|
|
//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the SDNode class and derived classes, which are used to
// represent the nodes and operations present in a SelectionDAG. These nodes
// and operations are machine code level operations, with some similarities to
// the GCC RTL representation.
//
// Clients should include the SelectionDAG.h file instead of this file directly.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/DebugLoc.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
namespace llvm {
class SelectionDAG; class GlobalValue; class MachineBasicBlock; class MachineConstantPoolValue; class SDNode; class Value; class MCSymbol; template <typename T> struct DenseMapInfo; template <typename T> struct simplify_type; template <typename T> struct ilist_traits;
void checkForCycles(const SDNode *N);
/// SDVTList - This represents a list of ValueType's that has been intern'd by
/// a SelectionDAG. Instances of this simple value class are returned by
/// SelectionDAG::getVTList(...).
///
struct SDVTList { const EVT *VTs; unsigned int NumVTs; };
namespace ISD { /// Node predicates
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool isBuildVectorAllOnes(const SDNode *N);
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool isBuildVectorAllZeros(const SDNode *N);
/// isScalarToVector - Return true if the specified node is a
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool isScalarToVector(const SDNode *N);
/// allOperandsUndef - Return true if the node has at least one operand
/// and all operands of the specified node are ISD::UNDEF.
bool allOperandsUndef(const SDNode *N); } // end llvm:ISD namespace
//===----------------------------------------------------------------------===//
/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
/// values as the result of a computation. Many nodes return multiple values,
/// from loads (which define a token and a return value) to ADDC (which returns
/// a result and a carry value), to calls (which may return an arbitrary number
/// of values).
///
/// As such, each use of a SelectionDAG computation must indicate the node that
/// computes it as well as which return value to use from that node. This pair
/// of information is represented with the SDValue value type.
///
class SDValue { SDNode *Node; // The node defining the value we are using.
unsigned ResNo; // Which return value of the node we are using.
public: SDValue() : Node(0), ResNo(0) {} SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
/// get the index which selects a specific result in the SDNode
unsigned getResNo() const { return ResNo; }
/// get the SDNode which holds the desired result
SDNode *getNode() const { return Node; }
/// set the SDNode
void setNode(SDNode *N) { Node = N; }
inline SDNode *operator->() const { return Node; }
bool operator==(const SDValue &O) const { return Node == O.Node && ResNo == O.ResNo; } bool operator!=(const SDValue &O) const { return !operator==(O); } bool operator<(const SDValue &O) const { return Node < O.Node || (Node == O.Node && ResNo < O.ResNo); }
SDValue getValue(unsigned R) const { return SDValue(Node, R); }
// isOperandOf - Return true if this node is an operand of N.
bool isOperandOf(SDNode *N) const;
/// getValueType - Return the ValueType of the referenced return value.
///
inline EVT getValueType() const;
/// Return the simple ValueType of the referenced return value.
MVT getSimpleValueType() const { return getValueType().getSimpleVT(); }
/// getValueSizeInBits - Returns the size of the value in bits.
///
unsigned getValueSizeInBits() const { return getValueType().getSizeInBits(); }
// Forwarding methods - These forward to the corresponding methods in SDNode.
inline unsigned getOpcode() const; inline unsigned getNumOperands() const; inline const SDValue &getOperand(unsigned i) const; inline uint64_t getConstantOperandVal(unsigned i) const; inline bool isTargetMemoryOpcode() const; inline bool isTargetOpcode() const; inline bool isMachineOpcode() const; inline unsigned getMachineOpcode() const; inline const DebugLoc getDebugLoc() const; inline void dump() const; inline void dumpr() const;
/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any
/// side-effecting instructions. In practice, this looks through token
/// factors and non-volatile loads. In order to remain efficient, this only
/// looks a couple of nodes in, it does not do an exhaustive search.
bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth = 2) const;
/// use_empty - Return true if there are no nodes using value ResNo
/// of Node.
///
inline bool use_empty() const;
/// hasOneUse - Return true if there is exactly one node using value
/// ResNo of Node.
///
inline bool hasOneUse() const; };
template<> struct DenseMapInfo<SDValue> { static inline SDValue getEmptyKey() { return SDValue((SDNode*)-1, -1U); } static inline SDValue getTombstoneKey() { return SDValue((SDNode*)-1, 0); } static unsigned getHashValue(const SDValue &Val) { return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); } static bool isEqual(const SDValue &LHS, const SDValue &RHS) { return LHS == RHS; } }; template <> struct isPodLike<SDValue> { static const bool value = true; };
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDValue> { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(SDValue &Val) { return Val.getNode(); } }; template<> struct simplify_type<const SDValue> { typedef /*const*/ SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDValue &Val) { return Val.getNode(); } };
/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
/// which records the SDNode being used and the result number, a
/// pointer to the SDNode using the value, and Next and Prev pointers,
/// which link together all the uses of an SDNode.
///
class SDUse { /// Val - The value being used.
SDValue Val; /// User - The user of this value.
SDNode *User; /// Prev, Next - Pointers to the uses list of the SDNode referred by
/// this operand.
SDUse **Prev, *Next;
SDUse(const SDUse &U) LLVM_DELETED_FUNCTION; void operator=(const SDUse &U) LLVM_DELETED_FUNCTION;
public: SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
operator const SDValue&() const { return Val; }
/// If implicit conversion to SDValue doesn't work, the get() method returns
/// the SDValue.
const SDValue &get() const { return Val; }
/// getUser - This returns the SDNode that contains this Use.
SDNode *getUser() { return User; }
/// getNext - Get the next SDUse in the use list.
SDUse *getNext() const { return Next; }
/// getNode - Convenience function for get().getNode().
SDNode *getNode() const { return Val.getNode(); } /// getResNo - Convenience function for get().getResNo().
unsigned getResNo() const { return Val.getResNo(); } /// getValueType - Convenience function for get().getValueType().
EVT getValueType() const { return Val.getValueType(); }
/// operator== - Convenience function for get().operator==
bool operator==(const SDValue &V) const { return Val == V; }
/// operator!= - Convenience function for get().operator!=
bool operator!=(const SDValue &V) const { return Val != V; }
/// operator< - Convenience function for get().operator<
bool operator<(const SDValue &V) const { return Val < V; }
private: friend class SelectionDAG; friend class SDNode;
void setUser(SDNode *p) { User = p; }
/// set - Remove this use from its existing use list, assign it the
/// given value, and add it to the new value's node's use list.
inline void set(const SDValue &V); /// setInitial - like set, but only supports initializing a newly-allocated
/// SDUse with a non-null value.
inline void setInitial(const SDValue &V); /// setNode - like set, but only sets the Node portion of the value,
/// leaving the ResNo portion unmodified.
inline void setNode(SDNode *N);
void addToList(SDUse **List) { Next = *List; if (Next) Next->Prev = &Next; Prev = List; *List = this; }
void removeFromList() { *Prev = Next; if (Next) Next->Prev = Prev; } };
/// simplify_type specializations - Allow casting operators to work directly on
/// SDValues as if they were SDNode*'s.
template<> struct simplify_type<SDUse> { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(SDUse &Val) { return Val.getNode(); } };
/// SDNode - Represents one node in the SelectionDAG.
///
class SDNode : public FoldingSetNode, public ilist_node<SDNode> { private: /// NodeType - The operation that this node performs.
///
int16_t NodeType;
/// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
/// then they will be delete[]'d when the node is destroyed.
uint16_t OperandsNeedDelete : 1;
/// HasDebugValue - This tracks whether this node has one or more dbg_value
/// nodes corresponding to it.
uint16_t HasDebugValue : 1;
protected: /// SubclassData - This member is defined by this class, but is not used for
/// anything. Subclasses can use it to hold whatever state they find useful.
/// This field is initialized to zero by the ctor.
uint16_t SubclassData : 14;
private: /// NodeId - Unique id per SDNode in the DAG.
int NodeId;
/// OperandList - The values that are used by this operation.
///
SDUse *OperandList;
/// ValueList - The types of the values this node defines. SDNode's may
/// define multiple values simultaneously.
const EVT *ValueList;
/// UseList - List of uses for this SDNode.
SDUse *UseList;
/// NumOperands/NumValues - The number of entries in the Operand/Value list.
unsigned short NumOperands, NumValues;
/// debugLoc - source line information.
DebugLoc debugLoc;
/// getValueTypeList - Return a pointer to the specified value type.
static const EVT *getValueTypeList(EVT VT);
friend class SelectionDAG; friend struct ilist_traits<SDNode>;
public: //===--------------------------------------------------------------------===//
// Accessors
//
/// getOpcode - Return the SelectionDAG opcode value for this node. For
/// pre-isel nodes (those for which isMachineOpcode returns false), these
/// are the opcode values in the ISD and <target>ISD namespaces. For
/// post-isel opcodes, see getMachineOpcode.
unsigned getOpcode() const { return (unsigned short)NodeType; }
/// isTargetOpcode - Test if this node has a target-specific opcode (in the
/// \<target\>ISD namespace).
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
/// isTargetMemoryOpcode - Test if this node has a target-specific
/// memory-referencing opcode (in the \<target\>ISD namespace and
/// greater than FIRST_TARGET_MEMORY_OPCODE).
bool isTargetMemoryOpcode() const { return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE; }
/// isMachineOpcode - Test if this node has a post-isel opcode, directly
/// corresponding to a MachineInstr opcode.
bool isMachineOpcode() const { return NodeType < 0; }
/// getMachineOpcode - This may only be called if isMachineOpcode returns
/// true. It returns the MachineInstr opcode value that the node's opcode
/// corresponds to.
unsigned getMachineOpcode() const { assert(isMachineOpcode() && "Not a MachineInstr opcode!"); return ~NodeType; }
/// getHasDebugValue - get this bit.
bool getHasDebugValue() const { return HasDebugValue; }
/// setHasDebugValue - set this bit.
void setHasDebugValue(bool b) { HasDebugValue = b; }
/// use_empty - Return true if there are no uses of this node.
///
bool use_empty() const { return UseList == NULL; }
/// hasOneUse - Return true if there is exactly one use of this node.
///
bool hasOneUse() const { return !use_empty() && llvm::next(use_begin()) == use_end(); }
/// use_size - Return the number of uses of this node. This method takes
/// time proportional to the number of uses.
///
size_t use_size() const { return std::distance(use_begin(), use_end()); }
/// getNodeId - Return the unique node id.
///
int getNodeId() const { return NodeId; }
/// setNodeId - Set unique node id.
void setNodeId(int Id) { NodeId = Id; }
/// getDebugLoc - Return the source location info.
const DebugLoc getDebugLoc() const { return debugLoc; }
/// setDebugLoc - Set source location info. Try to avoid this, putting
/// it in the constructor is preferable.
void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
/// use_iterator - This class provides iterator support for SDUse
/// operands that use a specific SDNode.
class use_iterator : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> { SDUse *Op; explicit use_iterator(SDUse *op) : Op(op) { } friend class SDNode; public: typedef std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t>::reference reference; typedef std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t>::pointer pointer;
use_iterator(const use_iterator &I) : Op(I.Op) {} use_iterator() : Op(0) {}
bool operator==(const use_iterator &x) const { return Op == x.Op; } bool operator!=(const use_iterator &x) const { return !operator==(x); }
/// atEnd - return true if this iterator is at the end of uses list.
bool atEnd() const { return Op == 0; }
// Iterator traversal: forward iteration only.
use_iterator &operator++() { // Preincrement
assert(Op && "Cannot increment end iterator!"); Op = Op->getNext(); return *this; }
use_iterator operator++(int) { // Postincrement
use_iterator tmp = *this; ++*this; return tmp; }
/// Retrieve a pointer to the current user node.
SDNode *operator*() const { assert(Op && "Cannot dereference end iterator!"); return Op->getUser(); }
SDNode *operator->() const { return operator*(); }
SDUse &getUse() const { return *Op; }
/// getOperandNo - Retrieve the operand # of this use in its user.
///
unsigned getOperandNo() const { assert(Op && "Cannot dereference end iterator!"); return (unsigned)(Op - Op->getUser()->OperandList); } };
/// use_begin/use_end - Provide iteration support to walk over all uses
/// of an SDNode.
use_iterator use_begin() const { return use_iterator(UseList); }
static use_iterator use_end() { return use_iterator(0); }
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool hasAnyUseOfValue(unsigned Value) const;
/// isOnlyUserOf - Return true if this node is the only use of N.
///
bool isOnlyUserOf(SDNode *N) const;
/// isOperandOf - Return true if this node is an operand of N.
///
bool isOperandOf(SDNode *N) const;
/// isPredecessorOf - Return true if this node is a predecessor of N.
/// NOTE: Implemented on top of hasPredecessor and every bit as
/// expensive. Use carefully.
bool isPredecessorOf(const SDNode *N) const { return N->hasPredecessor(this); }
/// hasPredecessor - Return true if N is a predecessor of this node.
/// N is either an operand of this node, or can be reached by recursively
/// traversing up the operands.
/// NOTE: This is an expensive method. Use it carefully.
bool hasPredecessor(const SDNode *N) const;
/// hasPredecesorHelper - Return true if N is a predecessor of this node.
/// N is either an operand of this node, or can be reached by recursively
/// traversing up the operands.
/// In this helper the Visited and worklist sets are held externally to
/// cache predecessors over multiple invocations. If you want to test for
/// multiple predecessors this method is preferable to multiple calls to
/// hasPredecessor. Be sure to clear Visited and Worklist if the DAG
/// changes.
/// NOTE: This is still very expensive. Use carefully.
bool hasPredecessorHelper(const SDNode *N, SmallPtrSet<const SDNode *, 32> &Visited, SmallVector<const SDNode *, 16> &Worklist) const;
/// getNumOperands - Return the number of values used by this operation.
///
unsigned getNumOperands() const { return NumOperands; }
/// getConstantOperandVal - Helper method returns the integer value of a
/// ConstantSDNode operand.
uint64_t getConstantOperandVal(unsigned Num) const;
const SDValue &getOperand(unsigned Num) const { assert(Num < NumOperands && "Invalid child # of SDNode!"); return OperandList[Num]; }
typedef SDUse* op_iterator; op_iterator op_begin() const { return OperandList; } op_iterator op_end() const { return OperandList+NumOperands; }
SDVTList getVTList() const { SDVTList X = { ValueList, NumValues }; return X; }
/// getGluedNode - If this node has a glue operand, return the node
/// to which the glue operand points. Otherwise return NULL.
SDNode *getGluedNode() const { if (getNumOperands() != 0 && getOperand(getNumOperands()-1).getValueType() == MVT::Glue) return getOperand(getNumOperands()-1).getNode(); return 0; }
// If this is a pseudo op, like copyfromreg, look to see if there is a
// real target node glued to it. If so, return the target node.
const SDNode *getGluedMachineNode() const { const SDNode *FoundNode = this;
// Climb up glue edges until a machine-opcode node is found, or the
// end of the chain is reached.
while (!FoundNode->isMachineOpcode()) { const SDNode *N = FoundNode->getGluedNode(); if (!N) break; FoundNode = N; }
return FoundNode; }
/// getGluedUser - If this node has a glue value with a user, return
/// the user (there is at most one). Otherwise return NULL.
SDNode *getGluedUser() const { for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI) if (UI.getUse().get().getValueType() == MVT::Glue) return *UI; return 0; }
/// getNumValues - Return the number of values defined/returned by this
/// operator.
///
unsigned getNumValues() const { return NumValues; }
/// getValueType - Return the type of a specified result.
///
EVT getValueType(unsigned ResNo) const { assert(ResNo < NumValues && "Illegal result number!"); return ValueList[ResNo]; }
/// Return the type of a specified result as a simple type.
///
MVT getSimpleValueType(unsigned ResNo) const { return getValueType(ResNo).getSimpleVT(); }
/// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
///
unsigned getValueSizeInBits(unsigned ResNo) const { return getValueType(ResNo).getSizeInBits(); }
typedef const EVT* value_iterator; value_iterator value_begin() const { return ValueList; } value_iterator value_end() const { return ValueList+NumValues; }
/// getOperationName - Return the opcode of this operation for printing.
///
std::string getOperationName(const SelectionDAG *G = 0) const; static const char* getIndexedModeName(ISD::MemIndexedMode AM); void print_types(raw_ostream &OS, const SelectionDAG *G) const; void print_details(raw_ostream &OS, const SelectionDAG *G) const; void print(raw_ostream &OS, const SelectionDAG *G = 0) const; void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
/// printrFull - Print a SelectionDAG node and all children down to
/// the leaves. The given SelectionDAG allows target-specific nodes
/// to be printed in human-readable form. Unlike printr, this will
/// print the whole DAG, including children that appear multiple
/// times.
///
void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const;
/// printrWithDepth - Print a SelectionDAG node and children up to
/// depth "depth." The given SelectionDAG allows target-specific
/// nodes to be printed in human-readable form. Unlike printr, this
/// will print children that appear multiple times wherever they are
/// used.
///
void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0, unsigned depth = 100) const;
/// dump - Dump this node, for debugging.
void dump() const;
/// dumpr - Dump (recursively) this node and its use-def subgraph.
void dumpr() const;
/// dump - Dump this node, for debugging.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dump(const SelectionDAG *G) const;
/// dumpr - Dump (recursively) this node and its use-def subgraph.
/// The given SelectionDAG allows target-specific nodes to be printed
/// in human-readable form.
void dumpr(const SelectionDAG *G) const;
/// dumprFull - printrFull to dbgs(). The given SelectionDAG allows
/// target-specific nodes to be printed in human-readable form.
/// Unlike dumpr, this will print the whole DAG, including children
/// that appear multiple times.
///
void dumprFull(const SelectionDAG *G = 0) const;
/// dumprWithDepth - printrWithDepth to dbgs(). The given
/// SelectionDAG allows target-specific nodes to be printed in
/// human-readable form. Unlike dumpr, this will print children
/// that appear multiple times wherever they are used.
///
void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const;
/// Profile - Gather unique data for the node.
///
void Profile(FoldingSetNodeID &ID) const;
/// addUse - This method should only be used by the SDUse class.
///
void addUse(SDUse &U) { U.addToList(&UseList); }
protected: static SDVTList getSDVTList(EVT VT) { SDVTList Ret = { getValueTypeList(VT), 1 }; return Ret; }
SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops, unsigned NumOps) : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false), SubclassData(0), NodeId(-1), OperandList(NumOps ? new SDUse[NumOps] : 0), ValueList(VTs.VTs), UseList(NULL), NumOperands(NumOps), NumValues(VTs.NumVTs), debugLoc(dl) { for (unsigned i = 0; i != NumOps; ++i) { OperandList[i].setUser(this); OperandList[i].setInitial(Ops[i]); } checkForCycles(this); }
/// This constructor adds no operands itself; operands can be
/// set later with InitOperands.
SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs) : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false), SubclassData(0), NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL), NumOperands(0), NumValues(VTs.NumVTs), debugLoc(dl) {}
/// InitOperands - Initialize the operands list of this with 1 operand.
void InitOperands(SDUse *Ops, const SDValue &Op0) { Ops[0].setUser(this); Ops[0].setInitial(Op0); NumOperands = 1; OperandList = Ops; checkForCycles(this); }
/// InitOperands - Initialize the operands list of this with 2 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) { Ops[0].setUser(this); Ops[0].setInitial(Op0); Ops[1].setUser(this); Ops[1].setInitial(Op1); NumOperands = 2; OperandList = Ops; checkForCycles(this); }
/// InitOperands - Initialize the operands list of this with 3 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1, const SDValue &Op2) { Ops[0].setUser(this); Ops[0].setInitial(Op0); Ops[1].setUser(this); Ops[1].setInitial(Op1); Ops[2].setUser(this); Ops[2].setInitial(Op2); NumOperands = 3; OperandList = Ops; checkForCycles(this); }
/// InitOperands - Initialize the operands list of this with 4 operands.
void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1, const SDValue &Op2, const SDValue &Op3) { Ops[0].setUser(this); Ops[0].setInitial(Op0); Ops[1].setUser(this); Ops[1].setInitial(Op1); Ops[2].setUser(this); Ops[2].setInitial(Op2); Ops[3].setUser(this); Ops[3].setInitial(Op3); NumOperands = 4; OperandList = Ops; checkForCycles(this); }
/// InitOperands - Initialize the operands list of this with N operands.
void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) { for (unsigned i = 0; i != N; ++i) { Ops[i].setUser(this); Ops[i].setInitial(Vals[i]); } NumOperands = N; OperandList = Ops; checkForCycles(this); }
/// DropOperands - Release the operands and set this node to have
/// zero operands.
void DropOperands(); };
// Define inline functions from the SDValue class.
inline unsigned SDValue::getOpcode() const { return Node->getOpcode(); } inline EVT SDValue::getValueType() const { return Node->getValueType(ResNo); } inline unsigned SDValue::getNumOperands() const { return Node->getNumOperands(); } inline const SDValue &SDValue::getOperand(unsigned i) const { return Node->getOperand(i); } inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { return Node->getConstantOperandVal(i); } inline bool SDValue::isTargetOpcode() const { return Node->isTargetOpcode(); } inline bool SDValue::isTargetMemoryOpcode() const { return Node->isTargetMemoryOpcode(); } inline bool SDValue::isMachineOpcode() const { return Node->isMachineOpcode(); } inline unsigned SDValue::getMachineOpcode() const { return Node->getMachineOpcode(); } inline bool SDValue::use_empty() const { return !Node->hasAnyUseOfValue(ResNo); } inline bool SDValue::hasOneUse() const { return Node->hasNUsesOfValue(1, ResNo); } inline const DebugLoc SDValue::getDebugLoc() const { return Node->getDebugLoc(); } inline void SDValue::dump() const { return Node->dump(); } inline void SDValue::dumpr() const { return Node->dumpr(); } // Define inline functions from the SDUse class.
inline void SDUse::set(const SDValue &V) { if (Val.getNode()) removeFromList(); Val = V; if (V.getNode()) V.getNode()->addUse(*this); }
inline void SDUse::setInitial(const SDValue &V) { Val = V; V.getNode()->addUse(*this); }
inline void SDUse::setNode(SDNode *N) { if (Val.getNode()) removeFromList(); Val.setNode(N); if (N) N->addUse(*this); }
/// UnarySDNode - This class is used for single-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class UnarySDNode : public SDNode { SDUse Op; public: UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X) : SDNode(Opc, dl, VTs) { InitOperands(&Op, X); } };
/// BinarySDNode - This class is used for two-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class BinarySDNode : public SDNode { SDUse Ops[2]; public: BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y) : SDNode(Opc, dl, VTs) { InitOperands(Ops, X, Y); } };
/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
/// to allow co-allocation of node operands with the node itself.
class TernarySDNode : public SDNode { SDUse Ops[3]; public: TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y, SDValue Z) : SDNode(Opc, dl, VTs) { InitOperands(Ops, X, Y, Z); } };
/// HandleSDNode - This class is used to form a handle around another node that
/// is persistent and is updated across invocations of replaceAllUsesWith on its
/// operand. This node should be directly created by end-users and not added to
/// the AllNodes list.
class HandleSDNode : public SDNode { SDUse Op; public: // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
// fixed.
#if __GNUC__==4 && __GNUC_MINOR__==2 && defined(__APPLE__) && !defined(__llvm__)
explicit __attribute__((__noinline__)) HandleSDNode(SDValue X) #else
explicit HandleSDNode(SDValue X) #endif
: SDNode(ISD::HANDLENODE, DebugLoc(), getSDVTList(MVT::Other)) { InitOperands(&Op, X); } ~HandleSDNode(); const SDValue &getValue() const { return Op; } };
/// Abstact virtual class for operations for memory operations
class MemSDNode : public SDNode { private: // MemoryVT - VT of in-memory value.
EVT MemoryVT;
protected: /// MMO - Memory reference information.
MachineMemOperand *MMO;
public: MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO);
MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops, unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
bool readMem() const { return MMO->isLoad(); } bool writeMem() const { return MMO->isStore(); }
/// Returns alignment and volatility of the memory access
unsigned getOriginalAlignment() const { return MMO->getBaseAlignment(); } unsigned getAlignment() const { return MMO->getAlignment(); }
/// getRawSubclassData - Return the SubclassData value, which contains an
/// encoding of the volatile flag, as well as bits used by subclasses. This
/// function should only be used to compute a FoldingSetNodeID value.
unsigned getRawSubclassData() const { return SubclassData; }
// We access subclass data here so that we can check consistency
// with MachineMemOperand information.
bool isVolatile() const { return (SubclassData >> 5) & 1; } bool isNonTemporal() const { return (SubclassData >> 6) & 1; } bool isInvariant() const { return (SubclassData >> 7) & 1; }
AtomicOrdering getOrdering() const { return AtomicOrdering((SubclassData >> 8) & 15); } SynchronizationScope getSynchScope() const { return SynchronizationScope((SubclassData >> 12) & 1); }
/// Returns the SrcValue and offset that describes the location of the access
const Value *getSrcValue() const { return MMO->getValue(); } int64_t getSrcValueOffset() const { return MMO->getOffset(); }
/// Returns the TBAAInfo that describes the dereference.
const MDNode *getTBAAInfo() const { return MMO->getTBAAInfo(); }
/// Returns the Ranges that describes the dereference.
const MDNode *getRanges() const { return MMO->getRanges(); }
/// getMemoryVT - Return the type of the in-memory value.
EVT getMemoryVT() const { return MemoryVT; }
/// getMemOperand - Return a MachineMemOperand object describing the memory
/// reference performed by operation.
MachineMemOperand *getMemOperand() const { return MMO; }
const MachinePointerInfo &getPointerInfo() const { return MMO->getPointerInfo(); }
/// getAddressSpace - Return the address space for the associated pointer
unsigned getAddressSpace() const { return getPointerInfo().getAddrSpace(); }
/// refineAlignment - Update this MemSDNode's MachineMemOperand information
/// to reflect the alignment of NewMMO, if it has a greater alignment.
/// This must only be used when the new alignment applies to all users of
/// this MachineMemOperand.
void refineAlignment(const MachineMemOperand *NewMMO) { MMO->refineAlignment(NewMMO); }
const SDValue &getChain() const { return getOperand(0); } const SDValue &getBasePtr() const { return getOperand(getOpcode() == ISD::STORE ? 2 : 1); }
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) { // For some targets, we lower some target intrinsics to a MemIntrinsicNode
// with either an intrinsic or a target opcode.
return N->getOpcode() == ISD::LOAD || N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::PREFETCH || N->getOpcode() == ISD::ATOMIC_CMP_SWAP || N->getOpcode() == ISD::ATOMIC_SWAP || N->getOpcode() == ISD::ATOMIC_LOAD_ADD || N->getOpcode() == ISD::ATOMIC_LOAD_SUB || N->getOpcode() == ISD::ATOMIC_LOAD_AND || N->getOpcode() == ISD::ATOMIC_LOAD_OR || N->getOpcode() == ISD::ATOMIC_LOAD_XOR || N->getOpcode() == ISD::ATOMIC_LOAD_NAND || N->getOpcode() == ISD::ATOMIC_LOAD_MIN || N->getOpcode() == ISD::ATOMIC_LOAD_MAX || N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || N->getOpcode() == ISD::ATOMIC_LOAD || N->getOpcode() == ISD::ATOMIC_STORE || N->isTargetMemoryOpcode(); } };
/// AtomicSDNode - A SDNode reprenting atomic operations.
///
class AtomicSDNode : public MemSDNode { SDUse Ops[4];
void InitAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope) { // This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
assert((Ordering & 15) == Ordering && "Ordering may not require more than 4 bits!"); assert((SynchScope & 1) == SynchScope && "SynchScope may not require more than 1 bit!"); SubclassData |= Ordering << 8; SubclassData |= SynchScope << 12; assert(getOrdering() == Ordering && "Ordering encoding error!"); assert(getSynchScope() == SynchScope && "Synch-scope encoding error!"); }
public: // Opc: opcode for atomic
// VTL: value type list
// Chain: memory chain for operaand
// Ptr: address to update as a SDValue
// Cmp: compare value
// Swp: swap value
// SrcVal: address to update as a Value (used for MemOperand)
// Align: alignment of memory
AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO, AtomicOrdering Ordering, SynchronizationScope SynchScope) : MemSDNode(Opc, dl, VTL, MemVT, MMO) { InitAtomic(Ordering, SynchScope); InitOperands(Ops, Chain, Ptr, Cmp, Swp); } AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO, AtomicOrdering Ordering, SynchronizationScope SynchScope) : MemSDNode(Opc, dl, VTL, MemVT, MMO) { InitAtomic(Ordering, SynchScope); InitOperands(Ops, Chain, Ptr, Val); } AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO, AtomicOrdering Ordering, SynchronizationScope SynchScope) : MemSDNode(Opc, dl, VTL, MemVT, MMO) { InitAtomic(Ordering, SynchScope); InitOperands(Ops, Chain, Ptr); }
const SDValue &getBasePtr() const { return getOperand(1); } const SDValue &getVal() const { return getOperand(2); }
bool isCompareAndSwap() const { unsigned Op = getOpcode(); return Op == ISD::ATOMIC_CMP_SWAP; }
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || N->getOpcode() == ISD::ATOMIC_SWAP || N->getOpcode() == ISD::ATOMIC_LOAD_ADD || N->getOpcode() == ISD::ATOMIC_LOAD_SUB || N->getOpcode() == ISD::ATOMIC_LOAD_AND || N->getOpcode() == ISD::ATOMIC_LOAD_OR || N->getOpcode() == ISD::ATOMIC_LOAD_XOR || N->getOpcode() == ISD::ATOMIC_LOAD_NAND || N->getOpcode() == ISD::ATOMIC_LOAD_MIN || N->getOpcode() == ISD::ATOMIC_LOAD_MAX || N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || N->getOpcode() == ISD::ATOMIC_LOAD || N->getOpcode() == ISD::ATOMIC_STORE; } };
/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
/// memory and need an associated MachineMemOperand. Its opcode may be
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
class MemIntrinsicSDNode : public MemSDNode { public: MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops, unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO) : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) { }
// Methods to support isa and dyn_cast
static bool classof(const SDNode *N) { // We lower some target intrinsics to their target opcode
// early a node with a target opcode can be of this class
return N->getOpcode() == ISD::INTRINSIC_W_CHAIN || N->getOpcode() == ISD::INTRINSIC_VOID || N->getOpcode() == ISD::PREFETCH || N->isTargetMemoryOpcode(); } };
/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
/// support for the llvm IR shufflevector instruction. It combines elements
/// from two input vectors into a new input vector, with the selection and
/// ordering of elements determined by an array of integers, referred to as
/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
/// An index of -1 is treated as undef, such that the code generator may put
/// any value in the corresponding element of the result.
class ShuffleVectorSDNode : public SDNode { SDUse Ops[2];
// The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
// is freed when the SelectionDAG object is destroyed.
const int *Mask; protected: friend class SelectionDAG; ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2, const int *M) : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) { InitOperands(Ops, N1, N2); } public:
ArrayRef<int> getMask() const { EVT VT = getValueType(0); return makeArrayRef(Mask, VT.getVectorNumElements()); } int getMaskElt(unsigned Idx) const { assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); return Mask[Idx]; } bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } int getSplatIndex() const { assert(isSplat() && "Cannot get splat index for non-splat!"); EVT VT = getValueType(0); for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { if (Mask[i] != -1) return Mask[i]; } return -1; } static bool isSplatMask(const int *Mask, EVT VT);
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::VECTOR_SHUFFLE; } }; class ConstantSDNode : public SDNode { const ConstantInt *Value; friend class SelectionDAG; ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT) : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, DebugLoc(), getSDVTList(VT)), Value(val) { } public:
const ConstantInt *getConstantIntValue() const { return Value; } const APInt &getAPIntValue() const { return Value->getValue(); } uint64_t getZExtValue() const { return Value->getZExtValue(); } int64_t getSExtValue() const { return Value->getSExtValue(); }
bool isOne() const { return Value->isOne(); } bool isNullValue() const { return Value->isNullValue(); } bool isAllOnesValue() const { return Value->isAllOnesValue(); }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Constant || N->getOpcode() == ISD::TargetConstant; } };
class ConstantFPSDNode : public SDNode { const ConstantFP *Value; friend class SelectionDAG; ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT) : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, DebugLoc(), getSDVTList(VT)), Value(val) { } public:
const APFloat& getValueAPF() const { return Value->getValueAPF(); } const ConstantFP *getConstantFPValue() const { return Value; }
/// isZero - Return true if the value is positive or negative zero.
bool isZero() const { return Value->isZero(); }
/// isNaN - Return true if the value is a NaN.
bool isNaN() const { return Value->isNaN(); }
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
/// We leave the version with the double argument here because it's just so
/// convenient to write "2.0" and the like. Without this function we'd
/// have to duplicate its logic everywhere it's called.
bool isExactlyValue(double V) const { bool ignored; APFloat Tmp(V); Tmp.convert(Value->getValueAPF().getSemantics(), APFloat::rmNearestTiesToEven, &ignored); return isExactlyValue(Tmp); } bool isExactlyValue(const APFloat& V) const;
static bool isValueValidForType(EVT VT, const APFloat& Val);
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantFP || N->getOpcode() == ISD::TargetConstantFP; } };
class GlobalAddressSDNode : public SDNode { const GlobalValue *TheGlobal; int64_t Offset; unsigned char TargetFlags; friend class SelectionDAG; GlobalAddressSDNode(unsigned Opc, DebugLoc DL, const GlobalValue *GA, EVT VT, int64_t o, unsigned char TargetFlags); public:
const GlobalValue *getGlobal() const { return TheGlobal; } int64_t getOffset() const { return Offset; } unsigned char getTargetFlags() const { return TargetFlags; } // Return the address space this GlobalAddress belongs to.
unsigned getAddressSpace() const;
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::GlobalAddress || N->getOpcode() == ISD::TargetGlobalAddress || N->getOpcode() == ISD::GlobalTLSAddress || N->getOpcode() == ISD::TargetGlobalTLSAddress; } };
class FrameIndexSDNode : public SDNode { int FI; friend class SelectionDAG; FrameIndexSDNode(int fi, EVT VT, bool isTarg) : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, DebugLoc(), getSDVTList(VT)), FI(fi) { } public:
int getIndex() const { return FI; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::FrameIndex || N->getOpcode() == ISD::TargetFrameIndex; } };
class JumpTableSDNode : public SDNode { int JTI; unsigned char TargetFlags; friend class SelectionDAG; JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF) : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) { } public:
int getIndex() const { return JTI; } unsigned char getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::JumpTable || N->getOpcode() == ISD::TargetJumpTable; } };
class ConstantPoolSDNode : public SDNode { union { const Constant *ConstVal; MachineConstantPoolValue *MachineCPVal; } Val; int Offset; // It's a MachineConstantPoolValue if top bit is set.
unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
unsigned char TargetFlags; friend class SelectionDAG; ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o, unsigned Align, unsigned char TF) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) { assert(Offset >= 0 && "Offset is too large"); Val.ConstVal = c; } ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o, unsigned Align, unsigned char TF) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) { assert(Offset >= 0 && "Offset is too large"); Val.MachineCPVal = v; Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); } public:
bool isMachineConstantPoolEntry() const { return Offset < 0; }
const Constant *getConstVal() const { assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.ConstVal; }
MachineConstantPoolValue *getMachineCPVal() const { assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.MachineCPVal; }
int getOffset() const { return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); }
// Return the alignment of this constant pool object, which is either 0 (for
// default alignment) or the desired value.
unsigned getAlignment() const { return Alignment; } unsigned char getTargetFlags() const { return TargetFlags; }
Type *getType() const;
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantPool || N->getOpcode() == ISD::TargetConstantPool; } };
/// Completely target-dependent object reference.
class TargetIndexSDNode : public SDNode { unsigned char TargetFlags; int Index; int64_t Offset; friend class SelectionDAG; public:
TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF) : SDNode(ISD::TargetIndex, DebugLoc(), getSDVTList(VT)), TargetFlags(TF), Index(Idx), Offset(Ofs) {} public:
unsigned char getTargetFlags() const { return TargetFlags; } int getIndex() const { return Index; } int64_t getOffset() const { return Offset; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::TargetIndex; } };
class BasicBlockSDNode : public SDNode { MachineBasicBlock *MBB; friend class SelectionDAG; /// Debug info is meaningful and potentially useful here, but we create
/// blocks out of order when they're jumped to, which makes it a bit
/// harder. Let's see if we need it first.
explicit BasicBlockSDNode(MachineBasicBlock *mbb) : SDNode(ISD::BasicBlock, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) { } public:
MachineBasicBlock *getBasicBlock() const { return MBB; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BasicBlock; } };
/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
/// BUILD_VECTORs.
class BuildVectorSDNode : public SDNode { // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
explicit BuildVectorSDNode() LLVM_DELETED_FUNCTION; public: /// isConstantSplat - Check if this is a constant splat, and if so, find the
/// smallest element size that splats the vector. If MinSplatBits is
/// nonzero, the element size must be at least that large. Note that the
/// splat element may be the entire vector (i.e., a one element vector).
/// Returns the splat element value in SplatValue. Any undefined bits in
/// that value are zero, and the corresponding bits in the SplatUndef mask
/// are set. The SplatBitSize value is set to the splat element size in
/// bits. HasAnyUndefs is set to true if any bits in the vector are
/// undefined. isBigEndian describes the endianness of the target.
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits = 0, bool isBigEndian = false);
static inline bool classof(const SDNode *N) { return N->getOpcode() == ISD::BUILD_VECTOR; } };
/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
/// used when the SelectionDAG needs to make a simple reference to something
/// in the LLVM IR representation.
///
class SrcValueSDNode : public SDNode { const Value *V; friend class SelectionDAG; /// Create a SrcValue for a general value.
explicit SrcValueSDNode(const Value *v) : SDNode(ISD::SRCVALUE, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
public: /// getValue - return the contained Value.
const Value *getValue() const { return V; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::SRCVALUE; } }; class MDNodeSDNode : public SDNode { const MDNode *MD; friend class SelectionDAG; explicit MDNodeSDNode(const MDNode *md) : SDNode(ISD::MDNODE_SDNODE, DebugLoc(), getSDVTList(MVT::Other)), MD(md) {} public: const MDNode *getMD() const { return MD; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::MDNODE_SDNODE; } };
class RegisterSDNode : public SDNode { unsigned Reg; friend class SelectionDAG; RegisterSDNode(unsigned reg, EVT VT) : SDNode(ISD::Register, DebugLoc(), getSDVTList(VT)), Reg(reg) { } public:
unsigned getReg() const { return Reg; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Register; } };
class RegisterMaskSDNode : public SDNode { // The memory for RegMask is not owned by the node.
const uint32_t *RegMask; friend class SelectionDAG; RegisterMaskSDNode(const uint32_t *mask) : SDNode(ISD::RegisterMask, DebugLoc(), getSDVTList(MVT::Untyped)), RegMask(mask) {} public:
const uint32_t *getRegMask() const { return RegMask; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::RegisterMask; } };
class BlockAddressSDNode : public SDNode { const BlockAddress *BA; int64_t Offset; unsigned char TargetFlags; friend class SelectionDAG; BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba, int64_t o, unsigned char Flags) : SDNode(NodeTy, DebugLoc(), getSDVTList(VT)), BA(ba), Offset(o), TargetFlags(Flags) { } public: const BlockAddress *getBlockAddress() const { return BA; } int64_t getOffset() const { return Offset; } unsigned char getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BlockAddress || N->getOpcode() == ISD::TargetBlockAddress; } };
class EHLabelSDNode : public SDNode { SDUse Chain; MCSymbol *Label; friend class SelectionDAG; EHLabelSDNode(DebugLoc dl, SDValue ch, MCSymbol *L) : SDNode(ISD::EH_LABEL, dl, getSDVTList(MVT::Other)), Label(L) { InitOperands(&Chain, ch); } public: MCSymbol *getLabel() const { return Label; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::EH_LABEL; } };
class ExternalSymbolSDNode : public SDNode { const char *Symbol; unsigned char TargetFlags; friend class SelectionDAG; ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT) : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) { } public:
const char *getSymbol() const { return Symbol; } unsigned char getTargetFlags() const { return TargetFlags; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ExternalSymbol || N->getOpcode() == ISD::TargetExternalSymbol; } };
class CondCodeSDNode : public SDNode { ISD::CondCode Condition; friend class SelectionDAG; explicit CondCodeSDNode(ISD::CondCode Cond) : SDNode(ISD::CONDCODE, DebugLoc(), getSDVTList(MVT::Other)), Condition(Cond) { } public:
ISD::CondCode get() const { return Condition; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::CONDCODE; } }; /// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
/// future and most targets don't support it.
class CvtRndSatSDNode : public SDNode { ISD::CvtCode CvtCode; friend class SelectionDAG; explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops, unsigned NumOps, ISD::CvtCode Code) : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps), CvtCode(Code) { assert(NumOps == 5 && "wrong number of operations"); } public: ISD::CvtCode getCvtCode() const { return CvtCode; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::CONVERT_RNDSAT; } };
/// VTSDNode - This class is used to represent EVT's, which are used
/// to parameterize some operations.
class VTSDNode : public SDNode { EVT ValueType; friend class SelectionDAG; explicit VTSDNode(EVT VT) : SDNode(ISD::VALUETYPE, DebugLoc(), getSDVTList(MVT::Other)), ValueType(VT) { } public:
EVT getVT() const { return ValueType; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::VALUETYPE; } };
/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
///
class LSBaseSDNode : public MemSDNode { //! Operand array for load and store
/*!
\note Moving this array to the base class captures more common functionality shared between LoadSDNode and StoreSDNode */ SDUse Ops[4]; public: LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands, unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO) : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) { SubclassData |= AM << 2; assert(getAddressingMode() == AM && "MemIndexedMode encoding error!"); InitOperands(Ops, Operands, numOperands); assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) && "Only indexed loads and stores have a non-undef offset operand"); }
const SDValue &getOffset() const { return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); }
/// getAddressingMode - Return the addressing mode for this load or store:
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
ISD::MemIndexedMode getAddressingMode() const { return ISD::MemIndexedMode((SubclassData >> 2) & 7); }
/// isIndexed - Return true if this is a pre/post inc/dec load/store.
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
/// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LOAD || N->getOpcode() == ISD::STORE; } };
/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
///
class LoadSDNode : public LSBaseSDNode { friend class SelectionDAG; LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT, MachineMemOperand *MMO) : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) { SubclassData |= (unsigned short)ETy; assert(getExtensionType() == ETy && "LoadExtType encoding error!"); assert(readMem() && "Load MachineMemOperand is not a load!"); assert(!writeMem() && "Load MachineMemOperand is a store!"); } public:
/// getExtensionType - Return whether this is a plain node,
/// or one of the varieties of value-extending loads.
ISD::LoadExtType getExtensionType() const { return ISD::LoadExtType(SubclassData & 3); }
const SDValue &getBasePtr() const { return getOperand(1); } const SDValue &getOffset() const { return getOperand(2); }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LOAD; } };
/// StoreSDNode - This class is used to represent ISD::STORE nodes.
///
class StoreSDNode : public LSBaseSDNode { friend class SelectionDAG; StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT, MachineMemOperand *MMO) : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4, VTs, AM, MemVT, MMO) { SubclassData |= (unsigned short)isTrunc; assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!"); assert(!readMem() && "Store MachineMemOperand is a load!"); assert(writeMem() && "Store MachineMemOperand is not a store!"); } public:
/// isTruncatingStore - Return true if the op does a truncation before store.
/// For integers this is the same as doing a TRUNCATE and storing the result.
/// For floats, it is the same as doing an FP_ROUND and storing the result.
bool isTruncatingStore() const { return SubclassData & 1; }
const SDValue &getValue() const { return getOperand(1); } const SDValue &getBasePtr() const { return getOperand(2); } const SDValue &getOffset() const { return getOperand(3); }
static bool classof(const SDNode *N) { return N->getOpcode() == ISD::STORE; } };
/// MachineSDNode - An SDNode that represents everything that will be needed
/// to construct a MachineInstr. These nodes are created during the
/// instruction selection proper phase.
///
class MachineSDNode : public SDNode { public: typedef MachineMemOperand **mmo_iterator;
private: friend class SelectionDAG; MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs) : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
/// LocalOperands - Operands for this instruction, if they fit here. If
/// they don't, this field is unused.
SDUse LocalOperands[4];
/// MemRefs - Memory reference descriptions for this instruction.
mmo_iterator MemRefs; mmo_iterator MemRefsEnd;
public: mmo_iterator memoperands_begin() const { return MemRefs; } mmo_iterator memoperands_end() const { return MemRefsEnd; } bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
/// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
/// list. This does not transfer ownership.
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI) assert(*MMI && "Null mem ref detected!"); MemRefs = NewMemRefs; MemRefsEnd = NewMemRefsEnd; }
static bool classof(const SDNode *N) { return N->isMachineOpcode(); } };
class SDNodeIterator : public std::iterator<std::forward_iterator_tag, SDNode, ptrdiff_t> { const SDNode *Node; unsigned Operand;
SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {} public: bool operator==(const SDNodeIterator& x) const { return Operand == x.Operand; } bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
const SDNodeIterator &operator=(const SDNodeIterator &I) { assert(I.Node == Node && "Cannot assign iterators to two different nodes!"); Operand = I.Operand; return *this; }
pointer operator*() const { return Node->getOperand(Operand).getNode(); } pointer operator->() const { return operator*(); }
SDNodeIterator& operator++() { // Preincrement
++Operand; return *this; } SDNodeIterator operator++(int) { // Postincrement
SDNodeIterator tmp = *this; ++*this; return tmp; } size_t operator-(SDNodeIterator Other) const { assert(Node == Other.Node && "Cannot compare iterators of two different nodes!"); return Operand - Other.Operand; }
static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); } static SDNodeIterator end (const SDNode *N) { return SDNodeIterator(N, N->getNumOperands()); }
unsigned getOperand() const { return Operand; } const SDNode *getNode() const { return Node; } };
template <> struct GraphTraits<SDNode*> { typedef SDNode NodeType; typedef SDNodeIterator ChildIteratorType; static inline NodeType *getEntryNode(SDNode *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return SDNodeIterator::begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return SDNodeIterator::end(N); } };
/// LargestSDNode - The largest SDNode class.
///
typedef LoadSDNode LargestSDNode;
/// MostAlignedSDNode - The SDNode class with the greatest alignment
/// requirement.
///
typedef GlobalAddressSDNode MostAlignedSDNode;
namespace ISD { /// isNormalLoad - Returns true if the specified node is a non-extending
/// and unindexed load.
inline bool isNormalLoad(const SDNode *N) { const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N); return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && Ld->getAddressingMode() == ISD::UNINDEXED; }
/// isNON_EXTLoad - Returns true if the specified node is a non-extending
/// load.
inline bool isNON_EXTLoad(const SDNode *N) { return isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; }
/// isEXTLoad - Returns true if the specified node is a EXTLOAD.
///
inline bool isEXTLoad(const SDNode *N) { return isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; }
/// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
///
inline bool isSEXTLoad(const SDNode *N) { return isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; }
/// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
///
inline bool isZEXTLoad(const SDNode *N) { return isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; }
/// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
///
inline bool isUNINDEXEDLoad(const SDNode *N) { return isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; }
/// isNormalStore - Returns true if the specified node is a non-truncating
/// and unindexed store.
inline bool isNormalStore(const SDNode *N) { const StoreSDNode *St = dyn_cast<StoreSDNode>(N); return St && !St->isTruncatingStore() && St->getAddressingMode() == ISD::UNINDEXED; }
/// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
/// store.
inline bool isNON_TRUNCStore(const SDNode *N) { return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore(); }
/// isTRUNCStore - Returns true if the specified node is a truncating
/// store.
inline bool isTRUNCStore(const SDNode *N) { return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore(); }
/// isUNINDEXEDStore - Returns true if the specified node is an
/// unindexed store.
inline bool isUNINDEXEDStore(const SDNode *N) { return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; } }
} // end llvm namespace
#endif
|