|
|
//========== Copyright (c) Valve Corporation, All rights reserved. ==========//
// STATIC: "BACK_SURFACE" "0..1" // STATIC: "LIGHT_WARP" "0..1" // STATIC: "FRESNEL_WARP" "0..1" // STATIC: "HIGH_PRECISION_DEPTH" "0..1" // STATIC: "INTERIOR_LAYER" "0..1" // STATIC: "SELF_ILLUM_FRESNEL" "0..1" // STATIC: "OPACITY_TEXTURE" "0..1" // STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..3" [ps20b] [PC] // STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..2" [ps30] [PC] // STATIC: "FLASHLIGHTDEPTHFILTERMODE" "0..0" [ps20b] [XBOX] // STATIC: "CONTACT_SHADOW" "0..1" // STATIC: "SELF_ILLUM_PULSE" "0..1" // STATIC: "VOLUME_TEXTURE" "0..1" // DYNAMIC: "NUM_LIGHTS" "0..4" [ps20b] // DYNAMIC: "NUM_LIGHTS" "0..4" [ps30] // DYNAMIC: "FLASHLIGHT" "0..1" // DYNAMIC: "FLASHLIGHTSHADOWS" "0..1"
// SKIP: ( $CONTACT_SHADOW == 1 ) && ( $SELF_ILLUM_PULSE == 1 )
// For now, 'BACK_SURFACE' is a dead-simple path (just writes depth into dest alpha), so skip all non-HW-config combos: // SKIP: ( $BACK_SURFACE == 1 ) && ( $LIGHT_WARP > 0 ) // SKIP: ( $BACK_SURFACE == 1 ) && ( $FRESNEL_WARP > 0 ) // SKIP: ( $BACK_SURFACE == 1 ) && ( $INTERIOR_LAYER > 0 ) // SKIP: ( $BACK_SURFACE == 1 ) && ( $SELF_ILLUM_FRESNEL > 0 ) // SKIP: ( $BACK_SURFACE == 1 ) && ( $OPACITY_TEXTURE > 0 ) // SKIP: ( $BACK_SURFACE == 1 ) && ( $CONTACT_SHADOW > 0 ) // SKIP: ( $BACK_SURFACE == 1 ) && ( $SELF_ILLUM_PULSE > 0 ) // SKIP: ( $BACK_SURFACE == 1 ) && ( $VOLUME_TEXTURE > 0 )
#include "common_ps_fxc.h" #include "common_vertexlitgeneric_dx9.h" #include "common_flashlight_fxc.h" #include "shader_constant_register_map.h"
// SAMPLERS sampler g_tBase : register( s0 ); sampler g_tBump : register( s1 ); sampler g_tScreen : register( s2 ); sampler g_tSpecMask : register( s3 ); sampler g_tLightWarp : register( s4 ); sampler g_tFresnelWarp : register( s5 ); sampler g_tOpacity : register( s6 ); sampler g_tShadowDepth : register( s7 ); // Flashlight shadow depth map sampler sampler g_tNormalizeRandRot : register( s8 ); // Normalization / RandomRotation samplers sampler g_tFlashlightCookie : register( s9 ); // Flashlight cookie
// SHADER CONSTANTS const float4 g_vMisc : register( c0 ); #define g_flBumpStrength g_vMisc.x #define g_flDepthScale g_vMisc.y #define g_flInnerFogStrength g_vMisc.z #define g_flRefractStrength g_vMisc.w
const float4 g_vTranslucentFresnelParams_InteriorBoost : register( c1 ); #define g_vTranslucentFresnelParams g_vTranslucentFresnelParams_InteriorBoost.xyz #define g_flInteriorBoost g_vTranslucentFresnelParams_InteriorBoost.w
const float4 g_vMisc2 : register( c3 ); #define g_flRimLightExp g_vMisc2.x #define g_flRimLightScale g_vMisc2.y #define g_flSpecScale g_vMisc2.z #define g_flSpecExp2 g_vMisc2.w
const float4 g_vMisc3 : register( c10 ); #define g_flSpecScale2 g_vMisc3.x #define g_flFresnelBumpStrength g_vMisc3.y #define g_flDiffuseScale g_vMisc3.z #define g_flInteriorLightScale g_vMisc3.w
const float4 g_vEyePos_SpecExp : register( PSREG_EYEPOS_SPEC_EXPONENT ); #define g_vEyePos g_vEyePos_SpecExp.xyz #define g_flSpecExp g_vEyePos_SpecExp.w
const float4 g_ShaderControls : register( c12 ); #define g_fWriteDepthToAlpha g_ShaderControls.x
const float4 g_vBaseTint_InteriorBackLightScale : register( c19 ); #define g_cBaseTint g_vBaseTint_InteriorBackLightScale.rgb #define g_flInteriorBackLightScale g_vBaseTint_InteriorBackLightScale.w
const float4 g_vSelfIllumFresnelParams : register( c26 ); #define g_flSelfIllumScale g_vSelfIllumFresnelParams.x #define g_flSelfIllumBias g_vSelfIllumFresnelParams.y #define g_flSelfIllumExp g_vSelfIllumFresnelParams.z #define g_flSelfIllumBrightness g_vSelfIllumFresnelParams.w
// TODO: pass in FOV so that we can account for it properly #define g_flHalfWindowWidth 1 /* tan(fov/2) */
const float4 g_cSelfIllumTint : register( c27 ); //#define UNUSED g_cSelfIllumTint.w
const float4 g_vInteriorColor_RefractBlur : register( c32 ); #define g_cInteriorColor g_vInteriorColor_RefractBlur.rgb #define g_flRefractBlur g_vInteriorColor_RefractBlur.w
const float3 cAmbientCube[6] : register( PSREG_AMBIENT_CUBE );
const PixelShaderLightInfo g_sLightInfo[3] : register( PSREG_LIGHT_INFO_ARRAY ); // 2 registers each - 6 registers total
const float4 g_vFlashlightAttenuationFactors_FarZ : register( PSREG_FLASHLIGHT_ATTENUATION ); #define g_vFlashlightAttenuationFactors g_vFlashlightAttenuationFactors_FarZ.xyz #define g_flFlashlightFarZ g_vFlashlightAttenuationFactors_FarZ.w const float4 g_vFlashlightPos_RimBoost : register( PSREG_FLASHLIGHT_POSITION_RIM_BOOST ); #define g_vFlashlightPos g_vFlashlightPos_RimBoost.xyz const float4x4 g_mFlashlightWorldToTexture : register( PSREG_FLASHLIGHT_TO_WORLD_TEXTURE ); const float4 g_vShadowTweaks : register( PSREG_ENVMAP_TINT__SHADOW_TWEAKS );
const float3x3 g_mView : register( c33 );
const float4 g_vMisc4 : register( c36 ); #define g_flLimitFogAtten g_vMisc4.x #define g_flFogNormalBoost g_vMisc4.y #define g_flGlowScale g_vMisc4.z //#define UNUSED g_vMisc4.w
// COMBO-DERIVED CONSTANTS static const bool bLightWarp = LIGHT_WARP ? true : false; static const bool bFlashLight = FLASHLIGHT ? true : false;
// How we use vertex colour (TEXCOORD2) varies based on static combos: #if ( CONTACT_SHADOW == 1 ) #define i_ClosestSurfaceDir i.vClosestSurfaceDir #define i_PulseColor 0 #define i_VertexAlpha 1 #elif ( SELF_ILLUM_PULSE == 1 ) #define i_ClosestSurfaceDir 0 #define i_PulseColor i.vPulseColor.rgb #define i_VertexAlpha i.vPulseColor.a #else #define i_ClosestSurfaceDir 0 #define i_PulseColor 0 #define i_VertexAlpha 1 #endif
// INPUT STRUCT struct PS_INPUT { float4 vWorldNormal : TEXCOORD0; // w is proj. z coord (for depth stuff) #if CONTACT_SHADOW == 0 float4 vPulseColor : TEXCOORD1; #else float4 vClosestSurfaceDir : TEXCOORD1; #endif float4 vWorldPos : TEXCOORD2; // w is proj. w coord float4 vUV0 : TEXCOORD3; float4 vUV1 : TEXCOORD4; float4 vLightAtten : TEXCOORD5; float3 vLightCube : TEXCOORD6; };
//============================================================================================================================================================== float Luminance( const float3 colour ) { return dot( colour, float3( 0.3, 0.59, 0.11 ) ); }
//============================================================================================================================================================== float3 ComputeTextureBlendWeights( float3 vWorldNormal ) { float3 vBlendWeights = max( ( abs( vWorldNormal.xyz ) - 0.2 ) * 7.0, 0.0 ); vBlendWeights /= dot( vBlendWeights, float3(1, 1, 1) ); // normalize return vBlendWeights; }
//============================================================================================================================================================== float4 BlendedTexFetchMAX( sampler s, float2 vUV0, float2 vUV1, float2 vUV2, float3 vBlendWeights ) { // This 'max' blend is supposed to reduce the 'multiple layers sliding over one another' // appearance of the blob skin. NOTE: it doesn't preserve texture luminance. float4 vFetch0 = tex2D( s, vUV0 ); float4 vFetch1 = tex2D( s, vUV1 ); float4 vFetch2 = tex2D( s, vUV2 ); //return vBlendWeights.x * vFetch0 + vBlendWeights.y * vFetch1 + vBlendWeights.z * vFetch2; return max( vBlendWeights.x * vFetch0, max( vBlendWeights.y * vFetch1, vBlendWeights.z * vFetch2 ) ); }
//============================================================================================================================================================== float3 BumpedToWorldNormal( float3 vBumpedNormal, float3 vVertexNormal, // should be normalized float3 vTangentDir ) { float3x3 mTanToWorld; mTanToWorld[2] = vVertexNormal; mTanToWorld[0] = vTangentDir - dot( vTangentDir, vVertexNormal ) * vVertexNormal; mTanToWorld[0] = normalize( mTanToWorld[0] ); mTanToWorld[1] = cross( mTanToWorld[0], mTanToWorld[2] ); return normalize( mul( vBumpedNormal, mTanToWorld ) ); }
//============================================================================================================================================================== void BlendedTexFetchNormal( sampler s, float2 vUV0, float2 vUV1, float2 vUV2, float3 vBlendWeights, float3 vWorldNormal, // Function outputs: out float2 vBumpedTSNormal, out float3 vBumpedWorldNormal, out float3 vFresnelWorldNormal ) { float3 vNormalTS1 = 2.0 * tex2D( g_tBump, vUV0 ) - 1.0; float3 vNormalTS2 = 2.0 * tex2D( g_tBump, vUV1 ) - 1.0; float3 vNormalTS3 = 2.0 * tex2D( g_tBump, vUV2 ) - 1.0; vBumpedTSNormal = vBlendWeights.x * vNormalTS1.xy + vBlendWeights.y * vNormalTS2.xy + vBlendWeights.z * vNormalTS3.xy;
float3 vBumpedNormal1 = BumpedToWorldNormal( vNormalTS1, vWorldNormal, float3( 0, 1, 0 ) ); float3 vBumpedNormal2 = BumpedToWorldNormal( vNormalTS2, vWorldNormal, float3( 1, 0, 0 ) ); float3 vBumpedNormal3 = BumpedToWorldNormal( vNormalTS3, vWorldNormal, float3( 1, 0, 0 ) ); vBumpedWorldNormal = vBlendWeights.x * vBumpedNormal1 + vBlendWeights.y * vBumpedNormal2 + vBlendWeights.z * vBumpedNormal3;
// Apply bump strength in world space (this is cheaper because we have to do it twice, for normal and fresnel bumpstrength) float3 vBumpStrengthDir = vBumpedWorldNormal - dot( vBumpedWorldNormal, vWorldNormal ) * vWorldNormal; vFresnelWorldNormal = normalize( vBumpedWorldNormal + ( g_flFresnelBumpStrength - 1.0 ) * vBumpStrengthDir ); vBumpedWorldNormal = normalize( vBumpedWorldNormal + ( g_flBumpStrength - 1.0 ) * vBumpStrengthDir ); }
//============================================================================================================================================================== void ComputeOpacityAndFresnel( float2 vUV0, float2 vUV1, float2 vUV2, float3 vBlendWeights, float3 vEyeDir, float3 vWorldNormal, float flVertexAlpha, // Function outputs: out float flSkinOpacity, out float flBlobOpacity, out float flFresnel ) { flSkinOpacity = 1; #if OPACITY_TEXTURE == 1 flSkinOpacity = BlendedTexFetchMAX( g_tOpacity, vUV0, vUV1, vUV2, vBlendWeights ); #endif
flFresnel = saturate( 1.0 - dot( vEyeDir.xyz, vWorldNormal.xyz ) ); #if FRESNEL_WARP == 1 float fTranslucentFresnel = tex1D( g_tFresnelWarp, flFresnel ); #else float fTranslucentFresnel = lerp( g_vTranslucentFresnelParams.x, g_vTranslucentFresnelParams.y, pow( flFresnel, g_vTranslucentFresnelParams.z ) ); #endif
// TODO: should decouple fresnel from the opacity map, this kills base texture alpha flSkinOpacity = max( flSkinOpacity, fTranslucentFresnel );
flBlobOpacity = flVertexAlpha; }
//============================================================================================================================================================== float3 BlobAmbientLight( float3 vVertexAmbient, float3 vEyeDir, float3 vWorldNormal, float flFresnel ) { // Ambient lighting now comes from VS float3 cAmbient = vVertexAmbient;
// TODO: Replace lambert diffuse with pixelshader-ambient term of full lighting env. //float3 cAmbient = PixelShaderAmbientLight( vBumpedWorldNormal, cAmbientCube );
//float3 cAmbientSheen = PixelShaderAmbientLight( reflect( -vEyeDir, vBumpedWorldNormal ), cAmbientCube ); //cAmbient = lerp( cAmbient, cAmbientSheen, flFresnel );
return cAmbient; }
//============================================================================================================================================================== void BlobDynamicLight( float3 vWorldPos, float3 vEyeDir, float3 vBumpedWorldNormal, float4 vLightAtten, float flFresnel, // Function outputs: out float3 cDiffuse, out float3 cSpec, out float3 cSpec2, out float3 cRim ) { cDiffuse = cSpec = cSpec2 = cRim = 0;
for ( int l = 0; l < NUM_LIGHTS; l++ ) { cDiffuse.rgb += vLightAtten[l] * PixelShaderGetLightColor( g_sLightInfo, l ) * DiffuseTerm( true, vBumpedWorldNormal, PixelShaderGetLightVector( vWorldPos, g_sLightInfo, l ), bLightWarp, g_tLightWarp );
// spec 1 float3 cCurrSpec, cCurrRim; bool bYesRimLight = true; SpecularAndRimTerms( vBumpedWorldNormal, PixelShaderGetLightVector( vWorldPos, g_sLightInfo, l ), g_flSpecExp, vEyeDir, false, g_tBump, 1.0, // dummy spec warp sampler & fresnel PixelShaderGetLightColor( g_sLightInfo, l ), bYesRimLight, g_flRimLightExp, cCurrSpec, cCurrRim ); cSpec += vLightAtten[l] * cCurrSpec; cRim += vLightAtten[l] * cCurrRim;
// spec 2 float3 cCurrSpec2, cDummy; bool bNoRimLight = false; SpecularAndRimTerms( vBumpedWorldNormal, PixelShaderGetLightVector( vWorldPos, g_sLightInfo, l ), g_flSpecExp2, vEyeDir, false, g_tBump, 1.0, // dummy spec warp sampler & fresnel PixelShaderGetLightColor( g_sLightInfo, l ), bNoRimLight, 0, cCurrSpec2, cDummy ); cSpec2 += vLightAtten[l] * cCurrSpec2; // FIXME: no rim2 term? }
cRim *= flFresnel * flFresnel * flFresnel * flFresnel; }
//============================================================================================================================================================== void BlobFlashlight( float3 vWorldPos, float3 vEyeDir, float3 vWorldNormal, float2 vScreenPos, float flSpecularExponent, // Function outputs: out float3 cOutFlashlightDiffuse, out float3 cOutFlashlightSpec, out float3 cOutFlashlightColor ) { float3 delta = g_vFlashlightPos - vWorldPos; float3 vLightVec = normalize( delta ); float distSquared = dot( delta, delta ); float dist = sqrt( distSquared );
// Attenuation for light and to fade out shadow over distance float fAtten = saturate( dot( g_vFlashlightAttenuationFactors, float3( 1.0f, 1.0f/dist, 1.0f/distSquared ) ) ); float endFalloffFactor = RemapValClamped( dist, g_flFlashlightFarZ, 0.6f * g_flFlashlightFarZ, 0.0f, 1.0f );
// Project into flashlight texture float4 flashlightSpacePosition = mul( float4( vWorldPos, 1.0f ), g_mFlashlightWorldToTexture ); // TODO: this can be moved to VS float3 vProjCoords = flashlightSpacePosition.xyz / flashlightSpacePosition.w;
// Flashlight colour cOutFlashlightColor = tex2D( g_tFlashlightCookie, vProjCoords ); #if defined(SHADER_MODEL_PS_2_0) || defined(SHADER_MODEL_PS_2_B) || defined(SHADER_MODEL_PS_3_0) cOutFlashlightColor *= cFlashlightColor.xyz; #endif cOutFlashlightColor *= endFalloffFactor * fAtten;
// Flashlight shadow #if (defined(SHADER_MODEL_PS_2_B) || defined(SHADER_MODEL_PS_3_0)) if ( FLASHLIGHTSHADOWS ) { float flShadow = DoFlashlightShadow( g_tShadowDepth, g_tNormalizeRandRot, vProjCoords, vScreenPos, FLASHLIGHTDEPTHFILTERMODE, g_vShadowTweaks ); float flAttenuated = lerp( flShadow, 1.0f, g_vShadowTweaks.y ); // Blend between fully attenuated and not attenuated flShadow = saturate( lerp( flAttenuated, flShadow, fAtten ) ); // Blend between shadow and above, according to light attenuation cOutFlashlightColor *= flShadow; // Shadow term } #endif
// Flashlight diffuse term cOutFlashlightDiffuse = cOutFlashlightColor * DiffuseTerm( true, vWorldNormal, vLightVec, bLightWarp, g_tLightWarp );
// Flashlight specular term float3 cDummy; SpecularAndRimTerms( vWorldNormal, vLightVec, flSpecularExponent, -vEyeDir, false, g_tBump, 1.0, // dummy spec warp sampler & fresnel cOutFlashlightColor, false, g_flRimLightExp, cOutFlashlightSpec, cDummy ); }
//============================================================================================================================================================== float4 SampleBackgroundBlurred( float2 vBumpedTSNormal, float3 vWorldNormal, float2 vScreenPos, float flCamDist, float flBlobOpacity ) { static const float2 vPoissonOffset[8] = { float2( 0.3475f, 0.0042f ), float2( 0.8806f, 0.3430f ), float2( -0.0041f, -0.6197f ), float2( 0.0472f, 0.4964f ), float2( -0.3730f, 0.0874f ), float2( -0.9217f, -0.3177f ), float2( -0.6289f, 0.7388f ), float2( 0.5744f, -0.7741f ) }; // TODO: get framebuffer res from constants float2 vScreenRes = float2( 1600, 1200 ); float2 g_vInvScreenRes = 1.0 / vScreenRes;
// Project world-space blur radius into screen space. float flBlurRadius = flBlobOpacity * g_flRefractBlur * ( vScreenRes.x / ( flCamDist * g_flHalfWindowWidth ) );
// Bumped refract float flRefractStrength = flBlobOpacity * 80.0 * g_flRefractStrength / ( flCamDist * g_flHalfWindowWidth ); float2 vBackgroundUV = flRefractStrength * vBumpedTSNormal + vScreenPos; /* // This gives the blob a more crystal-bally refractive look, which looks cool up-close, but looks weird when // it pulls foreground pixels in. It could work well if the innards were rendered into their own texture. float3 vOffset = mul( g_mView, normalize( -vWorldNormal ) ); float2 vBackgroundUV = 0.07 * vOffset.xy + 0.03 * vBumpedTSNormal + vScreenPos; */
float4 cOut = 0; for( int i = 0; i < 8; i++ ) { cOut += 1.0/8.0 * tex2D( g_tScreen, vBackgroundUV + flBlurRadius * g_vInvScreenRes.xy * vPoissonOffset[i] ); } return cOut; }
float3 CubeAverage( void ) { // TODO: Pass this average light color in as a const float3 cAvgLight = 0.0; for( int j = 0; j < 6; j++ ) { cAvgLight += cAmbientCube[j] / 6.0; } return cAvgLight; }
float3 BlobInterior( float3 vWorldNormal, float2 vBumpedTSNormal, float3 vEyeDir, float2 vScreenPos, float flPixelDepth, float flCamDist, float flBlobOpacity, float3 cFlashlightColor ) { float3 cInterior = 0;
// Sample the background (and inner blob brain/tentacles) float4 cBackground = SampleBackgroundBlurred( vBumpedTSNormal, vWorldNormal, vScreenPos, flCamDist, flBlobOpacity ); // Boost bright background pixels float flLuminance = Luminance( cBackground.rgb ); cBackground.rgb *= 1.0 + g_flInteriorBoost * flLuminance * flLuminance;
// Fake refract-like vector without any total internal reflection crappiness float3 vRefract = normalize( -( vEyeDir + vWorldNormal ) );
// Interior lighting through ambient cube float3 cBackLight = PixelShaderAmbientLight( vRefract, cAmbientCube ); float3 cAvgLight = CubeAverage() + ( 0.6 * cFlashlightColor ); cBackLight = max( g_flInteriorLightScale * cAvgLight, g_flInteriorBackLightScale * cBackLight ); cBackLight *= g_cInteriorColor;
// Get eye ray travel distance through blob float flBackgroundDepth = cBackground.a * g_flDepthScale; float flDistThroughBlob = flBackgroundDepth - flPixelDepth; flDistThroughBlob = max( 0.0, flDistThroughBlob ); // Compute the opacity ('fog') of the blob interior volume, based on its thickness float flFogAtten = pow( 2.0, -flDistThroughBlob * g_flInnerFogStrength ); // exponential falloff //float flFogAtten = saturate( 0.5 - 0.011 * flDistThroughBlob ); // linear falloff #if HIGH_PRECISION_DEPTH == 0 // fade to constant interior fogginess as we run against the low-precision destalpha depth limit flFogAtten = lerp( flFogAtten, g_flLimitFogAtten, saturate( cBackground.a*cBackground.a*cBackground.a ) ); #endif flFogAtten = lerp( 1.0, flFogAtten, flBlobOpacity );
// Composite the fog interior lighting/fog over the background cInterior = lerp( cBackLight, cBackground.rgb, flFogAtten );
//float flInScattering = flDistThroughBlob * 0.002; //cInterior.rgb += flInScattering * i.vLightCube.rgb;
return cInterior; }
//============================================================================================================================================================== void BlobSelfIllumFresnel( float3 vFresnelWorldNormal, float3 vEyeDir, // Function-modified inputs: inout float3 cDiffuse ) { float flSelfIllumFresnel = pow( saturate( dot( vEyeDir.xyz, vFresnelWorldNormal.xyz ) ), g_flSelfIllumExp ); flSelfIllumFresnel = ( flSelfIllumFresnel * g_flSelfIllumScale ) + g_flSelfIllumBias; float3 cSelfIllumComponent = g_cSelfIllumTint * g_flSelfIllumBrightness; cDiffuse.rgb = lerp( cDiffuse.rgb, cSelfIllumComponent.rgb, saturate( flSelfIllumFresnel ) ); }
//============================================================================================================================================================== float BlobContactShadow( float3 vWorldNormal, float4 vClosestSurfaceDir ) { // contact darkening for blob regions that touch a surface float3 vSurfaceDir = normalize( vClosestSurfaceDir.xyz ) * vClosestSurfaceDir.w; float flContactShadow = saturate( 0.8 * ( 1.0 - dot( vSurfaceDir, vWorldNormal ) ) + 0.2 ); flContactShadow = lerp ( 0.3, 1.0, flContactShadow * flContactShadow * flContactShadow ); return flContactShadow; }
//============================================================================================================================================================== float3 BlobSelfIllumPulse( float3 cPulseColor, float3 cBase, float flSkinOpacity ) { float flBaseLuminance = length( cBase.rgb ); float flPulseLuminance = length( cPulseColor ); float3 cSelfIllumPulse = sqrt( flSkinOpacity ) * g_flGlowScale * flBaseLuminance * flPulseLuminance * cPulseColor; return cSelfIllumPulse; }
//============================================================================================================================================================== float3 noise( float3 coord ) { coord.z *= 50.0; float zfrac = frac( coord.z ); float2 zhash = float2( coord.z, 1 + coord.z ); zhash -= frac( zhash ); zhash = ( zhash * zhash ); zhash -= 31.0 * floor( zhash / 31.0 ); zhash = ( zhash * zhash ); zhash -= 31.0 * floor( zhash / 31.0 ); zhash *= 1.0/31.0; float3 c0 = tex2D( g_tBase, float4( coord.xy + float2( 0, zhash.x ), 0, 0 ) ).rgb; float3 c1 = tex2D( g_tBase, float4( coord.xy + float2( 0, zhash.y ), 0, 0 ) ).rgb;
float3 rslt = lerp( c0, c1, zfrac ); return rslt; }
void PerformVolumeTexturing( float3 vUVW, float3 vWorldNormal, // Function outputs: out float3 cOut ) { // volumetric texturing test code float fNoiseScale = 0.002; float fStrengthScale = 1.0; cOut.rgb = 0; for ( int k = 0; k < 6; k++ ) { cOut.rgb += fStrengthScale * noise( fNoiseScale * vUVW ).rgb; fNoiseScale *= 2.0; fStrengthScale /= 1.8; } cOut.rgb /= 2.0; cOut.rgb *= PixelShaderAmbientLight( vWorldNormal, cAmbientCube ); }
//============================================================================================================================================================== float4 main( PS_INPUT i ) : COLOR { float4 cOut = { 0, 0, 0, 1 };
// Set up misc camera variables float flPixelDepth = i.vWorldNormal.w; float2 vScreenPos = i.vUV1.wz / i.vWorldPos.w; float3 vEyeDir = g_vEyePos.xyz - i.vWorldPos.xyz; float flCamDist = length( vEyeDir ); vEyeDir /= flCamDist; // Set up contact shadowing or self-illum values (or neither), based on static combo float4 vClosestSurfaceDir = i_ClosestSurfaceDir; float3 cPulseColor = i_PulseColor; float flVertexAlpha = i_VertexAlpha;
// For now, 'BACK_SURFACE' is a dead-simple path (just writes depth into dest alpha) #if ( BACK_SURFACE == 1 ) cOut = tex2D( g_tScreen, vScreenPos ); return FinalOutput( cOut, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_LINEAR, g_fWriteDepthToAlpha, flPixelDepth ); #endif
// Blend weights for 3 blended planar projections float3 vWorldNormal = normalize( i.vWorldNormal.xyz ); float3 vBlendWeights = ComputeTextureBlendWeights( vWorldNormal );
// Base+spec maps float4 cBase = BlendedTexFetchMAX( g_tBase, i.vUV0.xy, i.vUV0.wz, i.vUV1.xy, vBlendWeights ); float flSpecMask = BlendedTexFetchMAX( g_tSpecMask, i.vUV0.xy, i.vUV0.wz, i.vUV1.xy, vBlendWeights ); // Use base tex alpha channel as a tint mask cBase.rgb = lerp( cBase.rgb, Luminance( cBase.rgb ) * g_cBaseTint.rgb, cBase.a );
// Normal mapping float3 vBumpedWorldNormal, vFresnelWorldNormal; float2 vBumpedTSNormal; BlendedTexFetchNormal( g_tBump, i.vUV0.xy, i.vUV0.zw, i.vUV1.xy, vBlendWeights, vWorldNormal, vBumpedTSNormal, vBumpedWorldNormal, vFresnelWorldNormal );
// Opacity and fresnel float flSkinOpacity, flBlobOpacity, flFresnel; ComputeOpacityAndFresnel( i.vUV0.xy, i.vUV0.wz, i.vUV1.xy, vBlendWeights, vEyeDir, vFresnelWorldNormal, flVertexAlpha, flSkinOpacity, flBlobOpacity, flFresnel );
// Ambient light float3 cAmbient = BlobAmbientLight( i.vLightCube, vEyeDir, vBumpedWorldNormal, flFresnel );
// Dynamic lights float3 cDiffuse, cSpec, cSpec2, cRim; BlobDynamicLight( i.vWorldPos.xyz, vEyeDir, vBumpedWorldNormal, i.vLightAtten, flFresnel, cDiffuse, cSpec, cSpec2, cRim );
// Flashlight float3 cFlashlightColor = 0; #if FLASHLIGHT == 1 float3 cFlashlightDiffuse, cFlashlightSpec; BlobFlashlight( i.vWorldPos.xyz, vEyeDir, vBumpedWorldNormal, vScreenPos, g_flSpecExp2, cFlashlightDiffuse, cFlashlightSpec, cFlashlightColor ); cDiffuse.rgb += cFlashlightDiffuse; cSpec2 += cFlashlightSpec; #endif
// Scale light terms cDiffuse *= g_flDiffuseScale; cSpec *= g_flSpecScale; cSpec2 *= g_flSpecScale2; cRim *= g_flRimLightScale;
// Compute blob interior/background colour float3 cInterior = 0; #if INTERIOR_LAYER == 1 cInterior = BlobInterior( vWorldNormal, vBumpedTSNormal, vEyeDir, vScreenPos, flPixelDepth, flCamDist, flBlobOpacity, cFlashlightColor ); #endif
// Self-illum #if SELF_ILLUM_FRESNEL == 1 BlobSelfIllumFresnel( vFresnelWorldNormal, vEyeDir, cDiffuse ); #endif
#if ( INTERIOR_LAYER == 0 ) // Outer layer only cOut.rgb = cBase.rgb * ( cAmbient.rgb + cDiffuse.rgb ) + flSpecMask * ( cSpec + cSpec2 ) + cRim; #else // Outer layer blended over inner/background colour cInterior.rgb += flBlobOpacity * flSpecMask * cSpec; cOut.rgb = cBase.rgb * ( cAmbient.rgb + cDiffuse.rgb ) + flSpecMask * cSpec2 + cRim; cOut.rgb = lerp( cInterior.rgb, cOut.rgb, flBlobOpacity * flSkinOpacity ); #endif
#if CONTACT_SHADOW == 1 cOut.rgb *= BlobContactShadow( vWorldNormal, vClosestSurfaceDir ); #elif SELF_ILLUM_PULSE == 1 cOut.rgb += BlobSelfIllumPulse( cPulseColor, cBase, flSkinOpacity ); #endif
#if VOLUME_TEXTURE == 1 PerformVolumeTexturing( i.vUV0.xyz, vWorldNormal, cOut.rgb ); #endif
// TODO: Support fog cOut.a = 1; return FinalOutput( cOut, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_LINEAR, g_fWriteDepthToAlpha, flPixelDepth ); }
|