|
|
//===-- llvm/CodeGen/MachineOperand.h - MachineOperand class ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineOperand class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEOPERAND_H
#define LLVM_CODEGEN_MACHINEOPERAND_H
#include "llvm/Support/DataTypes.h"
#include <cassert>
namespace llvm {
class BlockAddress; class ConstantFP; class ConstantInt; class GlobalValue; class MachineBasicBlock; class MachineInstr; class MachineRegisterInfo; class MDNode; class TargetMachine; class TargetRegisterInfo; class hash_code; class raw_ostream; class MCSymbol;
/// MachineOperand class - Representation of each machine instruction operand.
///
/// This class isn't a POD type because it has a private constructor, but its
/// destructor must be trivial. Functions like MachineInstr::addOperand(),
/// MachineRegisterInfo::moveOperands(), and MF::DeleteMachineInstr() depend on
/// not having to call the MachineOperand destructor.
///
class MachineOperand { public: enum MachineOperandType { MO_Register, ///< Register operand.
MO_Immediate, ///< Immediate operand
MO_CImmediate, ///< Immediate >64bit operand
MO_FPImmediate, ///< Floating-point immediate operand
MO_MachineBasicBlock, ///< MachineBasicBlock reference
MO_FrameIndex, ///< Abstract Stack Frame Index
MO_ConstantPoolIndex, ///< Address of indexed Constant in Constant Pool
MO_TargetIndex, ///< Target-dependent index+offset operand.
MO_JumpTableIndex, ///< Address of indexed Jump Table for switch
MO_ExternalSymbol, ///< Name of external global symbol
MO_GlobalAddress, ///< Address of a global value
MO_BlockAddress, ///< Address of a basic block
MO_RegisterMask, ///< Mask of preserved registers.
MO_Metadata, ///< Metadata reference (for debug info)
MO_MCSymbol ///< MCSymbol reference (for debug/eh info)
};
private: /// OpKind - Specify what kind of operand this is. This discriminates the
/// union.
unsigned char OpKind; // MachineOperandType
/// Subregister number for MO_Register. A value of 0 indicates the
/// MO_Register has no subReg.
///
/// For all other kinds of operands, this field holds target-specific flags.
unsigned SubReg_TargetFlags : 12;
/// TiedTo - Non-zero when this register operand is tied to another register
/// operand. The encoding of this field is described in the block comment
/// before MachineInstr::tieOperands().
unsigned char TiedTo : 4;
/// IsDef/IsImp/IsKill/IsDead flags - These are only valid for MO_Register
/// operands.
/// IsDef - True if this is a def, false if this is a use of the register.
///
bool IsDef : 1;
/// IsImp - True if this is an implicit def or use, false if it is explicit.
///
bool IsImp : 1;
/// IsKill - True if this instruction is the last use of the register on this
/// path through the function. This is only valid on uses of registers.
bool IsKill : 1;
/// IsDead - True if this register is never used by a subsequent instruction.
/// This is only valid on definitions of registers.
bool IsDead : 1;
/// IsUndef - True if this register operand reads an "undef" value, i.e. the
/// read value doesn't matter. This flag can be set on both use and def
/// operands. On a sub-register def operand, it refers to the part of the
/// register that isn't written. On a full-register def operand, it is a
/// noop. See readsReg().
///
/// This is only valid on registers.
///
/// Note that an instruction may have multiple <undef> operands referring to
/// the same register. In that case, the instruction may depend on those
/// operands reading the same dont-care value. For example:
///
/// %vreg1<def> = XOR %vreg2<undef>, %vreg2<undef>
///
/// Any register can be used for %vreg2, and its value doesn't matter, but
/// the two operands must be the same register.
///
bool IsUndef : 1;
/// IsInternalRead - True if this operand reads a value that was defined
/// inside the same instruction or bundle. This flag can be set on both use
/// and def operands. On a sub-register def operand, it refers to the part
/// of the register that isn't written. On a full-register def operand, it
/// is a noop.
///
/// When this flag is set, the instruction bundle must contain at least one
/// other def of the register. If multiple instructions in the bundle define
/// the register, the meaning is target-defined.
bool IsInternalRead : 1;
/// IsEarlyClobber - True if this MO_Register 'def' operand is written to
/// by the MachineInstr before all input registers are read. This is used to
/// model the GCC inline asm '&' constraint modifier.
bool IsEarlyClobber : 1;
/// IsDebug - True if this MO_Register 'use' operand is in a debug pseudo,
/// not a real instruction. Such uses should be ignored during codegen.
bool IsDebug : 1;
/// SmallContents - This really should be part of the Contents union, but
/// lives out here so we can get a better packed struct.
/// MO_Register: Register number.
/// OffsetedInfo: Low bits of offset.
union { unsigned RegNo; // For MO_Register.
unsigned OffsetLo; // Matches Contents.OffsetedInfo.OffsetHi.
} SmallContents;
/// ParentMI - This is the instruction that this operand is embedded into.
/// This is valid for all operand types, when the operand is in an instr.
MachineInstr *ParentMI;
/// Contents union - This contains the payload for the various operand types.
union { MachineBasicBlock *MBB; // For MO_MachineBasicBlock.
const ConstantFP *CFP; // For MO_FPImmediate.
const ConstantInt *CI; // For MO_CImmediate. Integers > 64bit.
int64_t ImmVal; // For MO_Immediate.
const uint32_t *RegMask; // For MO_RegisterMask.
const MDNode *MD; // For MO_Metadata.
MCSymbol *Sym; // For MO_MCSymbol
struct { // For MO_Register.
// Register number is in SmallContents.RegNo.
MachineOperand *Prev; // Access list for register. See MRI.
MachineOperand *Next; } Reg;
/// OffsetedInfo - This struct contains the offset and an object identifier.
/// this represent the object as with an optional offset from it.
struct { union { int Index; // For MO_*Index - The index itself.
const char *SymbolName; // For MO_ExternalSymbol.
const GlobalValue *GV; // For MO_GlobalAddress.
const BlockAddress *BA; // For MO_BlockAddress.
} Val; // Low bits of offset are in SmallContents.OffsetLo.
int OffsetHi; // An offset from the object, high 32 bits.
} OffsetedInfo; } Contents;
explicit MachineOperand(MachineOperandType K) : OpKind(K), SubReg_TargetFlags(0), ParentMI(0) {} public: /// getType - Returns the MachineOperandType for this operand.
///
MachineOperandType getType() const { return (MachineOperandType)OpKind; }
unsigned getTargetFlags() const { return isReg() ? 0 : SubReg_TargetFlags; } void setTargetFlags(unsigned F) { assert(!isReg() && "Register operands can't have target flags"); SubReg_TargetFlags = F; assert(SubReg_TargetFlags == F && "Target flags out of range"); } void addTargetFlag(unsigned F) { assert(!isReg() && "Register operands can't have target flags"); SubReg_TargetFlags |= F; assert((SubReg_TargetFlags & F) && "Target flags out of range"); }
/// getParent - Return the instruction that this operand belongs to.
///
MachineInstr *getParent() { return ParentMI; } const MachineInstr *getParent() const { return ParentMI; }
/// clearParent - Reset the parent pointer.
///
/// The MachineOperand copy constructor also copies ParentMI, expecting the
/// original to be deleted. If a MachineOperand is ever stored outside a
/// MachineInstr, the parent pointer must be cleared.
///
/// Never call clearParent() on an operand in a MachineInstr.
///
void clearParent() { ParentMI = 0; }
void print(raw_ostream &os, const TargetMachine *TM = 0) const;
//===--------------------------------------------------------------------===//
// Accessors that tell you what kind of MachineOperand you're looking at.
//===--------------------------------------------------------------------===//
/// isReg - Tests if this is a MO_Register operand.
bool isReg() const { return OpKind == MO_Register; } /// isImm - Tests if this is a MO_Immediate operand.
bool isImm() const { return OpKind == MO_Immediate; } /// isCImm - Test if t his is a MO_CImmediate operand.
bool isCImm() const { return OpKind == MO_CImmediate; } /// isFPImm - Tests if this is a MO_FPImmediate operand.
bool isFPImm() const { return OpKind == MO_FPImmediate; } /// isMBB - Tests if this is a MO_MachineBasicBlock operand.
bool isMBB() const { return OpKind == MO_MachineBasicBlock; } /// isFI - Tests if this is a MO_FrameIndex operand.
bool isFI() const { return OpKind == MO_FrameIndex; } /// isCPI - Tests if this is a MO_ConstantPoolIndex operand.
bool isCPI() const { return OpKind == MO_ConstantPoolIndex; } /// isTargetIndex - Tests if this is a MO_TargetIndex operand.
bool isTargetIndex() const { return OpKind == MO_TargetIndex; } /// isJTI - Tests if this is a MO_JumpTableIndex operand.
bool isJTI() const { return OpKind == MO_JumpTableIndex; } /// isGlobal - Tests if this is a MO_GlobalAddress operand.
bool isGlobal() const { return OpKind == MO_GlobalAddress; } /// isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isSymbol() const { return OpKind == MO_ExternalSymbol; } /// isBlockAddress - Tests if this is a MO_BlockAddress operand.
bool isBlockAddress() const { return OpKind == MO_BlockAddress; } /// isRegMask - Tests if this is a MO_RegisterMask operand.
bool isRegMask() const { return OpKind == MO_RegisterMask; } /// isMetadata - Tests if this is a MO_Metadata operand.
bool isMetadata() const { return OpKind == MO_Metadata; } bool isMCSymbol() const { return OpKind == MO_MCSymbol; }
//===--------------------------------------------------------------------===//
// Accessors for Register Operands
//===--------------------------------------------------------------------===//
/// getReg - Returns the register number.
unsigned getReg() const { assert(isReg() && "This is not a register operand!"); return SmallContents.RegNo; }
unsigned getSubReg() const { assert(isReg() && "Wrong MachineOperand accessor"); return SubReg_TargetFlags; }
bool isUse() const { assert(isReg() && "Wrong MachineOperand accessor"); return !IsDef; }
bool isDef() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsDef; }
bool isImplicit() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsImp; }
bool isDead() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsDead; }
bool isKill() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsKill; }
bool isUndef() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsUndef; }
bool isInternalRead() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsInternalRead; }
bool isEarlyClobber() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsEarlyClobber; }
bool isTied() const { assert(isReg() && "Wrong MachineOperand accessor"); return TiedTo; }
bool isDebug() const { assert(isReg() && "Wrong MachineOperand accessor"); return IsDebug; }
/// readsReg - Returns true if this operand reads the previous value of its
/// register. A use operand with the <undef> flag set doesn't read its
/// register. A sub-register def implicitly reads the other parts of the
/// register being redefined unless the <undef> flag is set.
///
/// This refers to reading the register value from before the current
/// instruction or bundle. Internal bundle reads are not included.
bool readsReg() const { assert(isReg() && "Wrong MachineOperand accessor"); return !isUndef() && !isInternalRead() && (isUse() || getSubReg()); }
//===--------------------------------------------------------------------===//
// Mutators for Register Operands
//===--------------------------------------------------------------------===//
/// Change the register this operand corresponds to.
///
void setReg(unsigned Reg);
void setSubReg(unsigned subReg) { assert(isReg() && "Wrong MachineOperand accessor"); SubReg_TargetFlags = subReg; assert(SubReg_TargetFlags == subReg && "SubReg out of range"); }
/// substVirtReg - Substitute the current register with the virtual
/// subregister Reg:SubReg. Take any existing SubReg index into account,
/// using TargetRegisterInfo to compose the subreg indices if necessary.
/// Reg must be a virtual register, SubIdx can be 0.
///
void substVirtReg(unsigned Reg, unsigned SubIdx, const TargetRegisterInfo&);
/// substPhysReg - Substitute the current register with the physical register
/// Reg, taking any existing SubReg into account. For instance,
/// substPhysReg(%EAX) will change %reg1024:sub_8bit to %AL.
///
void substPhysReg(unsigned Reg, const TargetRegisterInfo&);
void setIsUse(bool Val = true) { setIsDef(!Val); }
void setIsDef(bool Val = true);
void setImplicit(bool Val = true) { assert(isReg() && "Wrong MachineOperand accessor"); IsImp = Val; }
void setIsKill(bool Val = true) { assert(isReg() && !IsDef && "Wrong MachineOperand accessor"); assert((!Val || !isDebug()) && "Marking a debug operation as kill"); IsKill = Val; }
void setIsDead(bool Val = true) { assert(isReg() && IsDef && "Wrong MachineOperand accessor"); IsDead = Val; }
void setIsUndef(bool Val = true) { assert(isReg() && "Wrong MachineOperand accessor"); IsUndef = Val; }
void setIsInternalRead(bool Val = true) { assert(isReg() && "Wrong MachineOperand accessor"); IsInternalRead = Val; }
void setIsEarlyClobber(bool Val = true) { assert(isReg() && IsDef && "Wrong MachineOperand accessor"); IsEarlyClobber = Val; }
void setIsDebug(bool Val = true) { assert(isReg() && IsDef && "Wrong MachineOperand accessor"); IsDebug = Val; }
//===--------------------------------------------------------------------===//
// Accessors for various operand types.
//===--------------------------------------------------------------------===//
int64_t getImm() const { assert(isImm() && "Wrong MachineOperand accessor"); return Contents.ImmVal; }
const ConstantInt *getCImm() const { assert(isCImm() && "Wrong MachineOperand accessor"); return Contents.CI; }
const ConstantFP *getFPImm() const { assert(isFPImm() && "Wrong MachineOperand accessor"); return Contents.CFP; }
MachineBasicBlock *getMBB() const { assert(isMBB() && "Wrong MachineOperand accessor"); return Contents.MBB; }
int getIndex() const { assert((isFI() || isCPI() || isTargetIndex() || isJTI()) && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.Index; }
const GlobalValue *getGlobal() const { assert(isGlobal() && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.GV; }
const BlockAddress *getBlockAddress() const { assert(isBlockAddress() && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.BA; }
MCSymbol *getMCSymbol() const { assert(isMCSymbol() && "Wrong MachineOperand accessor"); return Contents.Sym; }
/// getOffset - Return the offset from the symbol in this operand. This always
/// returns 0 for ExternalSymbol operands.
int64_t getOffset() const { assert((isGlobal() || isSymbol() || isCPI() || isTargetIndex() || isBlockAddress()) && "Wrong MachineOperand accessor"); return int64_t(uint64_t(Contents.OffsetedInfo.OffsetHi) << 32) | SmallContents.OffsetLo; }
const char *getSymbolName() const { assert(isSymbol() && "Wrong MachineOperand accessor"); return Contents.OffsetedInfo.Val.SymbolName; }
/// clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
/// It is sometimes necessary to detach the register mask pointer from its
/// machine operand. This static method can be used for such detached bit
/// mask pointers.
static bool clobbersPhysReg(const uint32_t *RegMask, unsigned PhysReg) { // See TargetRegisterInfo.h.
assert(PhysReg < (1u << 30) && "Not a physical register"); return !(RegMask[PhysReg / 32] & (1u << PhysReg % 32)); }
/// clobbersPhysReg - Returns true if this RegMask operand clobbers PhysReg.
bool clobbersPhysReg(unsigned PhysReg) const { return clobbersPhysReg(getRegMask(), PhysReg); }
/// getRegMask - Returns a bit mask of registers preserved by this RegMask
/// operand.
const uint32_t *getRegMask() const { assert(isRegMask() && "Wrong MachineOperand accessor"); return Contents.RegMask; }
const MDNode *getMetadata() const { assert(isMetadata() && "Wrong MachineOperand accessor"); return Contents.MD; }
//===--------------------------------------------------------------------===//
// Mutators for various operand types.
//===--------------------------------------------------------------------===//
void setImm(int64_t immVal) { assert(isImm() && "Wrong MachineOperand mutator"); Contents.ImmVal = immVal; }
void setOffset(int64_t Offset) { assert((isGlobal() || isSymbol() || isCPI() || isTargetIndex() || isBlockAddress()) && "Wrong MachineOperand accessor"); SmallContents.OffsetLo = unsigned(Offset); Contents.OffsetedInfo.OffsetHi = int(Offset >> 32); }
void setIndex(int Idx) { assert((isFI() || isCPI() || isTargetIndex() || isJTI()) && "Wrong MachineOperand accessor"); Contents.OffsetedInfo.Val.Index = Idx; }
void setMBB(MachineBasicBlock *MBB) { assert(isMBB() && "Wrong MachineOperand accessor"); Contents.MBB = MBB; }
//===--------------------------------------------------------------------===//
// Other methods.
//===--------------------------------------------------------------------===//
/// isIdenticalTo - Return true if this operand is identical to the specified
/// operand. Note: This method ignores isKill and isDead properties.
bool isIdenticalTo(const MachineOperand &Other) const;
/// \brief MachineOperand hash_value overload.
///
/// Note that this includes the same information in the hash that
/// isIdenticalTo uses for comparison. It is thus suited for use in hash
/// tables which use that function for equality comparisons only.
friend hash_code hash_value(const MachineOperand &MO);
/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value. If an operand is known to be an immediate already,
/// the setImm method should be used.
void ChangeToImmediate(int64_t ImmVal);
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
void ChangeToRegister(unsigned Reg, bool isDef, bool isImp = false, bool isKill = false, bool isDead = false, bool isUndef = false, bool isDebug = false);
//===--------------------------------------------------------------------===//
// Construction methods.
//===--------------------------------------------------------------------===//
static MachineOperand CreateImm(int64_t Val) { MachineOperand Op(MachineOperand::MO_Immediate); Op.setImm(Val); return Op; }
static MachineOperand CreateCImm(const ConstantInt *CI) { MachineOperand Op(MachineOperand::MO_CImmediate); Op.Contents.CI = CI; return Op; }
static MachineOperand CreateFPImm(const ConstantFP *CFP) { MachineOperand Op(MachineOperand::MO_FPImmediate); Op.Contents.CFP = CFP; return Op; }
static MachineOperand CreateReg(unsigned Reg, bool isDef, bool isImp = false, bool isKill = false, bool isDead = false, bool isUndef = false, bool isEarlyClobber = false, unsigned SubReg = 0, bool isDebug = false, bool isInternalRead = false) { MachineOperand Op(MachineOperand::MO_Register); Op.IsDef = isDef; Op.IsImp = isImp; Op.IsKill = isKill; Op.IsDead = isDead; Op.IsUndef = isUndef; Op.IsInternalRead = isInternalRead; Op.IsEarlyClobber = isEarlyClobber; Op.TiedTo = 0; Op.IsDebug = isDebug; Op.SmallContents.RegNo = Reg; Op.Contents.Reg.Prev = 0; Op.Contents.Reg.Next = 0; Op.setSubReg(SubReg); return Op; } static MachineOperand CreateMBB(MachineBasicBlock *MBB, unsigned char TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_MachineBasicBlock); Op.setMBB(MBB); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateFI(int Idx) { MachineOperand Op(MachineOperand::MO_FrameIndex); Op.setIndex(Idx); return Op; } static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned char TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_ConstantPoolIndex); Op.setIndex(Idx); Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateTargetIndex(unsigned Idx, int64_t Offset, unsigned char TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_TargetIndex); Op.setIndex(Idx); Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateJTI(unsigned Idx, unsigned char TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_JumpTableIndex); Op.setIndex(Idx); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned char TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_GlobalAddress); Op.Contents.OffsetedInfo.Val.GV = GV; Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateES(const char *SymName, unsigned char TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_ExternalSymbol); Op.Contents.OffsetedInfo.Val.SymbolName = SymName; Op.setOffset(0); // Offset is always 0.
Op.setTargetFlags(TargetFlags); return Op; } static MachineOperand CreateBA(const BlockAddress *BA, int64_t Offset, unsigned char TargetFlags = 0) { MachineOperand Op(MachineOperand::MO_BlockAddress); Op.Contents.OffsetedInfo.Val.BA = BA; Op.setOffset(Offset); Op.setTargetFlags(TargetFlags); return Op; } /// CreateRegMask - Creates a register mask operand referencing Mask. The
/// operand does not take ownership of the memory referenced by Mask, it must
/// remain valid for the lifetime of the operand.
///
/// A RegMask operand represents a set of non-clobbered physical registers on
/// an instruction that clobbers many registers, typically a call. The bit
/// mask has a bit set for each physreg that is preserved by this
/// instruction, as described in the documentation for
/// TargetRegisterInfo::getCallPreservedMask().
///
/// Any physreg with a 0 bit in the mask is clobbered by the instruction.
///
static MachineOperand CreateRegMask(const uint32_t *Mask) { assert(Mask && "Missing register mask"); MachineOperand Op(MachineOperand::MO_RegisterMask); Op.Contents.RegMask = Mask; return Op; } static MachineOperand CreateMetadata(const MDNode *Meta) { MachineOperand Op(MachineOperand::MO_Metadata); Op.Contents.MD = Meta; return Op; }
static MachineOperand CreateMCSymbol(MCSymbol *Sym) { MachineOperand Op(MachineOperand::MO_MCSymbol); Op.Contents.Sym = Sym; return Op; }
friend class MachineInstr; friend class MachineRegisterInfo; private: //===--------------------------------------------------------------------===//
// Methods for handling register use/def lists.
//===--------------------------------------------------------------------===//
/// isOnRegUseList - Return true if this operand is on a register use/def list
/// or false if not. This can only be called for register operands that are
/// part of a machine instruction.
bool isOnRegUseList() const { assert(isReg() && "Can only add reg operand to use lists"); return Contents.Reg.Prev != 0; } };
inline raw_ostream &operator<<(raw_ostream &OS, const MachineOperand& MO) { MO.print(OS, 0); return OS; }
// See friend declaration above. This additional declaration is required in
// order to compile LLVM with IBM xlC compiler.
hash_code hash_value(const MachineOperand &MO); } // End llvm namespace
#endif
|