|
|
//===-- llvm/InlineAsm.h - Class to represent inline asm strings-*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class represents the inline asm strings, which are Value*'s that are
// used as the callee operand of call instructions. InlineAsm's are uniqued
// like constants, and created via InlineAsm::get(...).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INLINEASM_H
#define LLVM_IR_INLINEASM_H
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Value.h"
#include <vector>
namespace llvm {
class PointerType; class FunctionType; class Module; struct InlineAsmKeyType; template<class ValType, class ValRefType, class TypeClass, class ConstantClass, bool HasLargeKey> class ConstantUniqueMap; template<class ConstantClass, class TypeClass, class ValType> struct ConstantCreator;
class InlineAsm : public Value { public: enum AsmDialect { AD_ATT, AD_Intel };
private: friend struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType>; friend class ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType, InlineAsm, false>;
InlineAsm(const InlineAsm &) LLVM_DELETED_FUNCTION; void operator=(const InlineAsm&) LLVM_DELETED_FUNCTION;
std::string AsmString, Constraints; bool HasSideEffects; bool IsAlignStack; AsmDialect Dialect;
InlineAsm(PointerType *Ty, const std::string &AsmString, const std::string &Constraints, bool hasSideEffects, bool isAlignStack, AsmDialect asmDialect); virtual ~InlineAsm();
/// When the ConstantUniqueMap merges two types and makes two InlineAsms
/// identical, it destroys one of them with this method.
void destroyConstant(); public:
/// InlineAsm::get - Return the specified uniqued inline asm string.
///
static InlineAsm *get(FunctionType *Ty, StringRef AsmString, StringRef Constraints, bool hasSideEffects, bool isAlignStack = false, AsmDialect asmDialect = AD_ATT); bool hasSideEffects() const { return HasSideEffects; } bool isAlignStack() const { return IsAlignStack; } AsmDialect getDialect() const { return Dialect; }
/// getType - InlineAsm's are always pointers.
///
PointerType *getType() const { return reinterpret_cast<PointerType*>(Value::getType()); } /// getFunctionType - InlineAsm's are always pointers to functions.
///
FunctionType *getFunctionType() const; const std::string &getAsmString() const { return AsmString; } const std::string &getConstraintString() const { return Constraints; }
/// Verify - This static method can be used by the parser to check to see if
/// the specified constraint string is legal for the type. This returns true
/// if legal, false if not.
///
static bool Verify(FunctionType *Ty, StringRef Constraints);
// Constraint String Parsing
enum ConstraintPrefix { isInput, // 'x'
isOutput, // '=x'
isClobber // '~x'
}; typedef std::vector<std::string> ConstraintCodeVector; struct SubConstraintInfo { /// MatchingInput - If this is not -1, this is an output constraint where an
/// input constraint is required to match it (e.g. "0"). The value is the
/// constraint number that matches this one (for example, if this is
/// constraint #0 and constraint #4 has the value "0", this will be 4).
signed char MatchingInput; /// Code - The constraint code, either the register name (in braces) or the
/// constraint letter/number.
ConstraintCodeVector Codes; /// Default constructor.
SubConstraintInfo() : MatchingInput(-1) {} };
typedef std::vector<SubConstraintInfo> SubConstraintInfoVector; struct ConstraintInfo; typedef std::vector<ConstraintInfo> ConstraintInfoVector; struct ConstraintInfo { /// Type - The basic type of the constraint: input/output/clobber
///
ConstraintPrefix Type; /// isEarlyClobber - "&": output operand writes result before inputs are all
/// read. This is only ever set for an output operand.
bool isEarlyClobber; /// MatchingInput - If this is not -1, this is an output constraint where an
/// input constraint is required to match it (e.g. "0"). The value is the
/// constraint number that matches this one (for example, if this is
/// constraint #0 and constraint #4 has the value "0", this will be 4).
signed char MatchingInput; /// hasMatchingInput - Return true if this is an output constraint that has
/// a matching input constraint.
bool hasMatchingInput() const { return MatchingInput != -1; } /// isCommutative - This is set to true for a constraint that is commutative
/// with the next operand.
bool isCommutative; /// isIndirect - True if this operand is an indirect operand. This means
/// that the address of the source or destination is present in the call
/// instruction, instead of it being returned or passed in explicitly. This
/// is represented with a '*' in the asm string.
bool isIndirect; /// Code - The constraint code, either the register name (in braces) or the
/// constraint letter/number.
ConstraintCodeVector Codes; /// isMultipleAlternative - '|': has multiple-alternative constraints.
bool isMultipleAlternative; /// multipleAlternatives - If there are multiple alternative constraints,
/// this array will contain them. Otherwise it will be empty.
SubConstraintInfoVector multipleAlternatives; /// The currently selected alternative constraint index.
unsigned currentAlternativeIndex; ///Default constructor.
ConstraintInfo(); /// Copy constructor.
ConstraintInfo(const ConstraintInfo &other); /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
/// fields in this structure. If the constraint string is not understood,
/// return true, otherwise return false.
bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar); /// selectAlternative - Point this constraint to the alternative constraint
/// indicated by the index.
void selectAlternative(unsigned index); }; /// ParseConstraints - Split up the constraint string into the specific
/// constraints and their prefixes. If this returns an empty vector, and if
/// the constraint string itself isn't empty, there was an error parsing.
static ConstraintInfoVector ParseConstraints(StringRef ConstraintString); /// ParseConstraints - Parse the constraints of this inlineasm object,
/// returning them the same way that ParseConstraints(str) does.
ConstraintInfoVector ParseConstraints() const { return ParseConstraints(Constraints); } // Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Value *V) { return V->getValueID() == Value::InlineAsmVal; }
// These are helper methods for dealing with flags in the INLINEASM SDNode
// in the backend.
enum { // Fixed operands on an INLINEASM SDNode.
Op_InputChain = 0, Op_AsmString = 1, Op_MDNode = 2, Op_ExtraInfo = 3, // HasSideEffects, IsAlignStack, AsmDialect.
Op_FirstOperand = 4,
// Fixed operands on an INLINEASM MachineInstr.
MIOp_AsmString = 0, MIOp_ExtraInfo = 1, // HasSideEffects, IsAlignStack, AsmDialect.
MIOp_FirstOperand = 2,
// Interpretation of the MIOp_ExtraInfo bit field.
Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, Extra_AsmDialect = 4, Extra_MayLoad = 8, Extra_MayStore = 16,
// Inline asm operands map to multiple SDNode / MachineInstr operands.
// The first operand is an immediate describing the asm operand, the low
// bits is the kind:
Kind_RegUse = 1, // Input register, "r".
Kind_RegDef = 2, // Output register, "=r".
Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
Kind_Clobber = 4, // Clobbered register, "~r".
Kind_Imm = 5, // Immediate.
Kind_Mem = 6, // Memory operand, "m".
Flag_MatchingOperand = 0x80000000 }; static unsigned getFlagWord(unsigned Kind, unsigned NumOps) { assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!"); assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind"); return Kind | (NumOps << 3); } /// getFlagWordForMatchingOp - Augment an existing flag word returned by
/// getFlagWord with information indicating that this input operand is tied
/// to a previous output operand.
static unsigned getFlagWordForMatchingOp(unsigned InputFlag, unsigned MatchedOperandNo) { assert(MatchedOperandNo <= 0x7fff && "Too big matched operand"); assert((InputFlag & ~0xffff) == 0 && "High bits already contain data"); return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16); }
/// getFlagWordForRegClass - Augment an existing flag word returned by
/// getFlagWord with the required register class for the following register
/// operands.
/// A tied use operand cannot have a register class, use the register class
/// from the def operand instead.
static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) { // Store RC + 1, reserve the value 0 to mean 'no register class'.
++RC; assert(RC <= 0x7fff && "Too large register class ID"); assert((InputFlag & ~0xffff) == 0 && "High bits already contain data"); return InputFlag | (RC << 16); }
static unsigned getKind(unsigned Flags) { return Flags & 7; }
static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;} static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; } static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; } static bool isRegDefEarlyClobberKind(unsigned Flag) { return getKind(Flag) == Kind_RegDefEarlyClobber; } static bool isClobberKind(unsigned Flag) { return getKind(Flag) == Kind_Clobber; }
/// getNumOperandRegisters - Extract the number of registers field from the
/// inline asm operand flag.
static unsigned getNumOperandRegisters(unsigned Flag) { return (Flag & 0xffff) >> 3; }
/// isUseOperandTiedToDef - Return true if the flag of the inline asm
/// operand indicates it is an use operand that's matched to a def operand.
static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) { if ((Flag & Flag_MatchingOperand) == 0) return false; Idx = (Flag & ~Flag_MatchingOperand) >> 16; return true; }
/// hasRegClassConstraint - Returns true if the flag contains a register
/// class constraint. Sets RC to the register class ID.
static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) { if (Flag & Flag_MatchingOperand) return false; unsigned High = Flag >> 16; // getFlagWordForRegClass() uses 0 to mean no register class, and otherwise
// stores RC + 1.
if (!High) return false; RC = High - 1; return true; }
};
} // End llvm namespace
#endif
|