|
|
//===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the SparseSet class derived from the version described in
// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
//
// A sparse set holds a small number of objects identified by integer keys from
// a moderately sized universe. The sparse set uses more memory than other
// containers in order to provide faster operations.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SPARSESET_H
#define LLVM_ADT_SPARSESET_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/DataTypes.h"
#include <limits>
namespace llvm {
/// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
/// be uniquely converted to a small integer less than the set's universe. This
/// class allows the set to hold values that differ from the set's key type as
/// long as an index can still be derived from the value. SparseSet never
/// directly compares ValueT, only their indices, so it can map keys to
/// arbitrary values. SparseSetValTraits computes the index from the value
/// object. To compute the index from a key, SparseSet uses a separate
/// KeyFunctorT template argument.
///
/// A simple type declaration, SparseSet<Type>, handles these cases:
/// - unsigned key, identity index, identity value
/// - unsigned key, identity index, fat value providing getSparseSetIndex()
///
/// The type declaration SparseSet<Type, UnaryFunction> handles:
/// - unsigned key, remapped index, identity value (virtual registers)
/// - pointer key, pointer-derived index, identity value (node+ID)
/// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
///
/// Only other, unexpected cases require specializing SparseSetValTraits.
///
/// For best results, ValueT should not require a destructor.
///
template<typename ValueT> struct SparseSetValTraits { static unsigned getValIndex(const ValueT &Val) { return Val.getSparseSetIndex(); } };
/// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
/// generic implementation handles ValueT classes which either provide
/// getSparseSetIndex() or specialize SparseSetValTraits<>.
///
template<typename KeyT, typename ValueT, typename KeyFunctorT> struct SparseSetValFunctor { unsigned operator()(const ValueT &Val) const { return SparseSetValTraits<ValueT>::getValIndex(Val); } };
/// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
/// identity key/value sets.
template<typename KeyT, typename KeyFunctorT> struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { unsigned operator()(const KeyT &Key) const { return KeyFunctorT()(Key); } };
/// SparseSet - Fast set implmentation for objects that can be identified by
/// small unsigned keys.
///
/// SparseSet allocates memory proportional to the size of the key universe, so
/// it is not recommended for building composite data structures. It is useful
/// for algorithms that require a single set with fast operations.
///
/// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
/// clear() and iteration as fast as a vector. The find(), insert(), and
/// erase() operations are all constant time, and typically faster than a hash
/// table. The iteration order doesn't depend on numerical key values, it only
/// depends on the order of insert() and erase() operations. When no elements
/// have been erased, the iteration order is the insertion order.
///
/// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
/// offers constant-time clear() and size() operations as well as fast
/// iteration independent on the size of the universe.
///
/// SparseSet contains a dense vector holding all the objects and a sparse
/// array holding indexes into the dense vector. Most of the memory is used by
/// the sparse array which is the size of the key universe. The SparseT
/// template parameter provides a space/speed tradeoff for sets holding many
/// elements.
///
/// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
/// array uses 4 x Universe bytes.
///
/// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
/// lines, but the sparse array is 4x smaller. N is the number of elements in
/// the set.
///
/// For sets that may grow to thousands of elements, SparseT should be set to
/// uint16_t or uint32_t.
///
/// @tparam ValueT The type of objects in the set.
/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
/// @tparam SparseT An unsigned integer type. See above.
///
template<typename ValueT, typename KeyFunctorT = llvm::identity<unsigned>, typename SparseT = uint8_t> class SparseSet { typedef typename KeyFunctorT::argument_type KeyT; typedef SmallVector<ValueT, 8> DenseT; DenseT Dense; SparseT *Sparse; unsigned Universe; KeyFunctorT KeyIndexOf; SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
// Disable copy construction and assignment.
// This data structure is not meant to be used that way.
SparseSet(const SparseSet&) LLVM_DELETED_FUNCTION; SparseSet &operator=(const SparseSet&) LLVM_DELETED_FUNCTION;
public: typedef ValueT value_type; typedef ValueT &reference; typedef const ValueT &const_reference; typedef ValueT *pointer; typedef const ValueT *const_pointer;
SparseSet() : Sparse(0), Universe(0) {} ~SparseSet() { free(Sparse); }
/// setUniverse - Set the universe size which determines the largest key the
/// set can hold. The universe must be sized before any elements can be
/// added.
///
/// @param U Universe size. All object keys must be less than U.
///
void setUniverse(unsigned U) { // It's not hard to resize the universe on a non-empty set, but it doesn't
// seem like a likely use case, so we can add that code when we need it.
assert(empty() && "Can only resize universe on an empty map"); // Hysteresis prevents needless reallocations.
if (U >= Universe/4 && U <= Universe) return; free(Sparse); // The Sparse array doesn't actually need to be initialized, so malloc
// would be enough here, but that will cause tools like valgrind to
// complain about branching on uninitialized data.
Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT))); Universe = U; }
// Import trivial vector stuff from DenseT.
typedef typename DenseT::iterator iterator; typedef typename DenseT::const_iterator const_iterator;
const_iterator begin() const { return Dense.begin(); } const_iterator end() const { return Dense.end(); } iterator begin() { return Dense.begin(); } iterator end() { return Dense.end(); }
/// empty - Returns true if the set is empty.
///
/// This is not the same as BitVector::empty().
///
bool empty() const { return Dense.empty(); }
/// size - Returns the number of elements in the set.
///
/// This is not the same as BitVector::size() which returns the size of the
/// universe.
///
unsigned size() const { return Dense.size(); }
/// clear - Clears the set. This is a very fast constant time operation.
///
void clear() { // Sparse does not need to be cleared, see find().
Dense.clear(); }
/// findIndex - Find an element by its index.
///
/// @param Idx A valid index to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator findIndex(unsigned Idx) { assert(Idx < Universe && "Key out of range"); assert(std::numeric_limits<SparseT>::is_integer && !std::numeric_limits<SparseT>::is_signed && "SparseT must be an unsigned integer type"); const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { const unsigned FoundIdx = ValIndexOf(Dense[i]); assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); if (Idx == FoundIdx) return begin() + i; // Stride is 0 when SparseT >= unsigned. We don't need to loop.
if (!Stride) break; } return end(); }
/// find - Find an element by its key.
///
/// @param Key A valid key to find.
/// @returns An iterator to the element identified by key, or end().
///
iterator find(const KeyT &Key) { return findIndex(KeyIndexOf(Key)); }
const_iterator find(const KeyT &Key) const { return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); }
/// count - Returns true if this set contains an element identified by Key.
///
bool count(const KeyT &Key) const { return find(Key) != end(); }
/// insert - Attempts to insert a new element.
///
/// If Val is successfully inserted, return (I, true), where I is an iterator
/// pointing to the newly inserted element.
///
/// If the set already contains an element with the same key as Val, return
/// (I, false), where I is an iterator pointing to the existing element.
///
/// Insertion invalidates all iterators.
///
std::pair<iterator, bool> insert(const ValueT &Val) { unsigned Idx = ValIndexOf(Val); iterator I = findIndex(Idx); if (I != end()) return std::make_pair(I, false); Sparse[Idx] = size(); Dense.push_back(Val); return std::make_pair(end() - 1, true); }
/// array subscript - If an element already exists with this key, return it.
/// Otherwise, automatically construct a new value from Key, insert it,
/// and return the newly inserted element.
ValueT &operator[](const KeyT &Key) { return *insert(ValueT(Key)).first; }
/// erase - Erases an existing element identified by a valid iterator.
///
/// This invalidates all iterators, but erase() returns an iterator pointing
/// to the next element. This makes it possible to erase selected elements
/// while iterating over the set:
///
/// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
/// if (test(*I))
/// I = Set.erase(I);
/// else
/// ++I;
///
/// Note that end() changes when elements are erased, unlike std::list.
///
iterator erase(iterator I) { assert(unsigned(I - begin()) < size() && "Invalid iterator"); if (I != end() - 1) { *I = Dense.back(); unsigned BackIdx = ValIndexOf(Dense.back()); assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); Sparse[BackIdx] = I - begin(); } // This depends on SmallVector::pop_back() not invalidating iterators.
// std::vector::pop_back() doesn't give that guarantee.
Dense.pop_back(); return I; }
/// erase - Erases an element identified by Key, if it exists.
///
/// @param Key The key identifying the element to erase.
/// @returns True when an element was erased, false if no element was found.
///
bool erase(const KeyT &Key) { iterator I = find(Key); if (I == end()) return false; erase(I); return true; }
};
} // end namespace llvm
#endif
|