texFlags & kGLMTexMultisampled) ) { if (tex->m_rboDirty) { // the texture must be a multisampled render target which has been targeted recently for drawing.
// check that it's not still attached...
Assert( tex->m_rtAttachCount==0 ); // let it resolve the MSAA RBO back to the texture
ResolveTex( tex ); } } SelectTMU( tmu );
// if another texture was previously bound there, mark it not bound now
// this should not be skipped
if (m_samplers[tmu].m_boundTex) { m_samplers[tmu].m_boundTex->m_bindPoints[ tmu ] = false;
// if new tex is not the same, then bind 0 for old tex's target
//if (m_samplers[tmu].m_boundTex != tex)
//{
// glBindTexture( m_samplers[tmu].m_boundTex->m_layout->m_key.m_texGLTarget, m_samplers[tmu].m_boundTex->m_texName );
//}
// note m_samplers[tmu].m_boundTex is now stale but we will step on it shortly
}
// if texture chosen is different, or if noCheck is set, do the bind
if (tex) { // bind new tex and mark it
if ((tex != m_samplers[tmu].m_boundTex) || noCheck) { // if not being forced, we should see if the bind point (target) of the departing tex is different.
if (!noCheck) { if ( (m_samplers[tmu].m_boundTex) ) { // there is an outgoing tex.
// same target?
if ( m_samplers[tmu].m_boundTex->m_layout->m_key.m_texGLTarget != tex->m_layout->m_key.m_texGLTarget ) { // no, different target. inbound tex will be set below. Here, just clear the different target of the outbound tex.
glBindTexture( m_samplers[tmu].m_boundTex->m_layout->m_key.m_texGLTarget, 0 ); } else { // same target, new tex, no work to do.
} } } else { // mega scrub
glBindTexture( GL_TEXTURE_1D, 0 ); glBindTexture( GL_TEXTURE_2D, 0 ); glBindTexture( GL_TEXTURE_3D, 0 ); glBindTexture( GL_TEXTURE_CUBE_MAP, 0 ); }
glBindTexture( tex->m_layout->m_key.m_texGLTarget, tex->m_texName ); GLMCheckError(); } tex->m_bindPoints[ tmu ] = true; m_samplers[tmu].m_boundTex = tex; } else { // this is an unbind request, bind name 0
if (m_samplers[tmu].m_boundTex) { // no inbound tex. Just clear the one target that the old tex occupied.
glBindTexture( m_samplers[tmu].m_boundTex->m_layout->m_key.m_texGLTarget, 0 ); GLMCheckError(); } else { // none was bound before, so no action
} m_samplers[tmu].m_boundTex = NULL; } }
void GLMContext::BindFBOToCtx( CGLMFBO *fbo, GLenum bindPoint ) { GLM_FUNC; GLMPRINTF(( "--- GLMContext::BindFBOToCtx fbo %p, GL name %d", fbo, (fbo) ? fbo->m_name : -1 ));
CheckCurrent(); bool targetRead = (bindPoint==GL_READ_FRAMEBUFFER_EXT) || (bindPoint==GL_FRAMEBUFFER_EXT); bool targetDraw = (bindPoint==GL_DRAW_FRAMEBUFFER_EXT) || (bindPoint==GL_FRAMEBUFFER_EXT); if (targetRead) { if (fbo) // you can pass NULL to go back to no-FBO
{ glBindFramebufferEXT( GL_READ_FRAMEBUFFER_EXT, fbo->m_name ); GLMCheckError(); m_boundReadFBO = fbo; //dontcare fbo->m_bound = true;
} else { glBindFramebufferEXT( GL_READ_FRAMEBUFFER_EXT, 0 ); GLMCheckError(); m_boundReadFBO = NULL; } } if (targetDraw) { if (fbo) // you can pass NULL to go back to no-FBO
{ glBindFramebufferEXT( GL_DRAW_FRAMEBUFFER_EXT, fbo->m_name ); GLMCheckError(); m_boundDrawFBO = fbo; //dontcare fbo->m_bound = true;
} else { glBindFramebufferEXT( GL_DRAW_FRAMEBUFFER_EXT, 0 ); GLMCheckError(); m_boundDrawFBO = NULL; } } }
void GLMContext::BindBufferToCtx( EGLMBufferType type, CGLMBuffer *buff, bool force ) { GLM_FUNC; GLMPRINTF(( "--- GLMContext::BindBufferToCtx buff %p, GL name %d", buff, (buff) ? buff->m_name : -1 ));
CheckCurrent();
if (!force) { // compare desired bind to last known bind, and see if we can bail
if (m_lastKnownBufferBinds[ type ] == buff) { return; } } GLenum target=0; switch( type ) { case kGLMVertexBuffer: target = GL_ARRAY_BUFFER_ARB; break; case kGLMIndexBuffer: target = GL_ELEMENT_ARRAY_BUFFER_ARB; break; case kGLMUniformBuffer: target = GL_UNIFORM_BUFFER_EXT; break; case kGLMPixelBuffer: target = GL_PIXEL_UNPACK_BUFFER_ARB; break;
default: Assert(!"Unknown buffer type" ); } bool wasBound = false; bool isBound = false; if (m_lastKnownBufferBinds[type]) { m_lastKnownBufferBinds[type]->m_bound = false; m_lastKnownBufferBinds[type] = NULL; wasBound = true; } if (buff) { if (buff->m_buffGLTarget != target) Debugger(); glBindBufferARB( buff->m_buffGLTarget, buff->m_name ); GLMCheckError();
m_lastKnownBufferBinds[ type ] = buff; buff->m_bound = true; isBound = true; } else { // isBound stays false
// bind name 0
// note that no buffer is bound in the ctx state
glBindBufferARB( target, 0 ); GLMCheckError(); m_lastKnownBufferBinds[ type ] = NULL; } }
ConVar gl_can_mix_shader_gammas( "gl_can_mix_shader_gammas", 0 ); ConVar gl_cannot_mix_shader_gammas( "gl_cannot_mix_shader_gammas", 0 );
void GLMContext::FlushDrawStates( bool shadersOn ) // shadersOn = true for draw calls, false for clear calls
{ GLM_FUNC; CheckCurrent();
// FBO
if ( (m_drawingFBO != m_boundDrawFBO) || (m_drawingFBO != m_boundReadFBO) ) { //GLMPRINTF(("\nGLMContext::FlushDrawStates, setting FBO to %8x(gl %d), was %8x(gl %d)", m_drawingFBO, (m_drawingFBO? m_drawingFBO->m_name: -1),m_boundFBO, (m_boundFBO ? m_boundFBO->m_name : -1) ));
this->BindFBOToCtx( m_drawingFBO, GL_READ_FRAMEBUFFER_EXT ); this->BindFBOToCtx( m_drawingFBO, GL_DRAW_FRAMEBUFFER_EXT ); } // if drawing FBO has any MSAA attachments, mark them dirty
{ CGLMTex *tex; for( int att=kAttColor0; att<kAttCount; att++) { if (m_drawingFBO->m_attach[ att ].m_tex) { CGLMTex *tex = m_drawingFBO->m_attach[ att ].m_tex; if (tex->m_rboName) // is it MSAA
{ // mark it dirty
tex->m_rboDirty++; } } } } // renderstates
this->FlushStates(); // latched renderstates..
// if there is no color target - bail out
// OK, this doesn't work in general - you can't leave the color target floating(null) or you will get FBO errors
//if (!m_boundDrawFBO[0].m_attach[0].m_tex)
//{
// GLMPRINTF(("-D- GLMContext::FlushDrawStates -> no color target! exiting.. " ));
// return;
//}
bool tex0_srgb = (m_boundDrawFBO[0].m_attach[0].m_tex->m_layout->m_key.m_texFlags & kGLMTexSRGB) != 0;
// you can only actually use the sRGB FB state on some systems.. check caps
if (m_caps.m_hasGammaWrites) { GLBlendEnableSRGB_t writeSRGBState; m_BlendEnableSRGB.Read( &writeSRGBState, 0 ); // the client set value, not the API-written value yet..
bool draw_srgb = writeSRGBState.enable; if (draw_srgb) { if (tex0_srgb) { // good - draw mode and color tex agree
} else { // bad
// Client has asked to write sRGB into a texture that can't do it.
// there is no way to satisfy this unless we change the RT tex and we avoid doing that.
// (although we might consider a ** ONE TIME ** promotion.
// this shouldn't be a big deal if the tex format is one where it doesn't matter like 32F.
GLMPRINTF(("-Z- srgb-enabled FBO conflict: attached tex %08x [%s] is not SRGB", m_boundDrawFBO[0].m_attach[0].m_tex, m_boundDrawFBO[0].m_attach[0].m_tex->m_layout->m_layoutSummary )); // do we shoot down the srgb-write state for this batch?
// I think the runtime will just ignore it.
} } else { if (tex0_srgb) { // odd - client is not writing sRGB into a texture which *can* do it.
//GLMPRINTF(( "-Z- srgb-disabled FBO conflict: attached tex %08x [%s] is SRGB", m_boundFBO[0].m_attach[0].m_tex, m_boundFBO[0].m_attach[0].m_tex->m_layout->m_layoutSummary ));
//writeSRGBState.enable = true;
//m_BlendEnableSRGB.Write( &writeSRGBState );
} else { // good - draw mode and color tex agree
} } // now go ahead and flush the SRGB write state for real
// set the noDefer on it too
m_BlendEnableSRGB.Flush( /*true*/ ); } // else... FlushDrawStates will work it out via flSRGBWrite in the fragment shader..
// textures and sampling
// note we generate a mask of which samplers are running "decode sRGB" mode, to help out the shader pair cache mechanism below.
uint srgbMask = 0; for( int i=0; i<GLM_SAMPLER_COUNT; i++) { GLMTexSampler *samp = &m_samplers[i]; // push tex binding?
if (samp->m_boundTex != samp->m_drawTex) { this->BindTexToTMU( samp->m_drawTex, i ); samp->m_boundTex = samp->m_drawTex; } // push sampling params? it will check each one individually.
if (samp->m_boundTex) { samp->m_boundTex->ApplySamplingParams( &samp->m_samp ); } if (samp->m_samp.m_srgb) { srgbMask |= (1<<i); } }
// index buffer
if (m_drawIndexBuffer != m_lastKnownBufferBinds[ kGLMIndexBuffer ] ) { BindBufferToCtx( kGLMIndexBuffer, m_drawIndexBuffer ); // note this could be a pseudo buffer..
}
// shader setup
if (shadersOn) { switch( m_drawingLang ) { case kGLMARB: { // disable any GLSL program
glUseProgram( 0 ); m_boundPair = NULL; // bind selected drawing programs in ARB flavor.
// asking for "null" fragment shader is allowed, we offer up the dummy frag shader in response.
// vertex side
bool vpgood = false; bool fpgood = false;
{ CGLMProgram *vp = m_drawingProgram[ kGLMVertexProgram ]; if (vp) { if (vp->m_descs[ kGLMARB ].m_valid) { glSetEnable( GL_VERTEX_PROGRAM_ARB, true ); glBindProgramARB(GL_VERTEX_PROGRAM_ARB, vp->m_descs[ kGLMARB ].m_object.arb); GLMCheckError(); m_boundProgram[ kGLMVertexProgram ] = vp; vpgood = true; } else { //Assert( !"Trying to draw with invalid ARB vertex program" );
} } else { //Assert( !"Trying to draw with NULL ARB vertex program" );
} }
// fragment side
{ CGLMProgram *fp = m_drawingProgram[ kGLMFragmentProgram ]; if (fp) { if (fp->m_descs[ kGLMARB ].m_valid) { glSetEnable( GL_FRAGMENT_PROGRAM_ARB, true ); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, fp->m_descs[ kGLMARB ].m_object.arb); GLMCheckError(); m_boundProgram[ kGLMFragmentProgram ] = fp; fpgood = true; } else { //Assert( !"Trying to draw with invalid ARB fragment program" );
m_boundProgram[ kGLMFragmentProgram ] = NULL; } } else { // this is actually OK, we substitute a dummy shader
glSetEnable( GL_FRAGMENT_PROGRAM_ARB, true ); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, m_nullFragmentProgram->m_descs[kGLMARB].m_object.arb ); m_boundProgram[ kGLMFragmentProgram ] = m_nullFragmentProgram; fpgood = true; } }
if (fpgood & vpgood) { // flush parameter values to both stages
// FIXME: this can be optimized by dirty range, since ARB supports single-parameter-bank aka .env
// FIXME: magic numbers, yuk
glProgramEnvParameters4fvEXT( GL_VERTEX_PROGRAM_ARB, 0, 256, (const GLfloat*)&m_programParamsF[kGLMVertexProgram].m_values[0][0] ); GLMCheckError();
glProgramEnvParameters4fvEXT( GL_FRAGMENT_PROGRAM_ARB, 0, 32, (const GLfloat*)&m_programParamsF[kGLMFragmentProgram].m_values[0][0] ); GLMCheckError(); } else { // silence all (clears wind up here for example)
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, 0 ); glSetEnable( GL_VERTEX_PROGRAM_ARB, false ); m_boundProgram[ kGLMVertexProgram ] = NULL;
glSetEnable( GL_FRAGMENT_PROGRAM_ARB, false ); glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0 ); m_boundProgram[ kGLMFragmentProgram ] = NULL; } ///////////////////////////////////
// ARB vert setup. maybe generalize this to handle both ARB and GLSL after we see what GLSL attrib setup looks like.
//http://www.opengl.org/sdk/docs/man/xhtml/glVertexAttribPointer.xml
//http://www.opengl.org/sdk/docs/man/xhtml/glEnableVertexAttribArray.xml
// for (each attrib)
// if (enable unchanged and off) -> do nothing
// if (enable changed to off) -> disable that array ... set the attrib pointer to nil for clarity
// if (enable changed to on) -> bind the appropriate vertex buffer, set that attrib, log it
// if (enable unchanged and on) -> diff the attrib setup, re-bind if needed, log it
GLMVertexSetup *setup = &m_drawVertexSetup; uint relevantMask = setup->m_attrMask; for( int index=0; index < kGLMVertexAttributeIndexMax; index++ ) { uint mask = 1<<index; if (relevantMask & mask) { GLMVertexAttributeDesc *setdesc = &setup->m_attrs[index]; // ptr to desired setup
CGLMBuffer * buf = setdesc->m_buffer; // bind buffer
Assert( buf ); BindBufferToCtx( kGLMVertexBuffer, buf ); glEnableVertexAttribArray( index ); // enable attribute, set pointer.
GLMCheckError();
glVertexAttribPointer( index, setdesc->m_datasize, setdesc->m_datatype, setdesc->m_normalized, setdesc->m_stride, ( const GLvoid *)setdesc->m_offset ); GLMCheckError(); //GLMPRINTF(("--- GLMContext::SetVertexAttributes attr %d set to offset/stride %d/%d in buffer %d (normalized=%s)", index, setdesc->m_offset, setdesc->m_stride, setdesc->m_buffer->m_name, setdesc->m_normalized?"true":"false" ));
} else { // disable attribute
glDisableVertexAttribArray( index ); GLMCheckError(); //GLMPRINTF((" -- GLMContext::SetVertexAttributes attr %d is disabled", index ));
// tidy up in case there was garbage? necessary ?
memset ( &setup->m_attrs[index], 0, sizeof(setup->m_attrs[index]) ); } }
///////////////////////////////////
} break;
case kGLMGLSL: { // early out if one of the stages is not set.
// draw code needs to watch for this too.
if ( (m_drawingProgram[ kGLMVertexProgram ]==NULL) || (m_drawingProgram[ kGLMFragmentProgram ]==NULL) ) { this->NullProgram(); return; } // examine selected drawing programs for both stages
// try to find a match in thelinked-pair-cache
// if no match, link one
// examine metadata
// get uniform locations for parameters, attributes, and samplers
// put in cache
// dispatch vertex attribute locations to shader (could be one-time)
// dispatch parameter values to both stages (could be optimized with UBO)
// dispatch sampler locations to shader (need sampler metadata)
// new way - use the pair cache
// cook up some extra bits so that we can track different srgb-usages of the same vp/fp pair.
// note that this is only important on some hardware/OS combos.
// let the pair cache decide if it needs to honor the extra key bits or not.
// decide if we need to mix extra bits into the lookup key.
bool useExtraKeyBits = m_caps.m_costlyGammaFlips; // the "can" variable is allowed to override the static assessment.
if ( gl_can_mix_shader_gammas.GetInt() ) { useExtraKeyBits = false; } // the "cannot" variable is allowed to override the first two
if ( gl_cannot_mix_shader_gammas.GetInt() ) { useExtraKeyBits = true; } uint extraKeyBits = 0; if (useExtraKeyBits) { extraKeyBits = (srgbMask & m_drawingProgram[ kGLMFragmentProgram ]->m_samplerMask); } CGLMShaderPair *newPair = m_pairCache->SelectShaderPair( m_drawingProgram[ kGLMVertexProgram ], m_drawingProgram[ kGLMFragmentProgram ], extraKeyBits ); GLhandleARB newPairProgram = newPair->m_program; uint newPairRevision = newPair->m_revision; // you cannot only key on the pair address, since pairs get evicted and pair records likely get recycled.
// so key on all three - pair address, program name, revision number
// this will also catch cases where a pair is re-linked (batch debugger / live edit)
if ( (newPair != m_boundPair) || (newPairProgram != m_boundPairProgram) || (newPairRevision != m_boundPairRevision) ) { m_boundPair = newPair; m_boundPairProgram = newPairProgram; m_boundPairRevision = newPairRevision;
glUseProgram( (GLuint)newPairProgram ); GLMCheckError(); // set the dirty levels appropriately since the program changed and has never seen any of the current values.
m_programParamsF[kGLMVertexProgram].m_dirtySlotCount = m_drawingProgram[ kGLMVertexProgram ]->m_descs[kGLMGLSL].m_highWater+1; m_programParamsF[kGLMFragmentProgram].m_dirtySlotCount = m_drawingProgram[ kGLMFragmentProgram ]->m_descs[kGLMGLSL].m_highWater+1;
// bool and int dirty levels get set to max, we don't have actual high water marks for them
// code which sends the values must clamp on these types.
m_programParamsB[kGLMVertexProgram].m_dirtySlotCount = kGLMProgramParamBoolLimit; m_programParamsB[kGLMFragmentProgram].m_dirtySlotCount = 0; m_programParamsI[kGLMVertexProgram].m_dirtySlotCount = kGLMProgramParamInt4Limit; m_programParamsI[kGLMFragmentProgram].m_dirtySlotCount = 0; } // note the binding (not really bound.. just sitting in the linked active GLSL program)
m_boundProgram[ kGLMVertexProgram ] = m_drawingProgram[ kGLMVertexProgram ]; m_boundProgram[ kGLMFragmentProgram ] = m_drawingProgram[ kGLMFragmentProgram ]; // now pave the way for drawing
// parameters - find and set
// vertex stage --------------------------------------------------------------------
// find "vc" in VS
GLint vconstLoc = m_boundPair->m_locVertexParams; if (vconstLoc >=0) { #if GLMDEBUG
static uint paramsPushed=0,paramsSkipped=0,callsPushed=0; // things that happened on pushed param trips
static uint callsSkipped=0,paramsSkippedByCallSkip=0; // on unpushed param trips (zero dirty)
#endif
int slotCountToPush = 0; int shaderSlots = m_boundPair->m_vertexProg->m_descs[kGLMGLSL].m_highWater+1; int dirtySlots = m_programParamsF[kGLMVertexProgram].m_dirtySlotCount; switch( m_paramWriteMode ) { case eParamWriteAllSlots: slotCountToPush = kGLMVertexProgramParamFloat4Limit; break; case eParamWriteShaderSlots: slotCountToPush = shaderSlots; break; case eParamWriteShaderSlotsOptional: { slotCountToPush = shaderSlots; // ...unless, we're actually unchanged since last draw
if (dirtySlots == 0) { // write none
slotCountToPush = 0; } } break; case eParamWriteDirtySlotRange: slotCountToPush = dirtySlots; break; } if (slotCountToPush) { glUniform4fv( vconstLoc, slotCountToPush, &m_programParamsF[kGLMVertexProgram].m_values[0][0] ); GLMCheckError();
#if GLMDEBUG
paramsPushed += slotCountToPush; paramsSkipped += shaderSlots - slotCountToPush; callsPushed++; #endif
} else { #if GLMDEBUG
paramsSkippedByCallSkip += shaderSlots; callsSkipped++; #endif
}
#if GLMDEBUG && 0
if (GLMKnob("caps-key",NULL) > 0.0) { // spew
GLMPRINTF(("VP callsPushed=%d ( paramsPushed=%d paramsSkipped=%d ) callsSkipped=%d (paramsSkippedByCallSkip=%d)", callsPushed, paramsPushed, paramsSkipped, callsSkipped, paramsSkippedByCallSkip )); } #endif
m_programParamsF[kGLMVertexProgram].m_dirtySlotCount = 0; //ack
}
// see if VS uses i0, b0, b1, b2, b3.
// use a glUniform1i to set any one of these if active. skip all of them if no dirties reported.
// my kingdom for the UBO extension!
// ------- bools ---------- //
if ( 1 /*m_programParamsB[kGLMVertexProgram].m_dirtySlotCount*/ ) // optimize this later after the float param pushes are proven out
{ GLint vconstBool0Loc = m_boundPair->m_locVertexBool0; //glGetUniformLocationARB( prog, "b0");
if ( vconstBool0Loc >= 0 ) { glUniform1i( vconstBool0Loc, m_programParamsB[kGLMVertexProgram].m_values[0] ); //FIXME magic number
GLMCheckError(); }
GLint vconstBool1Loc = m_boundPair->m_locVertexBool1; //glGetUniformLocationARB( prog, "b1");
if ( vconstBool1Loc >= 0 ) { glUniform1i( vconstBool1Loc, m_programParamsB[kGLMVertexProgram].m_values[1] ); //FIXME magic number
GLMCheckError(); }
GLint vconstBool2Loc = m_boundPair->m_locVertexBool2; //glGetUniformLocationARB( prog, "b2");
if ( vconstBool2Loc >= 0 ) { glUniform1i( vconstBool2Loc, m_programParamsB[kGLMVertexProgram].m_values[2] ); //FIXME magic number
GLMCheckError(); }
GLint vconstBool3Loc = m_boundPair->m_locVertexBool3; //glGetUniformLocationARB( prog, "b3");
if ( vconstBool3Loc >= 0 ) { glUniform1i( vconstBool3Loc, m_programParamsB[kGLMVertexProgram].m_values[3] ); //FIXME magic number
GLMCheckError(); } m_programParamsB[kGLMVertexProgram].m_dirtySlotCount = 0; //ack
}
// ------- int ---------- //
if ( 1 /*m_programParamsI[kGLMVertexProgram].m_dirtySlotCount*/ ) // optimize this later after the float param pushes are proven out
{ GLint vconstInt0Loc = m_boundPair->m_locVertexInteger0; //glGetUniformLocationARB( prog, "i0");
if ( vconstInt0Loc >= 0 ) { glUniform1i( vconstInt0Loc, m_programParamsI[kGLMVertexProgram].m_values[0][0] ); //FIXME magic number
GLMCheckError(); } m_programParamsI[kGLMVertexProgram].m_dirtySlotCount = 0; //ack
}
// attribs - find and set
// GLSL vert setup - clone/edit of ARB setup. try to re-unify these later.
GLMVertexSetup *setup = &m_drawVertexSetup; uint relevantMask = setup->m_attrMask; //static char *attribnames[] = { "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" };
CGLMBuffer *loopCurrentBuf = NULL; // local shock absorber for this loop
for( int index=0; index < kGLMVertexAttributeIndexMax; index++ ) { uint mask = 1<<index; if (relevantMask & mask) { GLMVertexAttributeDesc *newDesc = &setup->m_attrs[index]; // ptr to desired setup
bool writeAttrib = false; switch(m_attribWriteMode) { case eAttribWriteAll: writeAttrib = true; break; case eAttribWriteDirty: static uint hits=0,misses=0; // first see if we have to do anything at all.
// the equality operator checks buffer name, offset, stride, datatype and normalized.
// we check buffer revision separately, submitter of vertex setup is not expected to provide it (zero is preferred).
// consult the actual buffer directly.
// note also, we're only doing thi compare when attrib #index is active for this batch.
// previously-active attribs which are becoming disabled need not be checked..
GLMVertexAttributeDesc *lastDesc = &m_lastKnownVertexAttribs[index]; if ( (!(*newDesc == *lastDesc)) || (newDesc->m_buffer->m_revision != lastDesc->m_bufferRevision) ) { *lastDesc = *newDesc; // latch new setup
lastDesc->m_bufferRevision = newDesc->m_buffer->m_revision; // including proper revision of the sourcing buffer
writeAttrib = true; misses++; } else { hits++; } #if 0
if ( ((hits+misses) % 10000)==0) { printf("\n** attrib setup hits %d misses %d",hits,misses); } #endif
break; } if( writeAttrib ) { CGLMBuffer * buf = newDesc->m_buffer; // bind buffer
Assert( buf ); if (buf != loopCurrentBuf) { BindBufferToCtx( kGLMVertexBuffer, buf ); // (if not already on the bind point of interest)
GLMCheckError(); loopCurrentBuf = buf; }
glVertexAttribPointer( index, newDesc->m_datasize, newDesc->m_datatype, newDesc->m_normalized, newDesc->m_stride, ( const GLvoid *)newDesc->m_offset ); GLMCheckError(); } // enable is checked separately from the attrib binding
if (! (m_lastKnownVertexAttribMask & (1<<index)) ) { glEnableVertexAttribArray( index ); // enable GLSL attribute- this is just client state - will be turned back off
GLMCheckError(); m_lastKnownVertexAttribMask |= (1<<index); } } else { // this shader doesnt use that pair.
if ( m_lastKnownVertexAttribMask & (1<<index) ) { glDisableVertexAttribArray( index ); // enable GLSL attribute- this is just client state - will be turned back off
GLMCheckError(); m_lastKnownVertexAttribMask &= ~(1<<index); } } } // fragment stage --------------------------------------------------------------------
// find "pc" in FS ("pixel constants")
GLint fconstLoc = m_boundPair->m_locFragmentParams; if (fconstLoc >=0) { #if GLMDEBUG
static uint paramsPushed=0,paramsSkipped=0,callsPushed=0; // things that happened on pushed param trips
static uint callsSkipped=0,paramsSkippedByCallSkip=0; // on unpushed param trips (zero dirty)
#endif
int slotCountToPush = 0; int shaderSlots = m_boundPair->m_fragmentProg->m_descs[kGLMGLSL].m_highWater+1; int dirtySlots = m_programParamsF[kGLMFragmentProgram].m_dirtySlotCount; switch( m_paramWriteMode ) { case eParamWriteAllSlots: slotCountToPush = kGLMFragmentProgramParamFloat4Limit; break; case eParamWriteShaderSlots: slotCountToPush = shaderSlots; break; case eParamWriteShaderSlotsOptional: { slotCountToPush = shaderSlots; // ...unless, we're actually unchanged since last draw
if (dirtySlots == 0) { // write none
slotCountToPush = 0; } } break; case eParamWriteDirtySlotRange: slotCountToPush = dirtySlots; break; } if (slotCountToPush) { glUniform4fv( fconstLoc, slotCountToPush, &m_programParamsF[kGLMFragmentProgram].m_values[0][0] ); GLMCheckError();
#if GLMDEBUG
paramsPushed += slotCountToPush; paramsSkipped += shaderSlots - slotCountToPush;
callsPushed++; #endif
} else { #if GLMDEBUG
paramsSkippedByCallSkip += shaderSlots; callsSkipped++; #endif
}
#if GLMDEBUG && 0
if ( 0 && (GLMKnob("caps-key",NULL) > 0.0) ) // turn on as needed
{ // spew
GLMPRINTF(("FP callsPushed=%d ( paramsPushed=%d paramsSkipped=%d ) callsSkipped=%d (paramsSkippedByCallSkip=%d)", callsPushed, paramsPushed, paramsSkipped, callsSkipped, paramsSkippedByCallSkip )); } #endif
m_programParamsF[kGLMFragmentProgram].m_dirtySlotCount = 0; //ack
} // fake SRGB
if (!m_caps.m_hasGammaWrites) // do we need to think about fake SRGB?
{ if (m_boundPair->m_locFragmentFakeSRGBEnable >= 0) // does the shader have that uniform handy?
{ float desiredValue = m_FakeBlendEnableSRGB ? 1.0 : 0.0; // what should it be set to?
if (desiredValue != m_boundPair->m_fakeSRGBEnableValue) // and is that different from what it is known to be set to ?
{ glUniform1f( m_boundPair->m_locFragmentFakeSRGBEnable, desiredValue ); // if so, write it
GLMCheckError(); m_boundPair->m_fakeSRGBEnableValue = desiredValue; // and recall that we did so
} } } //samplers
if (m_boundPair) { if(!m_boundPair->m_samplersFixed) { for( int sampler=0; sampler<16; sampler++) { if (m_boundPair->m_locSamplers[sampler] >=0) { glUniform1iARB( m_boundPair->m_locSamplers[sampler], sampler ); GLMCheckError(); } } m_boundPair->m_samplersFixed = true; } } } break; } } else { this->NullProgram(); } }
#if GLMDEBUG
enum EGLMDebugDumpOptions { eDumpBatchInfo, eDumpSurfaceInfo, eDumpStackCrawl, eDumpShaderLinks, // eDumpShaderText, // we never use this one
eDumpShaderParameters, eDumpTextureSetup, eDumpVertexAttribSetup, eDumpVertexData, eOpenShadersForEdit };
enum EGLMVertDumpMode { // options that affect eDumpVertexData above
eDumpVertsNoTransformDump, eDumpVertsTransformedByViewProj, eDumpVertsTransformedByModelViewProj, eDumpVertsTransformedByBoneZeroThenViewProj, eDumpVertsTransformedByBonesThenViewProj, eLastDumpVertsMode };
char *g_vertDumpModeNames[] = { "noTransformDump", "transformedByViewProj", "transformedByModelViewProj", "transformedByBoneZeroThenViewProj", "transformedByBonesThenViewProj" };
static void CopyTilEOL( char *dst, char *src, int dstSize ) { dstSize--; int i=0; while ( (i<dstSize) && (src[i] != 0) && (src[i] != '\n') && (src[i] != '\r') ) { dst[i] = src[i]; i++; } dst[i] = 0; }
static uint g_maxVertsToDumpLog2 = 4; static uint g_maxFramesToCrawl = 20; // usually enough. Not enough? change it..
extern char sg_pPIXName[128];
// min is eDumpVertsNormal, max is the one before eLastDumpVertsMode
static enum EGLMVertDumpMode g_vertDumpMode = eDumpVertsNoTransformDump;
void GLMContext::DebugDump( GLMDebugHookInfo *info, uint options, uint vertDumpMode ) { int oldIndent = GLMGetIndent(); GLMSetIndent(0); CGLMProgram *vp = m_boundProgram[kGLMVertexProgram]; CGLMProgram *fp = m_boundProgram[kGLMFragmentProgram];
bool is_draw = (info->m_caller==eDrawElements); const char *batchtype = is_draw ? "draw" : "clear";
if (options & (1<<eDumpBatchInfo)) { GLMPRINTF(("-D- %s === %s %d ======================================================== %s %d frame %d", sg_pPIXName, batchtype, m_debugBatchIndex, batchtype, m_debugBatchIndex, m_debugFrameIndex )); }
if (options & (1<<eDumpSurfaceInfo)) { GLMPRINTF(("-D-" )); GLMPRINTF(("-D- surface info:")); GLMPRINTF(("-D- drawing FBO: %8x bound draw-FBO: %8x (%s)", m_drawingFBO, m_boundDrawFBO, (m_drawingFBO==m_boundDrawFBO) ? "in sync" : "desync!" ));
CGLMFBO *fbo = m_boundDrawFBO; for( int i=0; i<kAttCount; i++) { CGLMTex *tex = fbo->m_attach[i].m_tex; if (tex) { GLMPRINTF(("-D- bound FBO (%8x) attachment %d = tex %8x (GL %d) (%s)", fbo, i, tex, tex->m_texName, tex->m_layout->m_layoutSummary )); } else { // warning if no depthstencil attachment
switch(i) { case kAttDepth: case kAttStencil: case kAttDepthStencil: GLMPRINTF(("-D- bound FBO (%8x) attachment %d = NULL, warning!", fbo, i )); break; } } } }
if (options & (1<<eDumpStackCrawl)) { CStackCrawlParams cp; memset( &cp, 0, sizeof(cp) ); cp.m_frameLimit = g_maxFramesToCrawl; g_extCocoaMgr->GetStackCrawl(&cp); GLMPRINTF(("-D-" )); GLMPRINTF(("-D- stack crawl")); for( int i=0; i< cp.m_frameCount; i++) { GLMPRINTF(("-D-\t%s", cp.m_crawlNames[i] )); } }
if ( (options & (1<<eDumpShaderLinks)) && is_draw) { // we want to print out - GL name, pathname to disk copy if editable, extra credit would include the summary translation line
// so grep for "#// trans#"
char attribtemp[1000]; char transtemp[1000];
if (vp) { char *attribmap = strstr(vp->m_text, "#//ATTRIBMAP"); if (attribmap) { CopyTilEOL( attribtemp, attribmap, sizeof(attribtemp) ); } else { strcpy( attribtemp, "no attrib map" ); } char *trans = strstr(vp->m_text, "#// trans#"); if (trans) { CopyTilEOL( transtemp, trans, sizeof(transtemp) ); } else { strcpy( transtemp, "no translation info" ); } char *linkpath = "no file link";
#if GLMDEBUG
linkpath = vp->m_editable->m_mirror->m_path; #endif
GLMPRINTF(("-D-")); GLMPRINTF(("-D- ARBVP || GL %d || Path %s ", vp->m_descs[kGLMARB].m_object.arb, linkpath )); GLMPRINTF(("-D- Attribs %s", attribtemp )); GLMPRINTF(("-D- Trans %s", transtemp ));
/*
if ( (options & (1<<eDumpShaderText)) && is_draw ) { GLMPRINTF(("-D-")); GLMPRINTF(("-D- VP text " )); GLMPRINTTEXT(vp->m_string, eDebugDump )); } */ } else { GLMPRINTF(("-D- VP (none)" )); }
if (fp) { char *trans = strstr(fp->m_text, "#// trans#"); if (trans) { CopyTilEOL( transtemp, trans, sizeof(transtemp) ); } else { strcpy( transtemp, "no translation info" ); } char *linkpath = "no file link";
#if GLMDEBUG
linkpath = fp->m_editable->m_mirror->m_path; #endif
GLMPRINTF(("-D-")); GLMPRINTF(("-D- FP || GL %d || Path %s ", fp->m_descs[kGLMARB].m_object.arb, linkpath )); GLMPRINTF(("-D- Trans %s", transtemp ));
/*
if ( (options & (1<<eDumpShaderText)) && is_draw ) { GLMPRINTF(("-D-")); GLMPRINTF(("-D- FP text " )); GLMPRINTTEXT((fp->m_string, eDebugDump)); } */ } else { GLMPRINTF(("-D- FP (none)" )); } }
if ( (options & (1<<eDumpShaderParameters)) && is_draw ) { GLMPRINTF(("-D-")); GLMPRINTF(("-D- VP parameters" )); char *label = ""; int labelcounter = 0; static int vmaskranges[] = { /*18,47,*/ -1,-1 }; float transposeTemp; // row, column for printing
int slotIndex = 0; int upperSlotLimit = 61; // take a peek at the vertex attrib setup. If it has an attribute for bone weights, then raise the shader param dump limit to 256.
bool usesSkinning = false; GLMVertexSetup *setup = &this->m_drawVertexSetup; for( int index=0; index < kGLMVertexAttributeIndexMax; index++ ) { usesSkinning |= (setup->m_attrMask & (1<<index)) && ((setup->m_vtxAttribMap[index]>>4)== D3DDECLUSAGE_BLENDWEIGHT); } if (usesSkinning) { upperSlotLimit = 256; }
while( slotIndex < upperSlotLimit ) { // if slot index is in a masked range, skip it
// if slot index is the start of a matrix, label it, print it, skip ahead 4 slots
for( int maski=0; vmaskranges[maski] >=0; maski+=2) { if ( (slotIndex >= vmaskranges[maski]) && (slotIndex <= vmaskranges[maski+1]) ) { // that index is masked. set to one past end of range, print a blank line for clarity
slotIndex = vmaskranges[maski+1]+1; GLMPrintStr("-D- ....."); } }
if (slotIndex < upperSlotLimit) { float *values = &m_programParamsF[ kGLMVertexProgram ].m_values[slotIndex][0]; switch( slotIndex ) { case 4: printmat( "MODELVIEWPROJ", slotIndex, 4, values ); slotIndex += 4; break; case 8: printmat( "VIEWPROJ", slotIndex, 4, values ); slotIndex += 4; break; default: if (slotIndex>=58) { // bone
char bonelabel[100];
sprintf(bonelabel, "MODEL_BONE%-2d", (slotIndex-58)/3 ); printmat( bonelabel, slotIndex, 3, values );
slotIndex += 3; } else { // just print the one slot
GLMPRINTF(("-D- %03d: [ %10.5f %10.5f %10.5f %10.5f ] %s", slotIndex, values[0], values[1], values[2], values[3], label )); slotIndex++; } break; } } }
// VP stage still, if in GLSL mode, find the bound pair and see if it has live i0, b0-b3 uniforms
if (m_boundPair) // should only be non-NULL in GLSL mode
{ if (m_boundPair->m_locVertexBool0>=0) { GLMPRINTF(("-D- GLSL 'b0': %d", m_programParamsB[kGLMVertexProgram].m_values[0] )); }
if (m_boundPair->m_locVertexBool1>=0) { GLMPRINTF(("-D- GLSL 'b1': %d", m_programParamsB[kGLMVertexProgram].m_values[1] )); }
if (m_boundPair->m_locVertexBool2>=0) { GLMPRINTF(("-D- GLSL 'b2': %d", m_programParamsB[kGLMVertexProgram].m_values[2] )); }
if (m_boundPair->m_locVertexBool3>=0) { GLMPRINTF(("-D- GLSL 'b3': %d", m_programParamsB[kGLMVertexProgram].m_values[3] )); }
if (m_boundPair->m_locVertexInteger0>=0) { GLMPRINTF(("-D- GLSL 'i0': %d", m_programParamsI[kGLMVertexProgram].m_values[0][0] )); } }
GLMPRINTF(("-D-")); GLMPRINTF(("-D- FP parameters " ));
static int fmaskranges[] = { 40,41, -1,-1 }; slotIndex = 0; label = ""; while(slotIndex < 40) { // if slot index is in a masked range, skip it
// if slot index is the start of a matrix, label it, print it, skip ahead 4 slots
for( int maski=0; fmaskranges[maski] >=0; maski+=2) { if ( (slotIndex >= fmaskranges[maski]) && (slotIndex <= fmaskranges[maski+1]) ) { // that index is masked. set to one past end of range, print a blank line for clarity
slotIndex = fmaskranges[maski+1]+1; GLMPrintStr("-D- ....."); } }
if (slotIndex < 40) { float *values = &m_programParamsF[ kGLMFragmentProgram ].m_values[slotIndex][0]; switch( slotIndex ) { case 0: label = "g_EnvmapTint"; break; case 1: label = "g_DiffuseModulation"; break; case 2: label = "g_EnvmapContrast_ShadowTweaks"; break; case 3: label = "g_EnvmapSaturation_SelfIllumMask (xyz, and w)"; break; case 4: label = "g_SelfIllumTint_and_BlendFactor (xyz, and w)"; break;
case 12: label = "g_ShaderControls"; break; case 13: label = "g_DepthFeatheringConstants"; break;
case 20: label = "g_EyePos"; break; case 21: label = "g_FogParams"; break; case 22: label = "g_FlashlightAttenuationFactors"; break; case 23: label = "g_FlashlightPos"; break; case 24: label = "g_FlashlightWorldToTexture"; break;
case 28: label = "cFlashlightColor"; break; case 29: label = "g_LinearFogColor"; break; case 30: label = "cLightScale"; break; case 31: label = "cFlashlightScreenScale"; break;
default: label = ""; break; }
GLMPRINTF(("-D- %03d: [ %10.5f %10.5f %10.5f %10.5f ] %s", slotIndex, values[0], values[1], values[2], values[3], label ));
slotIndex ++; } } if (m_boundPair->m_locFragmentFakeSRGBEnable) { GLMPRINTF(("-D- GLSL 'flEnableSRGBWrite': %f", m_boundPair->m_fakeSRGBEnableValue )); } }
if ( (options & (1<<eDumpTextureSetup)) && is_draw ) { GLMPRINTF(( "-D-" )); GLMPRINTF(( "-D- Texture / Sampler setup" ));
for( int i=0; i<GLM_SAMPLER_COUNT; i++ ) { if (m_samplers[i].m_boundTex) { GLMTexSamplingParams *samp = &m_samplers[i].m_samp; GLMPRINTF(( "-D-" )); GLMPRINTF(("-D- Texture: %s", m_samplers[i].m_boundTex->m_debugLabel )); GLMPRINTF(("-D- Sampler %-2d tex %08x layout %s", i, m_samplers[i].m_boundTex, m_samplers[i].m_boundTex->m_layout->m_layoutSummary ));
GLMPRINTF(("-D- addressMode[ %s %s %s ]", GLMDecode( eGL_ENUM, samp->m_addressModes[0] ), GLMDecode( eGL_ENUM, samp->m_addressModes[1] ), GLMDecode( eGL_ENUM, samp->m_addressModes[2] ) )); GLMPRINTF( ("-D- magFilter [ %s ]", GLMDecode( eGL_ENUM, samp->m_magFilter ) ) ); GLMPRINTF( ("-D- minFilter [ %s ]", GLMDecode( eGL_ENUM, samp->m_minFilter ) ) ); GLMPRINTF( ("-D- maxAniso [ %d ]", samp->m_maxAniso ) ); GLMPRINTF( ("-D- srgb [ %s ]", samp->m_srgb ? "T" : "F" ) ); GLMPRINTF( ("-D- shadowFilter [ %s ]", samp->m_compareMode == GL_COMPARE_R_TO_TEXTURE_ARB ? "T" : "F" ) ); // add more as needed later..
} } }
if ( (options & (1<<eDumpVertexAttribSetup)) && is_draw ) { GLMVertexSetup *setup = &this->m_drawVertexSetup; uint relevantMask = setup->m_attrMask; for( int index=0; index < kGLMVertexAttributeIndexMax; index++ ) { uint mask = 1<<index; if (relevantMask & mask) { GLMVertexAttributeDesc *setdesc = &setup->m_attrs[index];
char sizestr[100]; if (setdesc->m_datasize < 32) { sprintf( sizestr, "%d", setdesc->m_datasize); } else { strcpy( sizestr, GLMDecode( eGL_ENUM, setdesc->m_datasize ) ); } if (setup->m_vtxAttribMap[index] != 0xBB) { GLMPRINTF(("-D- attr=%-2d decl=$%s%1d stride=%-2d offset=%-3d buf=%08x size=%s type=%s normalized=%s ", index, GLMDecode(eD3D_VTXDECLUSAGE, setup->m_vtxAttribMap[index]>>4 ), setup->m_vtxAttribMap[index]&0x0F, setdesc->m_stride, setdesc->m_offset, setdesc->m_buffer, sizestr, GLMDecode( eGL_ENUM, setdesc->m_datatype), setdesc->m_normalized?"Y":"N" )); } else { // the attrib map is referencing an attribute that is not wired up in the vertex setup...
Debugger(); } } } }
if ( (options & (1<<eDumpVertexData)) && is_draw ) { GLMVertexSetup *setup = &this->m_drawVertexSetup; int start = info->m_drawStart; int end = info->m_drawEnd; int endLimit = start + (1<<g_maxVertsToDumpLog2); int realEnd = MIN( end, endLimit );
// vertex data
GLMPRINTF(("-D-")); GLMPRINTF(("-D- Vertex Data : %d of %d verts (index %d through %d)", realEnd-start, end-start, start, realEnd-1)); for( int vtxIndex=-1; vtxIndex < realEnd; vtxIndex++ ) // vtxIndex will jump from -1 to start after first spin, not necessarily to 0
{ char buf[64000]; char *mark = buf; // index -1 is the first run through the loop, we just print a header
// iterate attrs
if (vtxIndex>=0) { mark += sprintf(mark, "-D- %04d: ", vtxIndex ); } // for transform dumping, we latch values as we spot them
float vtxPos[4]; int vtxBoneIndices[4]; // only three get used
float vtxBoneWeights[4]; // only three get used and index 2 is synthesized from 0 and 1
vtxPos[0] = vtxPos[1] = vtxPos[2] = 0.0; vtxPos[3] = 1.0; vtxBoneIndices[0] = vtxBoneIndices[1] = vtxBoneIndices[2] = vtxBoneIndices[3] = 0; vtxBoneWeights[0] = vtxBoneWeights[1] = vtxBoneWeights[2] = vtxBoneWeights[3] = 0.0; for( int attr = 0; attr < kGLMVertexAttributeIndexMax; attr++ ) { if (setup->m_attrMask & (1<<attr) ) { GLMVertexAttributeDesc *desc = &setup->m_attrs[ attr ]; // print that attribute.
// on OSX, VB's never move unless resized. You can peek at them when unmapped. Safe enough for debug..
char *bufferBase = (char*)desc->m_buffer->m_lastMappedAddress;
uint stride = desc->m_stride; uint fieldoffset = desc->m_offset; uint baseoffset = vtxIndex * stride; char *attrBase = bufferBase + baseoffset + fieldoffset;
uint usage = setup->m_vtxAttribMap[attr]>>4; uint usageindex = setup->m_vtxAttribMap[attr]&0x0F; if (vtxIndex <0) { mark += sprintf(mark, "[%s%1d @ offs=%04d / strd %03d] ", GLMDecode(eD3D_VTXDECLUSAGE, usage ), usageindex, fieldoffset, stride ); } else { mark += sprintf(mark, "[%s%1d ", GLMDecode(eD3D_VTXDECLUSAGE, usage ), usageindex ); if (desc->m_datasize<32) { for( int which = 0; which < desc->m_datasize; which++ ) { static char *fieldname = "xyzw"; switch( desc->m_datatype ) { case GL_FLOAT: { float *floatbase = (float*)attrBase; mark += sprintf(mark, (usage != D3DDECLUSAGE_TEXCOORD) ? "%c%7.3f " : "%c%.3f", fieldname[which], floatbase[which] ); if (usage==D3DDECLUSAGE_POSITION) { if (which<4) { // latch pos
vtxPos[which] = floatbase[which]; } }
if (usage==D3DDECLUSAGE_BLENDWEIGHT) { if (which<4) { // latch weight
vtxBoneWeights[which] = floatbase[which]; } } } break; case GL_UNSIGNED_BYTE: { unsigned char *unchbase = (unsigned char*)attrBase; mark += sprintf(mark, "%c$%02X ", fieldname[which], unchbase[which] ); } break;
default: // hold off on other formats for now
mark += sprintf(mark, "%c????? ", fieldname[which] ); break; } } } else // special path for BGRA bytes which are expressed in GL by setting the *size* to GL_BGRA (gross large enum)
{ switch(desc->m_datasize) { case GL_BGRA: // byte reversed color
{ for( int which = 0; which < 4; which++ ) { static const char *fieldname = "BGRA"; switch( desc->m_datatype ) { case GL_UNSIGNED_BYTE: { unsigned char *unchbase = (unsigned char*)attrBase; mark += sprintf(mark, "%c$%02X ", fieldname[which], unchbase[which] ); if (usage==D3DDECLUSAGE_BLENDINDICES) { if (which<4) { // latch index
vtxBoneIndices[which] = unchbase[which]; // ignoring the component reverse which BGRA would inflict, but we also ignore it below so it matches up.
} } } break;
default: Debugger(); break; } } } break; } } mark += sprintf(mark, "] " ); } } } GLMPrintStr( buf, eDebugDump );
if (vtxIndex >=0) { // if transform dumping requested, and we've reached the actual vert dump phase, do it
float vtxout[4]; char *translabel = NULL; // NULL means no print...
switch( g_vertDumpMode ) { case eDumpVertsNoTransformDump: break; case eDumpVertsTransformedByViewProj: // viewproj is slot 8
{ float *viewproj = &m_programParamsF[ kGLMVertexProgram ].m_values[8][0]; transform_dp4( vtxPos, viewproj, 4, vtxout ); translabel = "post-viewproj"; } break; case eDumpVertsTransformedByModelViewProj: // modelviewproj is slot 4
{ float *modelviewproj = &m_programParamsF[ kGLMVertexProgram ].m_values[4][0]; transform_dp4( vtxPos, modelviewproj, 4, vtxout ); translabel = "post-modelviewproj"; } break; case eDumpVertsTransformedByBoneZeroThenViewProj: { float postbone[4]; postbone[3] = 1.0; float *bonemat = &m_programParamsF[ kGLMVertexProgram ].m_values[58][0]; transform_dp4( vtxPos, bonemat, 3, postbone ); float *viewproj = &m_programParamsF[ kGLMVertexProgram ].m_values[8][0]; // viewproj is slot 8
transform_dp4( postbone, viewproj, 4, vtxout );
translabel = "post-bone0-viewproj"; } break; case eDumpVertsTransformedByBonesThenViewProj: { float bone[4][4]; // [bone index][bone member] // members are adjacent
vtxout[0] = vtxout[1] = vtxout[2] = vtxout[3] = 0; // unpack the third weight
vtxBoneWeights[2] = 1.0 - (vtxBoneWeights[0] + vtxBoneWeights[1]); for( int ibone=0; ibone<3; ibone++ ) { int boneindex = vtxBoneIndices[ ibone ]; float *bonemat = &m_programParamsF[ kGLMVertexProgram ].m_values[58+(boneindex*3)][0]; float boneweight = vtxBoneWeights[ibone]; float postbonevtx[4]; transform_dp4( vtxPos, bonemat, 3, postbonevtx ); // add weighted sum into output
for( int which=0; which<4; which++ ) { vtxout[which] += boneweight * postbonevtx[which]; } } // fix W ? do we care ? check shaders to see what they do...
translabel = "post-skin3bone-viewproj"; } break; } if(translabel) { // for extra credit, do the perspective divide and viewport
GLMPRINTF(("-D- %-24s: [ %7.4f %7.4f %7.4f %7.4f ]", translabel, vtxout[0],vtxout[1],vtxout[2],vtxout[3] )); GLMPRINTF(("-D-" )); } } if (vtxIndex<0) { vtxIndex = start-1; // for printing of the data (note it will be incremented at bottom of loop, so bias down by 1)
} else { // no more < and > around vert dump lines
//mark += sprintf(mark, "" );
} } }
if (options & (1<<eOpenShadersForEdit) ) { #if GLMDEBUG
if (m_drawingProgram[ kGLMVertexProgram ]) { m_drawingProgram[ kGLMVertexProgram ]->m_editable->OpenInEditor(); } if (m_drawingProgram[ kGLMFragmentProgram ]) { m_drawingProgram[ kGLMFragmentProgram ]->m_editable->OpenInEditor(); } #endif
} /*
if (options & (1<<)) { } */ // trailer line
GLMPRINTF(("-D- ===================================================================================== end %s %d frame %d", batchtype, m_debugBatchIndex, m_debugFrameIndex ));
GLMSetIndent(oldIndent); }
// here is the table that binds knob numbers to names. change at will.
char *g_knobnames[] = { /*0*/ "dummy",
/*1*/ "FB-SRGB", #if 0
/*1*/ "tex-U0-bias", // src left
/*2*/ "tex-V0-bias", // src upper
/*3*/ "tex-U1-bias", // src right
/*4*/ "tex-V1-bias", // src bottom
/*5*/ "pos-X0-bias", // dst left
/*6*/ "pos-Y0-bias", // dst upper
/*7*/ "pos-X1-bias", // dst right
/*8*/ "pos-Y1-bias", // dst bottom
#endif
}; int g_knobcount = sizeof( g_knobnames ) / sizeof( g_knobnames[0] );
void GLMContext::DebugHook( GLMDebugHookInfo *info ) { bool debughook = false; // debug hook is called after an action has taken place.
// that would be the initial action, or a repeat.
// if paused, we stay inside this function until return.
// when returning, we inform the caller if it should repeat its last action or continue.
// there is no global pause state. The rest of the app runs at the best speed it can.
// initial stuff we do unconditionally
// increment iteration
info->m_iteration++; // can be thought of as "number of times the caller's action has now occurred - starting at 1"
// now set initial state guess for the info block (outcome may change below)
info->m_loop = false;
// check prior hold-conditions to see if any of them hit.
// note we disarm each trigger once the hold has occurred (one-shot style)
switch( info->m_caller ) { case eBeginFrame: if (debughook) GLMPRINTF(("-D- Caller: BeginFrame" )); if ( (m_holdFrameBegin>=0) && (m_holdFrameBegin==m_debugFrameIndex) ) // did we hit a frame breakpoint?
{ if (debughook) GLMPRINTF(("-D- BeginFrame trigger match, clearing m_holdFrameBegin, hold=true" ));
m_holdFrameBegin = -1;
info->m_holding = true; } break;
case eClear: if (debughook) GLMPRINTF(("-D- Caller: Clear" )); if ( (m_holdBatch>=0) && (m_holdBatchFrame>=0) && (m_holdBatch==m_debugBatchIndex) && (m_holdBatchFrame==m_debugFrameIndex) ) { if (debughook) GLMPRINTF(("-D- Clear trigger match, clearing m_holdBatch&Frame, hold=true" ));
m_holdBatch = m_holdBatchFrame = -1;
info->m_holding = true; } break;
case eDrawElements: if (debughook) GLMPRINTF(( (info->m_caller==eClear) ? "-D- Caller: Clear" : "-D- Caller: Draw" )); if ( (m_holdBatch>=0) && (m_holdBatchFrame>=0) && (m_holdBatch==m_debugBatchIndex) && (m_holdBatchFrame==m_debugFrameIndex) ) { if (debughook) GLMPRINTF(("-D- Draw trigger match, clearing m_holdBatch&Frame, hold=true" ));
m_holdBatch = m_holdBatchFrame = -1;
info->m_holding = true; } break;
case eEndFrame: if (debughook) GLMPRINTF(("-D- Caller: EndFrame" ));
// check for any expired batch hold req
if ( (m_holdBatch>=0) && (m_holdBatchFrame>=0) && (m_holdBatchFrame==m_debugFrameIndex) ) { // you tried to say 'next batch', but there wasn't one in this frame.
// target first batch of next frame instead
if (debughook) GLMPRINTF(("-D- EndFrame noticed an expired draw hold trigger, rolling to next frame, hold=false"));
m_holdBatch = 0; m_holdBatchFrame++;
info->m_holding = false; } // now check for an explicit hold on end of this frame..
if ( (m_holdFrameEnd>=0) && (m_holdFrameEnd==m_debugFrameIndex) ) { if (debughook) GLMPRINTF(("-D- EndFrame trigger match, clearing m_holdFrameEnd, hold=true" ));
m_holdFrameEnd = -1;
info->m_holding = true; } break; }
// spin until event queue is empty *and* hold is false
int evtcount=0;
bool refresh = info->m_holding || m_debugDelayEnable; // only refresh once per initial visit (if paused!) or follow up event input
int breakToDebugger = 0; // 1 = break to GDB
// 2 = break to OpenGL Profiler if attached
do { if (refresh) { if (debughook) GLMPRINTF(("-D- pushing pixels" )); this->DebugPresent(); // show pixels
uint minidumpOptions = (1<<eDumpBatchInfo) /* | (1<<eDumpSurfaceInfo) */; this->DebugDump( info, minidumpOptions, g_vertDumpMode ); usleep(10000); // lil sleep
refresh = false; }
bool eventCheck = true; // event pull will be skipped if we detect a shader edit being done
// keep editable shaders in sync
#if GLMDEBUG
bool redrawBatch = false; if (m_drawingProgram[ kGLMVertexProgram ]) { if( m_drawingProgram[ kGLMVertexProgram ]->SyncWithEditable() ) { redrawBatch = true; } } if (m_drawingProgram[ kGLMFragmentProgram ]) { if( m_drawingProgram[ kGLMFragmentProgram ]->SyncWithEditable() ) { redrawBatch = true; } } if (redrawBatch) { // act as if user pressed the option-\ key
if (m_drawingLang == kGLMGLSL) { // if GLSL mode, force relink - and refresh the pair cache as needed
if (m_boundPair) { // fix it in place
m_boundPair->RefreshProgramPair(); } } FlushDrawStates( true ); // this is key, because the linked shader pair may have changed (note call to PurgePairsWithShader in cglmprogram.cpp)
GLMPRINTF(("-- Shader changed, re-running batch" ));
m_holdBatch = m_debugBatchIndex; m_holdBatchFrame = m_debugFrameIndex; m_debugDelayEnable = false; info->m_holding = false; info->m_loop = true; eventCheck = false; } #endif
if(eventCheck) { g_extCocoaMgr->PumpWindowsMessageLoop(); CCocoaEvent evt; evtcount = g_extCocoaMgr->GetEvents( &evt, 1, true ); // asking for debug events only.
if (evtcount) { // print it
if (debughook) GLMPRINTF(("-D- Received debug key '%c' with modifiers %x", evt.m_UnicodeKeyUnmodified, evt.m_ModifierKeyMask )); // flag for refresh if we spin again
refresh = 1; switch(evt.m_UnicodeKeyUnmodified) { case ' ': // toggle pause
// clear all the holds to be sure
m_holdFrameBegin = m_holdFrameEnd = m_holdBatch = m_holdBatchFrame = -1; info->m_holding = !info->m_holding; if (!info->m_holding) { m_debugDelayEnable = false; // coming out of pause means no slow mo
}
GLMPRINTF((info->m_holding ? "-D- Paused." : "-D- Unpaused." )); break; case 'f': // frame advance
GLMPRINTF(("-D- Command: next frame" )); m_holdFrameBegin = m_debugFrameIndex+1; // stop at top of next numbered frame
m_debugDelayEnable = false; // get there fast
info->m_holding = false; break;
case ']': // ahead 1 batch
case '}': // ahead ten batches
{ int delta = evt.m_UnicodeKeyUnmodified == ']' ? 1 : 10; m_holdBatch = m_debugBatchIndex+delta; m_holdBatchFrame = m_debugFrameIndex; m_debugDelayEnable = false; // get there fast
info->m_holding = false; GLMPRINTF(("-D- Command: advance %d batches to %d", delta, m_holdBatch )); } break;
case '[': // back one batch
case '{': // back 10 batches
{ int delta = evt.m_UnicodeKeyUnmodified == '[' ? -1 : -10; m_holdBatch = m_debugBatchIndex + delta; if (m_holdBatch<0) { m_holdBatch = 0; } m_holdBatchFrame = m_debugFrameIndex+1; // next frame, but prev batch #
m_debugDelayEnable = false; // get there fast
info->m_holding = false; GLMPRINTF(("-D- Command: rewind %d batches to %d", delta, m_holdBatch )); } break;
case '\\': // batch rerun
m_holdBatch = m_debugBatchIndex; m_holdBatchFrame = m_debugFrameIndex; m_debugDelayEnable = false; info->m_holding = false; info->m_loop = true; GLMPRINTF(("-D- Command: re-run batch %d", m_holdBatch )); break; case 'c': // toggle auto color clear
m_autoClearColor = !m_autoClearColor; GLMPRINTF((m_autoClearColor ? "-D- Auto color clear ON" : "-D- Auto color clear OFF" )); break;
case 's': // toggle auto stencil clear
m_autoClearStencil = !m_autoClearStencil; GLMPRINTF((m_autoClearStencil ? "-D- Auto stencil clear ON" : "-D- Auto stencil clear OFF" )); break;
case 'd': // toggle auto depth clear
m_autoClearDepth = !m_autoClearDepth; GLMPRINTF((m_autoClearDepth ? "-D- Auto depth clear ON" : "-D- Auto depth clear OFF" )); break;
case '.': // break to debugger or insta-quit
if (evt.m_ModifierKeyMask & (1<<eControlKey)) { GLMPRINTF(( "-D- INSTA QUIT! (TM) (PAT PEND)" )); abort(); } else { GLMPRINTF(( "-D- Breaking to debugger" )); breakToDebugger = 1;
info->m_holding = true; info->m_loop = true; // so when you come back from debugger, you get another spin (i.e. you enter paused mode)
} break; case 'g': // break to OGLP and enable OGLP logging of spew
if (GLMDetectOGLP()) // if this comes back true, there will be a breakpoint set on glColor4sv.
{ uint channelMask = GLMDetectAvailableChannels(); // will re-assert whether spew goes to OGLP log
if (channelMask & (1<<eGLProfiler)) { GLMDebugChannelMask(&channelMask); breakToDebugger = 2;
info->m_holding = true; info->m_loop = true; // so when you come back from debugger, you get another spin (i.e. you enter paused mode)
} } break;
case '_': // toggle slow mo
m_debugDelayEnable = !m_debugDelayEnable; break;
case '-': // go slower
if (m_debugDelayEnable) { // already in slow mo, so lower speed
m_debugDelay <<= 1; // double delay
if (m_debugDelay > (1<<24)) { m_debugDelay = (1<<24); } } else { // enter slow mo
m_debugDelayEnable = true; } break;
case '=': // go faster
if (m_debugDelayEnable) { // already in slow mo, so raise speed
m_debugDelay >>= 1; // halve delay
if (m_debugDelay < (1<<17)) { m_debugDelay = (1<<17); } } else { // enter slow mo
m_debugDelayEnable = true; } break; case 'v': // open vs in editor (foreground pop)
#if GLMDEBUG
if (m_boundProgram[ kGLMVertexProgram ]) { m_boundProgram[ kGLMVertexProgram ]->m_editable->OpenInEditor( true ); } #endif
break;
case 'p': // open fs/ps in editor (foreground pop)
#if GLMDEBUG
if (m_boundProgram[ kGLMFragmentProgram ]) { m_boundProgram[ kGLMFragmentProgram ]->m_editable->OpenInEditor( true ); } #endif
break; case '<': // dump fewer verts
case '>': // dump more verts
{ int delta = (evt.m_UnicodeKeyUnmodified=='>') ? 1 : -1; g_maxVertsToDumpLog2 = MIN( MAX( g_maxVertsToDumpLog2+delta, 0 ), 16 ); // just re-dump the verts
DebugDump( info, 1<<eDumpVertexData, g_vertDumpMode ); } break; case 'x': // adjust transform dump mode
{ int newmode = g_vertDumpMode+1; if (newmode >= eLastDumpVertsMode) { // wrap
newmode = eDumpVertsNoTransformDump; } g_vertDumpMode = (EGLMVertDumpMode)newmode; GLMPRINTF(("-D- New vert dump mode is %s", g_vertDumpModeNames[g_vertDumpMode] )); } break;
case 'u': // more crawl
{ CStackCrawlParams cp; memset( &cp, 0, sizeof(cp) ); cp.m_frameLimit = kMaxCrawlFrames; g_extCocoaMgr->GetStackCrawl(&cp); GLMPRINTF(("-D-" )); GLMPRINTF(("-D- extended stack crawl:")); for( int i=0; i< cp.m_frameCount; i++) { GLMPRINTF(("-D-\t%s", cp.m_crawlNames[i] )); } } break; case 'q': DebugDump( info, 0xFFFFFFFF, g_vertDumpMode ); break; case 'H': case 'h': { // toggle drawing language. hold down shift key to do it immediately.
if (m_caps.m_hasDualShaders) { bool immediate; immediate = evt.m_UnicodeKeyUnmodified == 'H'; // (evt.m_ModifierKeyMask & (1<<eShiftKey)) != 0;
if (m_drawingLang==kGLMARB) { GLMPRINTF(( "-D- Setting GLSL language mode %s.", immediate ? "immediately" : "for next frame start" )); SetDrawingLang( kGLMGLSL, immediate ); } else { GLMPRINTF(( "-D- Setting ARB language mode %s.", immediate ? "immediately" : "for next frame start" )); SetDrawingLang( kGLMARB, immediate ); } refresh = immediate; } else { GLMPRINTF(("You can't change shader languages unless you launch with -glmdualshaders enabled")); }
} break;
// ======================================================== debug knobs. change these as needed to troubleshoot stuff
// keys to select a knob
// or, toggle a debug flavor, if control is being held down
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { if (evt.m_ModifierKeyMask & (1<<eControlKey)) { // '0' toggles the all-channels on or off
int flavorSelect = evt.m_UnicodeKeyUnmodified - '0'; if ( (flavorSelect >=0) && (flavorSelect<eFlavorCount) ) { uint mask = GLMDebugFlavorMask(); mask ^= (1<<flavorSelect);
GLMDebugFlavorMask(&mask); } } else { // knob selection
m_selKnobIndex = evt.m_UnicodeKeyUnmodified - '0';
GLMPRINTF(("-D- Knob # %d (%s) selected.", m_selKnobIndex, g_knobnames[ m_selKnobIndex ] )); m_selKnobIncrement = (m_selKnobIndex<5) ? (1.0f / 2048.0f) : (1.0 / 256.0f);
usleep( 500000 ); } refresh = false; } break; // keys to adjust or zero a knob
case 't': // toggle
{ if (m_selKnobIndex < g_knobcount) { GLMKnobToggle( g_knobnames[ m_selKnobIndex ] ); } } break; case 'l': // less
case 'm': // more
case 'z': // zero
{ if (m_selKnobIndex < g_knobcount) { float val = GLMKnob( g_knobnames[ m_selKnobIndex ], NULL ); if (evt.m_UnicodeKeyUnmodified == 'l') { // minus (less)
val -= m_selKnobIncrement; if (val < m_selKnobMinValue) { val = m_selKnobMinValue; } // send new value back to the knob
GLMKnob( g_knobnames[ m_selKnobIndex ], &val ); }
if (evt.m_UnicodeKeyUnmodified == 'm') { // plus (more)
val += m_selKnobIncrement; if (val > m_selKnobMaxValue) { val = m_selKnobMaxValue; } // send new value back to the knob
GLMKnob( g_knobnames[ m_selKnobIndex ], &val ); } if (evt.m_UnicodeKeyUnmodified == 'z') { // zero
val = 0.0f;
// send new value back to the knob
GLMKnob( g_knobnames[ m_selKnobIndex ], &val ); } GLMPRINTF(("-D- Knob # %d (%s) set to %f (%f/1024.0)", m_selKnobIndex, g_knobnames[ m_selKnobIndex ], val, val * 1024.0 )); usleep( 500000 ); refresh = false; } } break;
} } } } while( ((evtcount>0) || info->m_holding) && (!breakToDebugger) );
if (m_debugDelayEnable) { usleep( m_debugDelay ); }
if (breakToDebugger) { switch (breakToDebugger) { case 1: Debugger(); break; case 2: short fakecolor[4]; glColor4sv( fakecolor ); // break to OGLP
break; } // re-flush all GLM states so you can fiddle with them in the debugger. then run the batch again and spin..
FlushStates( true ); } }
void GLMContext::DebugPresent( void ) { CGLMTex *drawBufferTex = m_drawingFBO->m_attach[kAttColor0].m_tex; glFinish(); this->Present( drawBufferTex ); }
void GLMContext::DebugClear( void ) { // get old clear color
GLClearColor_t clearcol_orig; m_ClearColor.Read( &clearcol_orig,0 ); // new clear color
GLClearColor_t clearcol; clearcol.r = m_autoClearColorValues[0]; clearcol.g = m_autoClearColorValues[1]; clearcol.b = m_autoClearColorValues[2]; clearcol.a = m_autoClearColorValues[3]; m_ClearColor.Write( &clearcol, true, true ); // don't check, don't defer
uint mask = 0; if (m_autoClearColor) mask |= GL_COLOR_BUFFER_BIT; if (m_autoClearDepth) mask |= GL_DEPTH_BUFFER_BIT; if (m_autoClearStencil) mask |= GL_STENCIL_BUFFER_BIT; glClear( mask ); glFinish();
// put old color back
m_ClearColor.Write( &clearcol_orig, true, true ); // don't check, don't defer
}
#endif
void GLMContext::DrawRangeElements( GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices ) { GLM_FUNC;
// CheckCurrent();
m_debugBatchIndex++; // batch index increments unconditionally on entry
bool hasVP = m_boundProgram[ kGLMVertexProgram ] != NULL; bool hasFP = m_boundProgram[ kGLMFragmentProgram ] != NULL; void *indicesActual = (void*)indices; if (m_drawIndexBuffer->m_pseudo) { // you have to pass actual address, not offset... shhh... secret
indicesActual = (void*)((int)indicesActual + (int)m_drawIndexBuffer->m_pseudoBuf); } #if GLMDEBUG
// init debug hook information
GLMDebugHookInfo info; memset( &info, 0, sizeof(info) ); info.m_caller = eDrawElements; // relay parameters we're operating under
info.m_drawMode = mode; info.m_drawStart = start; info.m_drawEnd = end; info.m_drawCount = count; info.m_drawType = type; info.m_drawIndices = indices; do { // obey global options re pre-draw clear
if (m_autoClearColor || m_autoClearDepth || m_autoClearStencil) { GLMPRINTF(("-- DrawRangeElements auto clear" )); this->DebugClear(); }
// always sync with editable shader text prior to draw
#if GLMDEBUG
//FIXME disengage this path if context is in GLSL mode..
// it will need fixes to get the shader pair re-linked etc if edits happen anyway.
if (m_boundProgram[ kGLMVertexProgram ]) { m_boundProgram[ kGLMVertexProgram ]->SyncWithEditable(); } else { AssertOnce(!"drawing with no vertex program bound"); }
if (m_boundProgram[ kGLMFragmentProgram ]) { m_boundProgram[ kGLMFragmentProgram ]->SyncWithEditable(); } else { AssertOnce(!"drawing with no fragment program bound"); } #endif
// do the drawing
if (hasVP && hasFP) { glDrawRangeElements( mode, start, end, count, type, indicesActual ); GLMCheckError();
if (m_slowCheckEnable) { CheckNative(); } } this->DebugHook( &info ); } while (info.m_loop); #else
if (hasVP && hasFP) { glDrawRangeElements( mode, start, end, count, type, indicesActual ); GLMCheckError();
if (m_slowCheckEnable) { CheckNative(); } } #endif
}
void GLMContext::CheckNative( void ) { // note that this is available in release. We don't use GLMPRINTF for that reason.
// note we do not get called unless either slow-batch asserting or logging is enabled.
bool gpuProcessing; GLint fragmentGPUProcessing, vertexGPUProcessing; CGLGetParameter (CGLGetCurrentContext(), kCGLCPGPUFragmentProcessing, &fragmentGPUProcessing); CGLGetParameter(CGLGetCurrentContext(), kCGLCPGPUVertexProcessing, &vertexGPUProcessing);
// spews then asserts.
// that way you can enable both, get log output on a pair if it's slow, and then the debugger will pop.
if(m_slowSpewEnable) { if ( !vertexGPUProcessing ) { m_boundProgram[ kGLMVertexProgram ]->LogSlow( m_drawingLang ); } if ( !fragmentGPUProcessing ) { m_boundProgram[ kGLMFragmentProgram ]->LogSlow( m_drawingLang ); } }
if(m_slowAssertEnable) { if ( !vertexGPUProcessing || !fragmentGPUProcessing) { Assert( !"slow batch" ); } } }
// debug font
void GLMContext::GenDebugFontTex( void ) { if(!m_debugFontTex) { // make a 128x128 RGBA texture
GLMTexLayoutKey key; memset( &key, 0, sizeof(key) ); key.m_texGLTarget = GL_TEXTURE_2D; key.m_xSize = 128; key.m_ySize = 128; key.m_zSize = 1; key.m_texFormat = D3DFMT_A8R8G8B8; key.m_texFlags = 0;
m_debugFontTex = this->NewTex( &key, "GLM debug font" );
//-----------------------------------------------------
GLMTexLockParams lockreq; lockreq.m_tex = m_debugFontTex; lockreq.m_face = 0; lockreq.m_mip = 0;
GLMTexLayoutSlice *slice = &m_debugFontTex->m_layout->m_slices[ lockreq.m_tex->CalcSliceIndex( lockreq.m_face, lockreq.m_mip ) ]; lockreq.m_region.xmin = lockreq.m_region.ymin = lockreq.m_region.zmin = 0; lockreq.m_region.xmax = slice->m_xSize; lockreq.m_region.ymax = slice->m_ySize; lockreq.m_region.zmax = slice->m_zSize; char *lockAddress; int yStride; int zStride; m_debugFontTex->Lock( &lockreq, &lockAddress, &yStride, &zStride ); GLMCheckError(); //-----------------------------------------------------
// fetch elements of font data and make texels... we're doing the whole slab so we don't really need the stride info
unsigned long *destTexelPtr = (unsigned long *)lockAddress;
for( int index = 0; index < 16384; index++ ) { if (g_glmDebugFontMap[index] == ' ') { // clear
*destTexelPtr = 0x00000000; } else { // opaque white (drawing code can modulate if desired)
*destTexelPtr = 0xFFFFFFFF; } destTexelPtr++; } //-----------------------------------------------------
GLMTexLockParams unlockreq; unlockreq.m_tex = m_debugFontTex; unlockreq.m_face = 0; unlockreq.m_mip = 0;
// region need not matter for unlocks
unlockreq.m_region.xmin = unlockreq.m_region.ymin = unlockreq.m_region.zmin = 0; unlockreq.m_region.xmax = unlockreq.m_region.ymax = unlockreq.m_region.zmax = 0;
m_debugFontTex->Unlock( &unlockreq ); GLMCheckError();
//-----------------------------------------------------
// change up the tex sampling on this texture to be "nearest" not linear
//-----------------------------------------------------
// don't leave texture bound on the TMU
this->BindTexToTMU(NULL, 0 ); // also make the index and vertex buffers for use - up to 1K indices and 1K verts
uint indexBufferSize = 1024*2; m_debugFontIndices = this->NewBuffer(kGLMIndexBuffer, indexBufferSize, 0); // two byte indices
// we go ahead and lock it now, and fill it with indices 0-1023.
char *indices = NULL; GLMBuffLockParams idxLock; idxLock.m_offset = 0; idxLock.m_size = indexBufferSize; idxLock.m_nonblocking = false; idxLock.m_discard = false; m_debugFontIndices->Lock( &idxLock, &indices ); for( int i=0; i<1024; i++) { unsigned short *idxPtr = &((unsigned short*)indices)[i]; *idxPtr = i; } m_debugFontIndices->Unlock(); m_debugFontVertices = this->NewBuffer(kGLMVertexBuffer, 1024 * 128, 0); // up to 128 bytes per vert
} }
#define MAX_DEBUG_CHARS 256
struct GLMDebugTextVertex { float x,y,z; float u,v; char rgba[4]; };
void GLMContext::DrawDebugText( float x, float y, float z, float drawCharWidth, float drawCharHeight, char *string ) { if (!m_debugFontTex) { GenDebugFontTex(); } // setup needed to draw text
// we're assuming that +x goes left to right on screen, no billboarding math in here
// and that +y goes bottom up
// caller knows projection / rectangle so it gets to decide vertex spacing
// debug font must be bound to TMU 0
// texturing enabled
// alpha blending enabled
// generate a quad per character
// characters are 6px wide by 11 px high.
// upper left character in tex is 0x20
// y axis will need to be flipped for display
// for any character in 0x20 - 0x7F - here are the needed UV's
// leftU = ((character % 16) * 6.0f / 128.0f)
// rightU = lowU + (6.0 / 128.0);
// topV = ((character - 0x20) * 11.0f / 128.0f)
// bottomV = lowV + (11.0f / 128.0f)
int stringlen = strlen( string ); if (stringlen > MAX_DEBUG_CHARS) { stringlen = MAX_DEBUG_CHARS; }
// lock
char *vertices = NULL; GLMBuffLockParams vtxLock; vtxLock.m_offset = 0; vtxLock.m_size = 1024 * stringlen; vtxLock.m_nonblocking = false; vtxLock.m_discard = false; m_debugFontVertices->Lock( &vtxLock, &vertices ); GLMDebugTextVertex *vtx = (GLMDebugTextVertex*)vertices; GLMDebugTextVertex *vtxOutPtr = vtx; for( int charindex = 0; charindex < stringlen; charindex++ ) { float leftU,rightU,topV,bottomV; int character = (int)string[charindex]; character -= 0x20; if ( (character<0) || (character > 0x7F) ) { character = '*' - 0x20; } leftU = ((character & 0x0F) * 6.0f ) / 128.0f; rightU = leftU + (6.0f / 128.0f);
topV = ((character >> 4) * 11.0f ) / 128.0f; bottomV = topV + (11.0f / 128.0f); float posx,posy,posz; posx = x + (drawCharWidth * (float)charindex); posy = y; posz = z; // generate four verts
// first vert will be upper left of displayed quad (low X, high Y) then we go clockwise
for( int quadvert = 0; quadvert < 4; quadvert++ ) { bool isTop = (quadvert <2); // verts 0 and 1
bool isLeft = (quadvert & 1) == (quadvert >> 1); // verts 0 and 3
vtxOutPtr->x = posx + (isLeft ? 0.0f : drawCharWidth); vtxOutPtr->y = posy + (isTop ? drawCharHeight : 0.0f); vtxOutPtr->z = posz; vtxOutPtr->u = isLeft ? leftU : rightU; vtxOutPtr->v = isTop ? topV : bottomV; vtxOutPtr++; } } // verts are done.
// unlock...
m_debugFontVertices->Unlock(); // make a vertex setup
GLMVertexSetup vertSetup; // position, color, tc = 0, 3, 8
vertSetup.m_attrMask = (1<<kGLMGenericAttr00) | (1<<kGLMGenericAttr03) | (1<<kGLMGenericAttr08); vertSetup.m_attrs[kGLMGenericAttr00].m_buffer = m_debugFontVertices; vertSetup.m_attrs[kGLMGenericAttr00].m_datasize = 3; // 3 floats
vertSetup.m_attrs[kGLMGenericAttr00].m_datatype = GL_FLOAT; vertSetup.m_attrs[kGLMGenericAttr00].m_stride = sizeof(GLMDebugTextVertex); vertSetup.m_attrs[kGLMGenericAttr00].m_offset = offsetof(GLMDebugTextVertex, x); vertSetup.m_attrs[kGLMGenericAttr00].m_normalized= false;
vertSetup.m_attrs[kGLMGenericAttr03].m_buffer = m_debugFontVertices; vertSetup.m_attrs[kGLMGenericAttr03].m_datasize = 4; // four bytes
vertSetup.m_attrs[kGLMGenericAttr03].m_datatype = GL_UNSIGNED_BYTE; vertSetup.m_attrs[kGLMGenericAttr03].m_stride = sizeof(GLMDebugTextVertex); vertSetup.m_attrs[kGLMGenericAttr03].m_offset = offsetof(GLMDebugTextVertex, rgba); vertSetup.m_attrs[kGLMGenericAttr03].m_normalized= true;
vertSetup.m_attrs[kGLMGenericAttr08].m_buffer = m_debugFontVertices; vertSetup.m_attrs[kGLMGenericAttr08].m_datasize = 2; // 2 floats
vertSetup.m_attrs[kGLMGenericAttr08].m_datatype = GL_FLOAT; vertSetup.m_attrs[kGLMGenericAttr08].m_stride = sizeof(GLMDebugTextVertex); vertSetup.m_attrs[kGLMGenericAttr08].m_offset = offsetof(GLMDebugTextVertex, u); vertSetup.m_attrs[kGLMGenericAttr03].m_normalized= false;
// bind texture and draw it..
this->BindTexToTMU( m_debugFontTex, 0 ); SelectTMU(0); // somewhat redundant
glDisable( GL_DEPTH_TEST ); glEnable(GL_TEXTURE_2D); GLMCheckError();
if (0) { glEnableClientState(GL_VERTEX_ARRAY); GLMCheckError();
glEnableClientState(GL_TEXTURE_COORD_ARRAY); GLMCheckError(); glVertexPointer( 3, GL_FLOAT, sizeof( vtx[0] ), &vtx[0].x ); GLMCheckError(); glClientActiveTexture(GL_TEXTURE0); GLMCheckError();
glTexCoordPointer( 2, GL_FLOAT, sizeof( vtx[0] ), &vtx[0].u ); GLMCheckError(); } else { SetVertexAttributes( &vertSetup ); }
glDrawArrays( GL_QUADS, 0, stringlen * 4 ); GLMCheckError();
// disable all the input streams
if (0) { glDisableClientState(GL_VERTEX_ARRAY); GLMCheckError();
glDisableClientState(GL_TEXTURE_COORD_ARRAY); GLMCheckError(); } else { SetVertexAttributes( NULL ); }
glDisable(GL_TEXTURE_2D); GLMCheckError();
this->BindTexToTMU( NULL, 0 ); }
//===============================================================================
void GLMgrSelfTests( void ) { return; // until such time as the tests are revised or axed
// make a new context on renderer 0.
GLMContext *ctx = GLMgr::aGLMgr()->NewContext( 0 ); ////FIXME you can't make contexts this way any more.
if (!ctx) { Debugger(); // no go
return; }
// make a test object based on that context.
int alltests[] = {0,1,2,3, -1}; int newtests[] = {3, -1}; int notests[] = {-1}; int *testlist = notests;
GLMTestParams params; memset( ¶ms, 0, sizeof(params) );
params.m_ctx = ctx; params.m_testList = testlist;
params.m_glErrToDebugger = true; params.m_glErrToConsole = true; params.m_intlErrToDebugger = true; params.m_intlErrToConsole = true; params.m_frameCount = 1000;
GLMTester testobj( ¶ms );
testobj.RunTests( ); GLMgr::aGLMgr()->DelContext( ctx ); }
void GLMContext::SetDefaultStates( void ) { GLM_FUNC; CheckCurrent();
m_AlphaTestEnable.Default(); m_AlphaTestFunc.Default();
m_AlphaToCoverageEnable.Default(); m_CullFaceEnable.Default(); m_CullFrontFace.Default(); m_PolygonMode.Default(); m_DepthBias.Default();
m_ClipPlaneEnable.Default(); m_ClipPlaneEquation.Default(); m_ScissorEnable.Default(); m_ScissorBox.Default(); m_ViewportBox.Default(); m_ViewportDepthRange.Default();
m_ColorMaskSingle.Default(); m_ColorMaskMultiple.Default();
m_BlendEnable.Default(); m_BlendFactor.Default(); m_BlendEquation.Default(); m_BlendColor.Default(); //m_BlendEnableSRGB.Default(); // this isn't useful until there is an FBO bound - in fact it will trip a GL error.
m_DepthTestEnable.Default(); m_DepthFunc.Default(); m_DepthMask.Default(); m_StencilTestEnable.Default(); m_StencilFunc.Default(); m_StencilOp.Default(); m_StencilWriteMask.Default();
m_ClearColor.Default(); m_ClearDepth.Default(); m_ClearStencil.Default(); }
void GLMContext::FlushStates( bool noDefer ) { GLM_FUNC; CheckCurrent();
m_AlphaTestEnable.Flush( noDefer ); m_AlphaTestFunc.Flush( noDefer ); m_AlphaToCoverageEnable.Flush( noDefer );
m_CullFaceEnable.Flush( noDefer ); m_CullFrontFace.Flush( noDefer ); m_PolygonMode.Flush( noDefer ); m_DepthBias.Flush( noDefer );
#if GLMDEBUG
m_ClipPlaneEnable.Flush( true ); // always push clip state
m_ClipPlaneEquation.Flush( true ); #else
m_ClipPlaneEnable.Flush( noDefer ); m_ClipPlaneEquation.Flush( noDefer ); #endif
m_ScissorEnable.Flush( noDefer ); m_ScissorBox.Flush( noDefer ); m_ViewportBox.Flush( noDefer ); m_ViewportDepthRange.Flush( noDefer );
m_ColorMaskSingle.Flush( noDefer ); m_ColorMaskMultiple.Flush( noDefer );
m_BlendEnable.Flush( noDefer ); m_BlendFactor.Flush( noDefer ); m_BlendEquation.Flush( noDefer ); m_BlendColor.Flush( noDefer ); // the next call should not occur until we're sure the proper SRGB tex format is underneath the FBO.
// So, we're moving it up to FlushDrawStates so it can happen at just the right time.
//m_BlendEnableSRGB.Flush( noDefer );
m_DepthTestEnable.Flush( noDefer ); m_DepthFunc.Flush( noDefer ); m_DepthMask.Flush( noDefer ); m_StencilTestEnable.Flush( noDefer ); m_StencilFunc.Flush( noDefer ); m_StencilOp.Flush( noDefer ); m_StencilWriteMask.Flush( noDefer );
m_ClearColor.Flush( noDefer ); m_ClearDepth.Flush( noDefer ); m_ClearStencil.Flush( noDefer );
GLMCheckError(); }
void GLMContext::VerifyStates ( void ) { GLM_FUNC; CheckCurrent();
// bare bones sanity check, head over to the debugger if our sense of the current context state is not correct
// we should only want to call this after a flush or the checks will flunk.
if( m_AlphaTestEnable.Check() ) GLMStop(); if( m_AlphaTestFunc.Check() ) GLMStop();
if( m_AlphaToCoverageEnable.Check() ) GLMStop();
if( m_CullFaceEnable.Check() ) GLMStop(); if( m_CullFrontFace.Check() ) GLMStop(); if( m_PolygonMode.Check() ) GLMStop(); if( m_DepthBias.Check() ) GLMStop();
if( m_ClipPlaneEnable.Check() ) GLMStop(); //if( m_ClipPlaneEquation.Check() ) GLMStop();
if( m_ScissorEnable.Check() ) GLMStop(); if( m_ScissorBox.Check() ) GLMStop();
if( m_ViewportBox.Check() ) GLMStop(); if( m_ViewportDepthRange.Check() ) GLMStop();
if( m_ColorMaskSingle.Check() ) GLMStop(); if( m_ColorMaskMultiple.Check() ) GLMStop();
if( m_BlendEnable.Check() ) GLMStop(); if( m_BlendFactor.Check() ) GLMStop(); if( m_BlendEquation.Check() ) GLMStop(); if( m_BlendColor.Check() ) GLMStop(); // only do this as caps permit
if (m_caps.m_hasGammaWrites) { if( m_BlendEnableSRGB.Check() ) GLMStop(); }
if( m_DepthTestEnable.Check() ) GLMStop(); if( m_DepthFunc.Check() ) GLMStop(); if( m_DepthMask.Check() ) GLMStop(); if( m_StencilTestEnable.Check() ) GLMStop(); if( m_StencilFunc.Check() ) GLMStop(); if( m_StencilOp.Check() ) GLMStop(); if( m_StencilWriteMask.Check() ) GLMStop();
if( m_ClearColor.Check() ) GLMStop(); if( m_ClearDepth.Check() ) GLMStop(); if( m_ClearStencil.Check() ) GLMStop(); }
void GLMContext::WriteAlphaTestEnable( GLAlphaTestEnable_t *src ) { m_AlphaTestEnable.Write( src ); }
void GLMContext::WriteAlphaTestFunc( GLAlphaTestFunc_t *src ) { m_AlphaTestFunc.Write( src ); }
void GLMContext::WriteAlphaToCoverageEnable( GLAlphaToCoverageEnable_t *src ) { m_AlphaToCoverageEnable.Write( src ); }
void GLMContext::WriteCullFaceEnable( GLCullFaceEnable_t *src ) { m_CullFaceEnable.Write( src ); }
void GLMContext::WriteCullFrontFace( GLCullFrontFace_t *src ) { m_CullFrontFace.Write( src ); }
void GLMContext::WritePolygonMode( GLPolygonMode_t *src ) { m_PolygonMode.Write( src ); }
void GLMContext::WriteDepthBias( GLDepthBias_t *src ) { m_DepthBias.Write( src ); }
void GLMContext::WriteClipPlaneEnable( GLClipPlaneEnable_t *src, int which ) { m_ClipPlaneEnable.WriteIndex( src, which ); }
void GLMContext::WriteClipPlaneEquation( GLClipPlaneEquation_t *src, int which ) { m_ClipPlaneEquation.WriteIndex( src, which ); }
void GLMContext::WriteScissorEnable( GLScissorEnable_t *src ) { m_ScissorEnable.Write( src ); }
void GLMContext::WriteScissorBox( GLScissorBox_t *src ) { m_ScissorBox.Write( src ); }
void GLMContext::WriteViewportBox( GLViewportBox_t *src ) { m_ViewportBox.Write( src ); }
void GLMContext::WriteViewportDepthRange( GLViewportDepthRange_t *src ) { m_ViewportDepthRange.Write( src ); }
void GLMContext::WriteColorMaskSingle( GLColorMaskSingle_t *src ) { m_ColorMaskSingle.Write( src ); }
void GLMContext::WriteColorMaskMultiple( GLColorMaskMultiple_t *src, int which ) { m_ColorMaskMultiple.WriteIndex( src, which ); }
void GLMContext::WriteBlendEnable( GLBlendEnable_t *src ) { m_BlendEnable.Write( src ); }
void GLMContext::WriteBlendFactor( GLBlendFactor_t *src ) { m_BlendFactor.Write( src ); }
void GLMContext::WriteBlendEquation( GLBlendEquation_t *src ) { m_BlendEquation.Write( src ); }
void GLMContext::WriteBlendColor( GLBlendColor_t *src ) { m_BlendColor.Write( src ); }
void GLMContext::WriteBlendEnableSRGB( GLBlendEnableSRGB_t *src ) { if (m_caps.m_hasGammaWrites) // only if caps allow do we actually push it through to the extension
{ m_BlendEnableSRGB.Write( src ); } else { m_FakeBlendEnableSRGB = src->enable; } // note however that we're still tracking what this mode should be, so FlushDrawStates can look at it and adjust the pixel shader
// if fake SRGB mode is in place (m_caps.m_hasGammaWrites is false)
}
void GLMContext::WriteDepthTestEnable( GLDepthTestEnable_t *src ) { m_DepthTestEnable.Write( src ); }
void GLMContext::WriteDepthFunc( GLDepthFunc_t *src ) { m_DepthFunc.Write( src ); }
void GLMContext::WriteDepthMask( GLDepthMask_t *src ) { m_DepthMask.Write( src ); }
void GLMContext::WriteStencilTestEnable( GLStencilTestEnable_t *src ) { m_StencilTestEnable.Write( src ); }
void GLMContext::WriteStencilFunc( GLStencilFunc_t *src ) { m_StencilFunc.Write( src ); }
void GLMContext::WriteStencilOp( GLStencilOp_t *src, int which ) { m_StencilOp.WriteIndex( src, which ); }
void GLMContext::WriteStencilWriteMask( GLStencilWriteMask_t *src ) { m_StencilWriteMask.Write( src ); }
void GLMContext::WriteClearColor( GLClearColor_t *src ) { m_ClearColor.Write( src ); }
void GLMContext::WriteClearDepth( GLClearDepth_t *src ) { m_ClearDepth.Write( src ); }
void GLMContext::WriteClearStencil( GLClearStencil_t *src ) { m_ClearStencil.Write( src ); }
//===============================================================================
// template specializations for each type of state
// --- GLAlphaTestEnable ---
void GLContextSet( GLAlphaTestEnable_t *src ) { glSetEnable( GL_ALPHA_TEST, src->enable ); }
void GLContextGet( GLAlphaTestEnable_t *dst ) { dst->enable = glIsEnabled( GL_ALPHA_TEST ); }
void GLContextGetDefault( GLAlphaTestEnable_t *dst ) { dst->enable = GL_FALSE; }
// --- GLAlphaTestFunc ---
void GLContextSet( GLAlphaTestFunc_t *src ) { glAlphaFunc( src->func, src->ref ); }
void GLContextGet( GLAlphaTestFunc_t *dst ) { glGetEnumv( GL_ALPHA_TEST_FUNC, &dst->func ); glGetFloatv( GL_ALPHA_TEST_REF, &dst->ref ); }
void GLContextGetDefault( GLAlphaTestFunc_t *dst ) { dst->func = GL_ALWAYS; dst->ref = 0.0f; }
// --- GLAlphaToCoverageEnable ---
void GLContextSet( GLAlphaToCoverageEnable_t *src ) { glSetEnable( GL_SAMPLE_ALPHA_TO_COVERAGE_ARB, src->enable ); }
void GLContextGet( GLAlphaToCoverageEnable_t *dst ) { dst->enable = glIsEnabled( GL_SAMPLE_ALPHA_TO_COVERAGE_ARB ); }
void GLContextGetDefault( GLAlphaToCoverageEnable_t *dst ) { dst->enable = GL_FALSE; }
// --- GLCullFaceEnable ---
void GLContextSet( GLCullFaceEnable_t *src ) { glSetEnable( GL_CULL_FACE, src->enable ); }
void GLContextGet( GLCullFaceEnable_t *dst ) { dst->enable = glIsEnabled( GL_CULL_FACE ); }
void GLContextGetDefault( GLCullFaceEnable_t *dst ) { dst->enable = GL_TRUE; }
// --- GLCullFrontFace ---
void GLContextSet( GLCullFrontFace_t *src ) { glFrontFace( src->value ); // legal values are GL_CW or GL_CCW
}
void GLContextGet( GLCullFrontFace_t *dst ) { glGetEnumv( GL_FRONT_FACE, &dst->value ); }
void GLContextGetDefault( GLCullFrontFace_t *dst ) { dst->value = GL_CCW; }
// --- GLPolygonMode ---
void GLContextSet( GLPolygonMode_t *src ) { glPolygonMode( GL_FRONT, src->values[0] ); glPolygonMode( GL_BACK, src->values[1] ); }
void GLContextGet( GLPolygonMode_t *dst ) { glGetEnumv( GL_POLYGON_MODE, &dst->values[0] );
}
void GLContextGetDefault( GLPolygonMode_t *dst ) { dst->values[0] = dst->values[1] = GL_FILL; }
// --- GLDepthBias ---
// note the implicit enable / disable.
// if you set non zero values, it is enabled, otherwise not.
void GLContextSet( GLDepthBias_t *src ) { bool enable = (src->factor != 0.0f) || (src->units != 0.0f); glSetEnable( GL_POLYGON_OFFSET_FILL, enable ); glPolygonOffset( src->factor, src->units ); }
void GLContextGet( GLDepthBias_t *dst ) { glGetFloatv ( GL_POLYGON_OFFSET_FACTOR, &dst->factor ); glGetFloatv ( GL_POLYGON_OFFSET_UNITS, &dst->units ); }
void GLContextGetDefault( GLDepthBias_t *dst ) { dst->factor = 0.0; dst->units = 0.0; }
// --- GLScissorEnable ---
void GLContextSet( GLScissorEnable_t *src ) { glSetEnable( GL_SCISSOR_TEST, src->enable ); }
void GLContextGet( GLScissorEnable_t *dst ) { dst->enable = glIsEnabled( GL_SCISSOR_TEST ); }
void GLContextGetDefault( GLScissorEnable_t *dst ) { dst->enable = GL_FALSE; }
// --- GLScissorBox ---
void GLContextSet( GLScissorBox_t *src ) { glScissor ( src->x, src->y, src->width, src->height ); }
void GLContextGet( GLScissorBox_t *dst ) { glGetIntegerv ( GL_SCISSOR_BOX, &dst->x ); }
void GLContextGetDefault( GLScissorBox_t *dst ) { // hmmmm, good question? we can't really know a good answer so we pick a silly one
// and the client better come back with a better answer later.
dst->x = dst->y = 0; dst->width = dst->height = 16; }
// --- GLViewportBox ---
void GLContextSet( GLViewportBox_t *src ) { glViewport (src->x, src->y, src->width, src->height ); }
void GLContextGet( GLViewportBox_t *dst ) { glGetIntegerv ( GL_VIEWPORT, &dst->x ); }
void GLContextGetDefault( GLViewportBox_t *dst ) { // as with the scissor box, we don't know yet, so pick a silly one and change it later
dst->x = dst->y = 0; dst->width = dst->height = 16; }
// --- GLViewportDepthRange ---
void GLContextSet( GLViewportDepthRange_t *src ) { glDepthRange ( src->near, src->far ); }
void GLContextGet( GLViewportDepthRange_t *dst ) { glGetDoublev ( GL_DEPTH_RANGE, &dst->near ); }
void GLContextGetDefault( GLViewportDepthRange_t *dst ) { dst->near = 0.0; dst->far = 1.0; }
// --- GLClipPlaneEnable ---
void GLContextSetIndexed( GLClipPlaneEnable_t *src, int index ) { #if GLMDEBUG
if (CommandLine()->FindParm("-caps_noclipplanes")) { if (GLMKnob("caps-key",NULL) > 0.0) { // caps ON means NO clipping
src->enable = false; } } #endif
glSetEnable( GL_CLIP_PLANE0 + index, src->enable ); GLMCheckError(); }
void GLContextGetIndexed( GLClipPlaneEnable_t *dst, int index ) { dst->enable = glIsEnabled( GL_CLIP_PLANE0 + index ); }
void GLContextGetDefaultIndexed( GLClipPlaneEnable_t *dst, int index ) { dst->enable = 0; }
// --- GLClipPlaneEquation ---
void GLContextSetIndexed( GLClipPlaneEquation_t *src, int index ) { // shove into glGlipPlane
GLdouble coeffs[4] = { src->x, src->y, src->z, src->w };
glClipPlane( GL_CLIP_PLANE0 + index, coeffs ); GLMCheckError(); }
void GLContextGetIndexed( GLClipPlaneEquation_t *dst, int index ) { Debugger(); // do this later
// glClipPlane( GL_CLIP_PLANE0 + index, coeffs );
// GLdouble coeffs[4] = { src->x, src->y, src->z, src->w };
}
void GLContextGetDefaultIndexed( GLClipPlaneEquation_t *dst, int index ) { dst->x = 1.0; dst->y = 0.0; dst->z = 0.0; dst->w = 0.0; }
// --- GLColorMaskSingle ---
void GLContextSet( GLColorMaskSingle_t *src ) { glColorMask( src->r, src->g, src->b, src->a ); }
void GLContextGet( GLColorMaskSingle_t *dst ) { glGetBooleanv( GL_COLOR_WRITEMASK, (GLboolean*)&dst->r); }
void GLContextGetDefault( GLColorMaskSingle_t *dst ) { dst->r = dst->g = dst->b = dst->a = 1; }
// --- GLColorMaskMultiple ---
void GLContextSetIndexed( GLColorMaskMultiple_t *src, int index ) { // FIXME: this call is not in the Leopard headers. A runtime-lookup will be needed.
pfnglColorMaskIndexedEXT ( index, src->r, src->g, src->b, src->a ); }
void GLContextGetIndexed( GLColorMaskMultiple_t *dst, int index ) { // FIXME: this call is not in the Leopard headers. A runtime-lookup will be needed.
glGetBooleanIndexedvEXT ( GL_COLOR_WRITEMASK, index, (GLboolean*)&dst->r ); }
void GLContextGetDefaultIndexed( GLColorMaskMultiple_t *dst, int index ) { dst->r = dst->g = dst->b = dst->a = 1; }
// --- GLBlendEnable ---
void GLContextSet( GLBlendEnable_t *src ) { glSetEnable( GL_BLEND, src->enable ); }
void GLContextGet( GLBlendEnable_t *dst ) { dst->enable = glIsEnabled( GL_BLEND ); }
void GLContextGetDefault( GLBlendEnable_t *dst ) { dst->enable = GL_FALSE; }
// --- GLBlendFactor ---
void GLContextSet( GLBlendFactor_t *src ) { glBlendFunc ( src->srcfactor, src->dstfactor ); }
void GLContextGet( GLBlendFactor_t *dst ) { glGetEnumv ( GL_BLEND_SRC, &dst->srcfactor ); glGetEnumv ( GL_BLEND_DST, &dst->dstfactor ); }
void GLContextGetDefault( GLBlendFactor_t *dst ) { dst->srcfactor = GL_ONE; dst->dstfactor = GL_ZERO; }
// --- GLBlendEquation ---
void GLContextSet( GLBlendEquation_t *src ) { glBlendEquation ( src->equation ); }
void GLContextGet( GLBlendEquation_t *dst ) { glGetEnumv ( GL_BLEND_EQUATION, &dst->equation ); }
void GLContextGetDefault( GLBlendEquation_t *dst ) { dst->equation = GL_FUNC_ADD; }
// --- GLBlendColor ---
void GLContextSet( GLBlendColor_t *src ) { glBlendColor ( src->r, src->g, src->b, src->a ); }
void GLContextGet( GLBlendColor_t *dst ) { glGetFloatv ( GL_BLEND_COLOR, &dst->r ); }
void GLContextGetDefault( GLBlendColor_t *dst ) { //solid white
dst->r = dst->g = dst->b = dst->a = 1.0; }
// --- GLBlendEnableSRGB ---
#define GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING 0x8210
#define GL_COLOR_ATTACHMENT0 0x8CE0
void GLContextSet( GLBlendEnableSRGB_t *src ) { #if GLMDEBUG
// just check in debug... this is too expensive to look at on MTGL
if (src->enable) { GLboolean srgb_capable = false; glGetBooleanv( GL_FRAMEBUFFER_SRGB_CAPABLE_EXT, &srgb_capable);
if (src->enable && !srgb_capable) { GLMPRINTF(("-Z- srgb-state-set FBO conflict: attempt to enable SRGB on non SRGB capable FBO config")); } } #endif
// this query is not useful unless you have the ARB_framebuffer_srgb ext.
//GLint encoding = 0;
//pfnglGetFramebufferAttachmentParameteriv( GL_DRAW_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0, GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, &encoding );
//GLMCheckError();
glSetEnable( GL_FRAMEBUFFER_SRGB_EXT, src->enable ); GLMCheckError(); }
void GLContextGet( GLBlendEnableSRGB_t *dst ) { //dst->enable = glIsEnabled( GL_FRAMEBUFFER_SRGB_EXT );
dst->enable = true; // wtf ?
}
void GLContextGetDefault( GLBlendEnableSRGB_t *dst ) { dst->enable = GL_FALSE; }
// --- GLDepthTestEnable ---
void GLContextSet( GLDepthTestEnable_t *src ) { glSetEnable( GL_DEPTH_TEST, src->enable ); }
void GLContextGet( GLDepthTestEnable_t *dst ) { dst->enable = glIsEnabled( GL_DEPTH_TEST ); }
void GLContextGetDefault( GLDepthTestEnable_t *dst ) { dst->enable = GL_FALSE; }
// --- GLDepthFunc ---
void GLContextSet( GLDepthFunc_t *src ) { glDepthFunc ( src->func ); }
void GLContextGet( GLDepthFunc_t *dst ) { glGetEnumv ( GL_DEPTH_FUNC, &dst->func ); }
void GLContextGetDefault( GLDepthFunc_t *dst ) { dst->func = GL_GEQUAL; }
// --- GLDepthMask ---
void GLContextSet( GLDepthMask_t *src ) { glDepthMask ( src->mask ); }
void GLContextGet( GLDepthMask_t *dst ) { glGetBooleanv ( GL_DEPTH_WRITEMASK, (GLboolean*)&dst->mask ); }
void GLContextGetDefault( GLDepthMask_t *dst ) { dst->mask = GL_TRUE; }
// --- GLStencilTestEnable ---
void GLContextSet( GLStencilTestEnable_t *src ) { glSetEnable( GL_STENCIL_TEST, src->enable ); }
void GLContextGet( GLStencilTestEnable_t *dst ) { dst->enable = glIsEnabled( GL_STENCIL_TEST ); }
void GLContextGetDefault( GLStencilTestEnable_t *dst ) { dst->enable = GL_FALSE; }
// --- GLStencilFunc ---
void GLContextSet( GLStencilFunc_t *src ) { glStencilFuncSeparateATI( src->frontfunc, src->backfunc, src->ref, src->mask); }
void GLContextGet( GLStencilFunc_t *dst ) { glGetEnumv ( GL_STENCIL_FUNC, &dst->frontfunc ); glGetEnumv ( GL_STENCIL_BACK_FUNC_ATI, &dst->backfunc ); glGetIntegerv ( GL_STENCIL_REF, &dst->ref ); glGetIntegerv ( GL_STENCIL_VALUE_MASK, (GLint*)&dst->mask ); }
void GLContextGetDefault( GLStencilFunc_t *dst ) { dst->frontfunc = GL_ALWAYS; dst->backfunc = GL_ALWAYS; dst->ref = 0; dst->mask = 0xFFFFFFFF; }
// --- GLStencilOp --- indexed 0=front, 1=back
void GLContextSetIndexed( GLStencilOp_t *src, int index ) { GLenum face = (index==0) ? GL_FRONT : GL_BACK; glStencilOpSeparateATI( face, src->sfail, src->dpfail, src->dppass ); }
void GLContextGetIndexed( GLStencilOp_t *dst, int index ) { GLenum face = (index==0) ? GL_FRONT : GL_BACK;
glGetEnumv ( (index==0) ? GL_STENCIL_FAIL : GL_STENCIL_BACK_FAIL_ATI, &dst->sfail ); glGetEnumv ( (index==0) ? GL_STENCIL_PASS_DEPTH_FAIL : GL_STENCIL_BACK_PASS_DEPTH_FAIL_ATI, &dst->dpfail ); glGetEnumv ( (index==0) ? GL_STENCIL_PASS_DEPTH_PASS : GL_STENCIL_BACK_PASS_DEPTH_PASS_ATI, &dst->dppass ); }
void GLContextGetDefaultIndexed( GLStencilOp_t *dst, int index ) { dst->sfail = dst->dpfail = dst->dppass = GL_KEEP; }
// --- GLStencilWriteMask ---
void GLContextSet( GLStencilWriteMask_t *src ) { glStencilMask( src->mask ); }
void GLContextGet( GLStencilWriteMask_t *dst ) { glGetIntegerv ( GL_STENCIL_WRITEMASK, &dst->mask ); }
void GLContextGetDefault( GLStencilWriteMask_t *dst ) { dst->mask = 0xFFFFFFFF; }
// --- GLClearColor ---
void GLContextSet( GLClearColor_t *src ) { glClearColor( src->r, src->g, src->b, src->a ); }
void GLContextGet( GLClearColor_t *dst ) { glGetFloatv ( GL_COLOR_CLEAR_VALUE, &dst->r ); }
void GLContextGetDefault( GLClearColor_t *dst ) { dst->r = dst->g = dst->b = 0.5; dst->a = 1.0; }
// --- GLClearDepth ---
void GLContextSet( GLClearDepth_t *src ) { glClearDepth ( src->d ); }
void GLContextGet( GLClearDepth_t *dst ) { glGetDoublev ( GL_DEPTH_CLEAR_VALUE, &dst->d ); }
void GLContextGetDefault( GLClearDepth_t *dst ) { dst->d = 1.0; }
// --- GLClearStencil ---
void GLContextSet( GLClearStencil_t *src ) { glClearStencil( src->s ); }
void GLContextGet( GLClearStencil_t *dst ) { glGetIntegerv ( GL_STENCIL_CLEAR_VALUE, &dst->s ); }
void GLContextGetDefault( GLClearStencil_t *dst ) { dst->s = 0; }
//===============================================================================
GLMTester::GLMTester(GLMTestParams *params) { m_params = *params; m_drawFBO = NULL; m_drawColorTex = NULL; m_drawDepthTex = NULL; }
GLMTester::~GLMTester() { }
void GLMTester::StdSetup( void ) { GLMContext *ctx = m_params.m_ctx;
m_drawWidth = 1024; m_drawHeight = 768; // make an FBO to draw into and activate it. no depth buffer yet
m_drawFBO = ctx->NewFBO();
// make color buffer texture
GLMTexLayoutKey colorkey; CGLMTex *colortex; memset( &colorkey, 0, sizeof(colorkey) ); colorkey.m_texGLTarget = GL_TEXTURE_2D; colorkey.m_xSize = m_drawWidth; colorkey.m_ySize = m_drawHeight; colorkey.m_zSize = 1;
colorkey.m_texFormat = D3DFMT_A8R8G8B8; colorkey.m_texFlags = kGLMTexRenderable;
m_drawColorTex = ctx->NewTex( &colorkey );
// do not leave that texture bound on the TMU
ctx->BindTexToTMU(NULL, 0 ); // attach color to FBO
GLMFBOTexAttachParams colorParams; memset( &colorParams, 0, sizeof(colorParams) ); colorParams.m_tex = m_drawColorTex; colorParams.m_face = 0; colorParams.m_mip = 0; colorParams.m_zslice= 0; // for clarity..
m_drawFBO->TexAttach( &colorParams, kAttColor0 ); // check it.
bool ready = m_drawFBO->IsReady(); InternalError( !ready, "drawing FBO no go");
// bind it
ctx->BindFBOToCtx( m_drawFBO, GL_READ_FRAMEBUFFER_EXT ); ctx->BindFBOToCtx( m_drawFBO, GL_DRAW_FRAMEBUFFER_EXT );
glViewport(0, 0, (GLsizei) m_drawWidth, (GLsizei) m_drawHeight ); CheckGLError("stdsetup viewport"); glScissor( 0,0, (GLsizei) m_drawWidth, (GLsizei) m_drawHeight ); CheckGLError("stdsetup scissor");
glOrtho( -1,1, -1,1, -1,1 ); CheckGLError("stdsetup ortho"); // activate debug font
ctx->GenDebugFontTex(); }
void GLMTester::StdCleanup( void ) { GLMContext *ctx = m_params.m_ctx;
// unbind
ctx->BindFBOToCtx( NULL, GL_READ_FRAMEBUFFER_EXT ); ctx->BindFBOToCtx( NULL, GL_DRAW_FRAMEBUFFER_EXT );
// del FBO
if (m_drawFBO) { ctx->DelFBO( m_drawFBO ); m_drawFBO = NULL; } // del tex
if (m_drawColorTex) { ctx->DelTex( m_drawColorTex ); m_drawColorTex = NULL; }
if (m_drawDepthTex) { ctx->DelTex( m_drawDepthTex ); m_drawDepthTex = NULL; } }
void GLMTester::Clear( void ) { GLMContext *ctx = m_params.m_ctx; ctx->MakeCurrent(); glViewport(0, 0, (GLsizei) m_drawWidth, (GLsizei) m_drawHeight ); glScissor( 0,0, (GLsizei) m_drawWidth, (GLsizei) m_drawHeight ); glOrtho( -1,1, -1,1, -1,1 ); CheckGLError("clearing viewport");
// clear to black
GLfloat clear_color[4] = { 0.0f, 0.0f, 0.0, 1.0f }; glClearColor(clear_color[0], clear_color[1], clear_color[2], clear_color[3]); CheckGLError("clearing color");
glClear(GL_COLOR_BUFFER_BIT+GL_DEPTH_BUFFER_BIT+GL_STENCIL_BUFFER_BIT); CheckGLError("clearing");
//glFinish();
//CheckGLError("clear finish");
}
void GLMTester::Present( int seed ) { GLMContext *ctx = m_params.m_ctx; ctx->Present( m_drawColorTex ); }
void GLMTester::CheckGLError( const char *comment ) { char errbuf[1024];
//borrowed from GLMCheckError.. slightly different
if (!comment) { comment = ""; } GLenum errorcode = (GLenum)glGetError(); GLenum errorcode2 = 0; if ( errorcode != GL_NO_ERROR ) { const char *decodedStr = GLMDecode( eGL_ERROR, errorcode ); const char *decodedStr2 = ""; if ( errorcode == GL_INVALID_FRAMEBUFFER_OPERATION_EXT ) { // dig up the more detailed FBO status
errorcode2 = glCheckFramebufferStatusEXT( GL_FRAMEBUFFER_EXT ); decodedStr2 = GLMDecode( eGL_ERROR, errorcode2 );
sprintf( errbuf, "\n%s - GL Error %08x/%08x = '%s / %s'", comment, errorcode, errorcode2, decodedStr, decodedStr2 ); } else { sprintf( errbuf, "\n%s - GL Error %08x = '%s'", comment, errorcode, decodedStr ); }
if ( m_params.m_glErrToConsole ) { printf("%s", errbuf ); } if ( m_params.m_glErrToDebugger ) { Debugger(); } } }
void GLMTester::InternalError( int errcode, char *comment ) { if (errcode) { if (m_params.m_intlErrToConsole) { printf("\%s - error %d", comment, errcode ); }
if (m_params.m_intlErrToDebugger) { Debugger(); } } }
void GLMTester::RunTests( void ) { int *testList = m_params.m_testList; while( (*testList >=0) && (*testList < 20) ) { RunOneTest( *testList++ ); } }
void GLMTester::RunOneTest( int testindex ) { // this might be better with 'ptmf' style
switch(testindex) { case 0: Test0(); break; case 1: Test1(); break; case 2: Test2(); break; case 3: Test3(); break;
default: Debugger(); // unrecognized
} }
// #####################################################################################################################
// some fixed lists which may be useful to all tests
D3DFORMAT g_drawTexFormatsGLMT[] = // -1 terminated
{ D3DFMT_A8R8G8B8, D3DFMT_A4R4G4B4, D3DFMT_X8R8G8B8, D3DFMT_X1R5G5B5, D3DFMT_A1R5G5B5, D3DFMT_L8, D3DFMT_A8L8, D3DFMT_R8G8B8, D3DFMT_A8, D3DFMT_R5G6B5, D3DFMT_DXT1, D3DFMT_DXT3, D3DFMT_DXT5, D3DFMT_A32B32G32R32F, D3DFMT_A16B16G16R16,
(D3DFORMAT)-1 };
D3DFORMAT g_fboColorTexFormatsGLMT[] = // -1 terminated
{ D3DFMT_A8R8G8B8, //D3DFMT_A4R4G4B4, //unsupported
D3DFMT_X8R8G8B8, D3DFMT_X1R5G5B5, //D3DFMT_A1R5G5B5, //unsupported
D3DFMT_A16B16G16R16F, D3DFMT_A32B32G32R32F, D3DFMT_R5G6B5,
(D3DFORMAT)-1 };
D3DFORMAT g_fboDepthTexFormatsGLMT[] = // -1 terminated, but note 0 for "no depth" mode
{ (D3DFORMAT)0, D3DFMT_D16, D3DFMT_D24X8, D3DFMT_D24S8, (D3DFORMAT)-1 };
// #####################################################################################################################
void GLMTester::Test0( void ) { // make and delete a bunch of textures.
// lock and unlock them.
// use various combos of -
// √texel format
// √2D | 3D | cube map
// √mipped / not
// √POT / NPOT
// large / small / square / rect
// square / rect
GLMContext *ctx = m_params.m_ctx; ctx->MakeCurrent(); CUtlVector< CGLMTex* > testTextures; // will hold all the built textures
// test stage loop
// 0 is creation
// 1 is lock/unlock
// 2 is deletion
for( int teststage = 0; teststage < 3; teststage++) { int innerindex = 0; // increment at stage switch
// format loop
for( D3DFORMAT *fmtPtr = g_drawTexFormatsGLMT; *fmtPtr != ((D3DFORMAT)-1); fmtPtr++ ) { // form loop
GLenum forms[] = { GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP, (GLenum)-1 };
for( GLenum *formPtr = forms; *formPtr != ((GLenum)-1); formPtr++ ) { // mip loop
for( int mipped = 0; mipped < 2; mipped++ ) { // large / square / pot loop
// &4 == large &2 == square &1 == POT
// NOTE you *have to be square* for cube maps.
for( int aspect = 0; aspect < 8; aspect++ ) { switch( teststage ) { case 0: { GLMTexLayoutKey key; memset( &key, 0, sizeof(key) ); key.m_texGLTarget = *formPtr; key.m_texFormat = *fmtPtr; if (mipped) key.m_texFlags |= kGLMTexMipped; // assume big, square, POT, and 3D, then adjust as needed
key.m_xSize = key.m_ySize = key.m_zSize = 256; if ( !(aspect&4) ) // big or little ?
{ // little
key.m_xSize >>= 2; key.m_ySize >>= 2; key.m_zSize >>= 2; } if ( key.m_texGLTarget != GL_TEXTURE_CUBE_MAP ) { if ( !(aspect & 2) ) // square or rect?
{ // rect
key.m_ySize >>= 1; key.m_zSize >>= 2; } } if ( !(aspect&1) ) // POT or NPOT?
{ // NPOT
key.m_xSize += 56; key.m_ySize += 56; key.m_zSize += 56; } // 2D, 3D, cube map ?
if (key.m_texGLTarget!=GL_TEXTURE_3D) { // 2D or cube map: flatten Z extent to one texel
key.m_zSize = 1; } else { // 3D: knock down Z quite a bit so our test case does not run out of RAM
key.m_zSize >>= 3; if (!key.m_zSize) { key.m_zSize = 1; } }
CGLMTex *newtex = ctx->NewTex( &key ); CheckGLError( "tex create test"); InternalError( newtex==NULL, "tex create test" ); testTextures.AddToTail( newtex ); printf("\n[%5d] created tex %s",innerindex,newtex->m_layout->m_layoutSummary ); } break;
case 1: { CGLMTex *ptex = testTextures[innerindex];
for( int face=0; face <ptex->m_layout->m_faceCount; face++) { for( int mip=0; mip <ptex->m_layout->m_mipCount; mip++) { GLMTexLockParams lockreq; lockreq.m_tex = ptex; lockreq.m_face = face; lockreq.m_mip = mip;
GLMTexLayoutSlice *slice = &ptex->m_layout->m_slices[ ptex->CalcSliceIndex( face, mip ) ]; lockreq.m_region.xmin = lockreq.m_region.ymin = lockreq.m_region.zmin = 0; lockreq.m_region.xmax = slice->m_xSize; lockreq.m_region.ymax = slice->m_ySize; lockreq.m_region.zmax = slice->m_zSize; char *lockAddress; int yStride; int zStride; ptex->Lock( &lockreq, &lockAddress, &yStride, &zStride ); CheckGLError( "tex lock test"); InternalError( lockAddress==NULL, "null lock address");
// write some texels of this flavor:
// red 75% green 40% blue 15% alpha 80%
GLMGenTexelParams gtp;
gtp.m_format = ptex->m_layout->m_format->m_d3dFormat; gtp.m_dest = lockAddress; gtp.m_chunkCount = (slice->m_xSize * slice->m_ySize * slice->m_zSize) / (ptex->m_layout->m_format->m_chunkSize * ptex->m_layout->m_format->m_chunkSize); gtp.m_byteCountLimit = slice->m_storageSize; gtp.r = 0.75; gtp.g = 0.40; gtp.b = 0.15; gtp.a = 0.80;
GLMGenTexels( >p ); InternalError( gtp.m_bytesWritten != gtp.m_byteCountLimit, "byte count mismatch from GLMGenTexels" ); } }
for( int face=0; face <ptex->m_layout->m_faceCount; face++) { for( int mip=0; mip <ptex->m_layout->m_mipCount; mip++) { GLMTexLockParams unlockreq; unlockreq.m_tex = ptex; unlockreq.m_face = face; unlockreq.m_mip = mip;
// region need not matter for unlocks
unlockreq.m_region.xmin = unlockreq.m_region.ymin = unlockreq.m_region.zmin = 0; unlockreq.m_region.xmax = unlockreq.m_region.ymax = unlockreq.m_region.zmax = 0;
char *lockAddress; int yStride; int zStride; ptex->Unlock( &unlockreq );
CheckGLError( "tex unlock test"); } } printf("\n[%5d] locked/wrote/unlocked tex %s",innerindex, ptex->m_layout->m_layoutSummary ); } break;
case 2: { CGLMTex *dtex = testTextures[innerindex];
printf("\n[%5d] deleting tex %s",innerindex, dtex->m_layout->m_layoutSummary ); ctx->DelTex( dtex ); CheckGLError( "tex delete test"); } break; } // end stage switch
innerindex++; } // end aspect loop
} // end mip loop
} // end form loop
} // end format loop
} // end stage loop
}
// #####################################################################################################################
void GLMTester::Test1( void ) { // FBO exercises
GLMContext *ctx = m_params.m_ctx; ctx->MakeCurrent();
// FBO color format loop
for( D3DFORMAT *colorFmtPtr = g_fboColorTexFormatsGLMT; *colorFmtPtr != ((D3DFORMAT)-1); colorFmtPtr++ ) { // FBO depth format loop
for( D3DFORMAT *depthFmtPtr = g_fboDepthTexFormatsGLMT; *depthFmtPtr != ((D3DFORMAT)-1); depthFmtPtr++ ) { // mip loop
for( int mipped = 0; mipped < 2; mipped++ ) { GLenum forms[] = { GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP, (GLenum)-1 };
// form loop
for( GLenum *formPtr = forms; *formPtr != ((GLenum)-1); formPtr++ ) { //=============================================== make an FBO
CGLMFBO *fbo = ctx->NewFBO();
//=============================================== make a color texture
GLMTexLayoutKey colorkey; memset( &colorkey, 0, sizeof(colorkey) ); switch(*formPtr) { case GL_TEXTURE_2D: colorkey.m_texGLTarget = GL_TEXTURE_2D; colorkey.m_xSize = 800; colorkey.m_ySize = 600; colorkey.m_zSize = 1; break; case GL_TEXTURE_3D: colorkey.m_texGLTarget = GL_TEXTURE_3D; colorkey.m_xSize = 800; colorkey.m_ySize = 600; colorkey.m_zSize = 32; break; case GL_TEXTURE_CUBE_MAP: colorkey.m_texGLTarget = GL_TEXTURE_CUBE_MAP; colorkey.m_xSize = 800; colorkey.m_ySize = 800; // heh, cube maps have to have square sides...
colorkey.m_zSize = 1; break; }
colorkey.m_texFormat = *colorFmtPtr; colorkey.m_texFlags = kGLMTexRenderable; // decide if we want mips
if (mipped) { colorkey.m_texFlags |= kGLMTexMipped; }
CGLMTex *colorTex = ctx->NewTex( &colorkey ); // Note that GLM will notice the renderable flag, and force texels to be written
// so the FBO will be complete
//=============================================== attach color
GLMFBOTexAttachParams colorParams; memset( &colorParams, 0, sizeof(colorParams) ); colorParams.m_tex = colorTex; colorParams.m_face = (colorkey.m_texGLTarget == GL_TEXTURE_CUBE_MAP) ? 2 : 0; // just steer to an alternate face as a test
colorParams.m_mip = (colorkey.m_texFlags & kGLMTexMipped) ? 2 : 0; // pick non-base mip slice
colorParams.m_zslice= (colorkey.m_texGLTarget == GL_TEXTURE_3D) ? 3 : 0; // just steer to an alternate slice as a test;
fbo->TexAttach( &colorParams, kAttColor0 );
//=============================================== optional depth tex
CGLMTex *depthTex = NULL; if (*depthFmtPtr > 0 ) { GLMTexLayoutKey depthkey; memset( &depthkey, 0, sizeof(depthkey) ); depthkey.m_texGLTarget = GL_TEXTURE_2D; depthkey.m_xSize = colorkey.m_xSize >> colorParams.m_mip; // scale depth tex to match color tex
depthkey.m_ySize = colorkey.m_ySize >> colorParams.m_mip; depthkey.m_zSize = 1;
depthkey.m_texFormat = *depthFmtPtr; depthkey.m_texFlags = kGLMTexRenderable | kGLMTexIsDepth; // no mips.
if (depthkey.m_texFormat==D3DFMT_D24S8) { depthkey.m_texFlags |= kGLMTexIsStencil; }
depthTex = ctx->NewTex( &depthkey );
//=============================================== attach depth
GLMFBOTexAttachParams depthParams; memset( &depthParams, 0, sizeof(depthParams) ); depthParams.m_tex = depthTex; depthParams.m_face = 0; depthParams.m_mip = 0; depthParams.m_zslice= 0; EGLMFBOAttachment depthAttachIndex = (depthkey.m_texFlags & kGLMTexIsStencil) ? kAttDepthStencil : kAttDepth; fbo->TexAttach( &depthParams, depthAttachIndex ); }
printf("\n FBO:\n color tex %s\n depth tex %s", colorTex->m_layout->m_layoutSummary, depthTex ? depthTex->m_layout->m_layoutSummary : "none" ); // see if FBO is happy
bool ready = fbo->IsReady();
printf("\n -> %s\n", ready ? "pass" : "fail" ); // unbind
ctx->BindFBOToCtx( NULL, GL_READ_FRAMEBUFFER_EXT ); ctx->BindFBOToCtx( NULL, GL_DRAW_FRAMEBUFFER_EXT );
// del FBO
ctx->DelFBO(fbo); // del texes
ctx->DelTex( colorTex ); if (depthTex) ctx->DelTex( depthTex ); } // end form loop
} // end mip loop
} // end depth loop
} // end color loop
}
// #####################################################################################################################
static int selftest2_seed = 0; // inc this every run to force main thread to teardown/reset display view
void GLMTester::Test2( void ) { GLMContext *ctx = m_params.m_ctx; ctx->MakeCurrent();
this->StdSetup(); // default test case drawing setup
// draw stuff (loop...)
for( int i=0; i<m_params.m_frameCount; i++) { // ramping shades of blue...
GLfloat clear_color[4] = { 0.50f, 0.05f, ((float)(i%100)) / 100.0, 1.0f }; glClearColor(clear_color[0], clear_color[1], clear_color[2], clear_color[3]); CheckGLError("test2 clear color");
glClear(GL_COLOR_BUFFER_BIT+GL_DEPTH_BUFFER_BIT+GL_STENCIL_BUFFER_BIT); CheckGLError("test2 clearing");
// try out debug text
for( int j=0; j<16; j++) { char text[256]; sprintf(text, "The quick brown fox jumped over the lazy dog %d times", i ); float theta = ( (i*0.10f) + (j * 6.28f) ) / 16.0f; float posx = cos(theta) * 0.5; float posy = sin(theta) * 0.5; float charwidth = 6.0 * (2.0 / 1024.0); float charheight = 11.0 * (2.0 / 768.0); ctx->DrawDebugText( posx, posy, 0.0f, charwidth, charheight, text ); } glFinish(); CheckGLError("test2 finish");
this->Present( selftest2_seed ); } this->StdCleanup(); selftest2_seed++; }
// #####################################################################################################################
static char g_testVertexProgram01 [] = { "!!ARBvp1.0 \n" "TEMP vertexClip; \n" "DP4 vertexClip.x, state.matrix.mvp.row[0], vertex.position; \n" "DP4 vertexClip.y, state.matrix.mvp.row[1], vertex.position; \n" "DP4 vertexClip.z, state.matrix.mvp.row[2], vertex.position; \n" "DP4 vertexClip.w, state.matrix.mvp.row[3], vertex.position; \n" "ADD vertexClip.y, vertexClip.x, vertexClip.y; \n" "MOV result.position, vertexClip; \n" "MOV result.color, vertex.color; \n" "MOV result.texcoord[0], vertex.texcoord; \n" "END \n" };
static char g_testFragmentProgram01 [] = { "!!ARBfp1.0 \n" "TEMP color; \n" "MUL color, fragment.texcoord[0].y, 2.0; \n" "ADD color, 1.0, -color; \n" "ABS color, color; \n" "ADD result.color, 1.0, -color; \n" "MOV result.color.a, 1.0; \n" "END \n" };
// generic attrib versions..
static char g_testVertexProgram01_GA [] = { "!!ARBvp1.0 \n" "TEMP vertexClip; \n" "DP4 vertexClip.x, state.matrix.mvp.row[0], vertex.attrib[0]; \n" "DP4 vertexClip.y, state.matrix.mvp.row[1], vertex.attrib[0]; \n" "DP4 vertexClip.z, state.matrix.mvp.row[2], vertex.attrib[0]; \n" "DP4 vertexClip.w, state.matrix.mvp.row[3], vertex.attrib[0]; \n" "ADD vertexClip.y, vertexClip.x, vertexClip.y; \n" "MOV result.position, vertexClip; \n" "MOV result.color, vertex.attrib[3]; \n" "MOV result.texcoord[0], vertex.attrib[8]; \n" "END \n" };
static char g_testFragmentProgram01_GA [] = { "!!ARBfp1.0 \n" "TEMP color; \n" "TEX color, fragment.texcoord[0], texture[0], 2D;" //"MUL color, fragment.texcoord[0].y, 2.0; \n"
//"ADD color, 1.0, -color; \n"
//"ABS color, color; \n"
//"ADD result.color, 1.0, -color; \n"
//"MOV result.color.a, 1.0; \n"
"MOV result.color, color; \n" "END \n" };
void GLMTester::Test3( void ) { /**************************
XXXXXXXXXXXXXXXXXXXXXX stale test code until we revise the program interface GLMContext *ctx = m_params.m_ctx; ctx->MakeCurrent();
this->StdSetup(); // default test case drawing setup
// make vertex&pixel shader
CGLMProgram *vprog = ctx->NewProgram( kGLMVertexProgram, g_testVertexProgram01_GA ); ctx->BindProgramToCtx( kGLMVertexProgram, vprog ); CGLMProgram *fprog = ctx->NewProgram( kGLMFragmentProgram, g_testFragmentProgram01_GA ); ctx->BindProgramToCtx( kGLMFragmentProgram, fprog ); // draw stuff (loop...)
for( int i=0; i<m_params.m_frameCount; i++) { // ramping shades of blue...
GLfloat clear_color[4] = { 0.50f, 0.05f, ((float)(i%100)) / 100.0, 1.0f }; glClearColor(clear_color[0], clear_color[1], clear_color[2], clear_color[3]); CheckGLError("test3 clear color");
glClear(GL_COLOR_BUFFER_BIT+GL_DEPTH_BUFFER_BIT+GL_STENCIL_BUFFER_BIT); CheckGLError("test3 clearing");
// try out debug text
for( int j=0; j<16; j++) { char text[256]; sprintf(text, "This here is running through a trivial vertex shader"); float theta = ( (i*0.10f) + (j * 6.28f) ) / 16.0f; float posx = cos(theta) * 0.5; float posy = sin(theta) * 0.5; float charwidth = 6.0 * (2.0 / 800.0); float charheight = 11.0 * (2.0 / 640.0); ctx->DrawDebugText( posx, posy, 0.0f, charwidth, charheight, text ); } glFinish(); CheckGLError("test3 finish");
this->Present( 3333 ); } this->StdCleanup(); *****************************/ }
|