|
|
//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class. This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INSTRUCTIONS_H
#define LLVM_IR_INSTRUCTIONS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/IntegersSubset.h"
#include "llvm/Support/IntegersSubsetMapping.h"
#include <iterator>
namespace llvm {
class APInt; class ConstantInt; class ConstantRange; class DataLayout; class LLVMContext;
enum AtomicOrdering { NotAtomic = 0, Unordered = 1, Monotonic = 2, // Consume = 3, // Not specified yet.
Acquire = 4, Release = 5, AcquireRelease = 6, SequentiallyConsistent = 7 };
enum SynchronizationScope { SingleThread = 0, CrossThread = 1 };
//===----------------------------------------------------------------------===//
// AllocaInst Class
//===----------------------------------------------------------------------===//
/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public UnaryInstruction { protected: virtual AllocaInst *clone_impl() const; public: explicit AllocaInst(Type *Ty, Value *ArraySize = 0, const Twine &Name = "", Instruction *InsertBefore = 0); AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore = 0); AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, const Twine &Name = "", Instruction *InsertBefore = 0); AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, const Twine &Name, BasicBlock *InsertAtEnd);
// Out of line virtual method, so the vtable, etc. has a home.
virtual ~AllocaInst();
/// isArrayAllocation - Return true if there is an allocation size parameter
/// to the allocation instruction that is not 1.
///
bool isArrayAllocation() const;
/// getArraySize - Get the number of elements allocated. For a simple
/// allocation of a single element, this will return a constant 1 value.
///
const Value *getArraySize() const { return getOperand(0); } Value *getArraySize() { return getOperand(0); }
/// getType - Overload to return most specific pointer type
///
PointerType *getType() const { return cast<PointerType>(Instruction::getType()); }
/// getAllocatedType - Return the type that is being allocated by the
/// instruction.
///
Type *getAllocatedType() const;
/// getAlignment - Return the alignment of the memory that is being allocated
/// by the instruction.
///
unsigned getAlignment() const { return (1u << getSubclassDataFromInstruction()) >> 1; } void setAlignment(unsigned Align);
/// isStaticAlloca - Return true if this alloca is in the entry block of the
/// function and is a constant size. If so, the code generator will fold it
/// into the prolog/epilog code, so it is basically free.
bool isStaticAlloca() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Alloca); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
//===----------------------------------------------------------------------===//
// LoadInst Class
//===----------------------------------------------------------------------===//
/// LoadInst - an instruction for reading from memory. This uses the
/// SubclassData field in Value to store whether or not the load is volatile.
///
class LoadInst : public UnaryInstruction { void AssertOK(); protected: virtual LoadInst *clone_impl() const; public: LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope = CrossThread, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore); LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd); explicit LoadInst(Value *Ptr, const char *NameStr = 0, bool isVolatile = false, Instruction *InsertBefore = 0); LoadInst(Value *Ptr, const char *NameStr, bool isVolatile, BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); }
/// getAlignment - Return the alignment of the access that is being performed
///
unsigned getAlignment() const { return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; }
void setAlignment(unsigned Align);
/// Returns the ordering effect of this fence.
AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); }
/// Set the ordering constraint on this load. May not be Release or
/// AcquireRelease.
void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | (Ordering << 7)); }
SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1); }
/// Specify whether this load is ordered with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope xthread) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) | (xthread << 6)); }
bool isAtomic() const { return getOrdering() != NotAtomic; } void setAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread) { setOrdering(Ordering); setSynchScope(SynchScope); }
bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return getOrdering() <= Unordered && !isVolatile(); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Load; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
//===----------------------------------------------------------------------===//
// StoreInst Class
//===----------------------------------------------------------------------===//
/// StoreInst - an instruction for storing to memory
///
class StoreInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; void AssertOK(); protected: virtual StoreInst *clone_impl() const; public: // allocate space for exactly two operands
void *operator new(size_t s) { return User::operator new(s, 2); } StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope = CrossThread, Instruction *InsertBefore = 0); StoreInst(Value *Val, Value *Ptr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a store to a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile store or not.
///
void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getAlignment - Return the alignment of the access that is being performed
///
unsigned getAlignment() const { return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; }
void setAlignment(unsigned Align);
/// Returns the ordering effect of this store.
AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); }
/// Set the ordering constraint on this store. May not be Acquire or
/// AcquireRelease.
void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | (Ordering << 7)); }
SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1); }
/// Specify whether this store instruction is ordered with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope xthread) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) | (xthread << 6)); }
bool isAtomic() const { return getOrdering() != NotAtomic; } void setAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread) { setOrdering(Ordering); setSynchScope(SynchScope); }
bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return getOrdering() <= Unordered && !isVolatile(); }
Value *getValueOperand() { return getOperand(0); } const Value *getValueOperand() const { return getOperand(0); }
Value *getPointerOperand() { return getOperand(1); } const Value *getPointerOperand() const { return getOperand(1); } static unsigned getPointerOperandIndex() { return 1U; }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Store; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
template <> struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
//===----------------------------------------------------------------------===//
// FenceInst Class
//===----------------------------------------------------------------------===//
/// FenceInst - an instruction for ordering other memory operations
///
class FenceInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; void Init(AtomicOrdering Ordering, SynchronizationScope SynchScope); protected: virtual FenceInst *clone_impl() const; public: // allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s, 0); }
// Ordering may only be Acquire, Release, AcquireRelease, or
// SequentiallyConsistent.
FenceInst(LLVMContext &C, AtomicOrdering Ordering, SynchronizationScope SynchScope = CrossThread, Instruction *InsertBefore = 0); FenceInst(LLVMContext &C, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd);
/// Returns the ordering effect of this fence.
AtomicOrdering getOrdering() const { return AtomicOrdering(getSubclassDataFromInstruction() >> 1); }
/// Set the ordering constraint on this fence. May only be Acquire, Release,
/// AcquireRelease, or SequentiallyConsistent.
void setOrdering(AtomicOrdering Ordering) { setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | (Ordering << 1)); }
SynchronizationScope getSynchScope() const { return SynchronizationScope(getSubclassDataFromInstruction() & 1); }
/// Specify whether this fence orders other operations with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope xthread) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | xthread); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Fence; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
//===----------------------------------------------------------------------===//
// AtomicCmpXchgInst Class
//===----------------------------------------------------------------------===//
/// AtomicCmpXchgInst - an instruction that atomically checks whether a
/// specified value is in a memory location, and, if it is, stores a new value
/// there. Returns the value that was loaded.
///
class AtomicCmpXchgInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; void Init(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope); protected: virtual AtomicCmpXchgInst *clone_impl() const; public: // allocate space for exactly three operands
void *operator new(size_t s) { return User::operator new(s, 3); } AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope, Instruction *InsertBefore = 0); AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a cmpxchg from a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile cmpxchg.
///
void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (unsigned)V); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Set the ordering constraint on this cmpxchg.
void setOrdering(AtomicOrdering Ordering) { assert(Ordering != NotAtomic && "CmpXchg instructions can only be atomic."); setInstructionSubclassData((getSubclassDataFromInstruction() & 3) | (Ordering << 2)); }
/// Specify whether this cmpxchg is atomic and orders other operations with
/// respect to all concurrently executing threads, or only with respect to
/// signal handlers executing in the same thread.
void setSynchScope(SynchronizationScope SynchScope) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) | (SynchScope << 1)); }
/// Returns the ordering constraint on this cmpxchg.
AtomicOrdering getOrdering() const { return AtomicOrdering(getSubclassDataFromInstruction() >> 2); }
/// Returns whether this cmpxchg is atomic between threads or only within a
/// single thread.
SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; }
Value *getCompareOperand() { return getOperand(1); } const Value *getCompareOperand() const { return getOperand(1); }
Value *getNewValOperand() { return getOperand(2); } const Value *getNewValOperand() const { return getOperand(2); }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicCmpXchg; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
template <> struct OperandTraits<AtomicCmpXchgInst> : public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
//===----------------------------------------------------------------------===//
// AtomicRMWInst Class
//===----------------------------------------------------------------------===//
/// AtomicRMWInst - an instruction that atomically reads a memory location,
/// combines it with another value, and then stores the result back. Returns
/// the old value.
///
class AtomicRMWInst : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; protected: virtual AtomicRMWInst *clone_impl() const; public: /// This enumeration lists the possible modifications atomicrmw can make. In
/// the descriptions, 'p' is the pointer to the instruction's memory location,
/// 'old' is the initial value of *p, and 'v' is the other value passed to the
/// instruction. These instructions always return 'old'.
enum BinOp { /// *p = v
Xchg, /// *p = old + v
Add, /// *p = old - v
Sub, /// *p = old & v
And, /// *p = ~old & v
Nand, /// *p = old | v
Or, /// *p = old ^ v
Xor, /// *p = old >signed v ? old : v
Max, /// *p = old <signed v ? old : v
Min, /// *p = old >unsigned v ? old : v
UMax, /// *p = old <unsigned v ? old : v
UMin,
FIRST_BINOP = Xchg, LAST_BINOP = UMin, BAD_BINOP };
// allocate space for exactly two operands
void *operator new(size_t s) { return User::operator new(s, 2); } AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope, Instruction *InsertBefore = 0); AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd);
BinOp getOperation() const { return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5); }
void setOperation(BinOp Operation) { unsigned short SubclassData = getSubclassDataFromInstruction(); setInstructionSubclassData((SubclassData & 31) | (Operation << 5)); }
/// isVolatile - Return true if this is a RMW on a volatile memory location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile RMW or not.
///
void setVolatile(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (unsigned)V); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Set the ordering constraint on this RMW.
void setOrdering(AtomicOrdering Ordering) { assert(Ordering != NotAtomic && "atomicrmw instructions can only be atomic."); setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) | (Ordering << 2)); }
/// Specify whether this RMW orders other operations with respect to all
/// concurrently executing threads, or only with respect to signal handlers
/// executing in the same thread.
void setSynchScope(SynchronizationScope SynchScope) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) | (SynchScope << 1)); }
/// Returns the ordering constraint on this RMW.
AtomicOrdering getOrdering() const { return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); }
/// Returns whether this RMW is atomic between threads or only within a
/// single thread.
SynchronizationScope getSynchScope() const { return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; }
Value *getValOperand() { return getOperand(1); } const Value *getValOperand() const { return getOperand(1); }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicRMW; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: void Init(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope); // Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
template <> struct OperandTraits<AtomicRMWInst> : public FixedNumOperandTraits<AtomicRMWInst,2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
//===----------------------------------------------------------------------===//
// GetElementPtrInst Class
//===----------------------------------------------------------------------===//
// checkGEPType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
inline Type *checkGEPType(Type *Ty) { assert(Ty && "Invalid GetElementPtrInst indices for type!"); return Ty; }
/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction { GetElementPtrInst(const GetElementPtrInst &GEPI); void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
/// Constructors - Create a getelementptr instruction with a base pointer an
/// list of indices. The first ctor can optionally insert before an existing
/// instruction, the second appends the new instruction to the specified
/// BasicBlock.
inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore); inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual GetElementPtrInst *clone_impl() const; public: static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = 0) { unsigned Values = 1 + unsigned(IdxList.size()); return new(Values) GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertBefore); } static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = 1 + unsigned(IdxList.size()); return new(Values) GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertAtEnd); }
/// Create an "inbounds" getelementptr. See the documentation for the
/// "inbounds" flag in LangRef.html for details.
static GetElementPtrInst *CreateInBounds(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = 0) { GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertBefore); GEP->setIsInBounds(true); return GEP; } static GetElementPtrInst *CreateInBounds(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertAtEnd); GEP->setIsInBounds(true); return GEP; }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// getType - Overload to return most specific sequential type.
SequentialType *getType() const { return cast<SequentialType>(Instruction::getType()); }
/// \brief Returns the address space of this instruction's pointer type.
unsigned getAddressSpace() const { // Note that this is always the same as the pointer operand's address space
// and that is cheaper to compute, so cheat here.
return getPointerAddressSpace(); }
/// getIndexedType - Returns the type of the element that would be loaded with
/// a load instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified
/// pointer type.
///
static Type *getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList); static Type *getIndexedType(Type *Ptr, ArrayRef<Constant *> IdxList); static Type *getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList);
inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand.
}
/// getPointerOperandType - Method to return the pointer operand as a
/// PointerType.
Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); }
/// GetGEPReturnType - Returns the pointer type returned by the GEP
/// instruction, which may be a vector of pointers.
static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) { Type *PtrTy = PointerType::get(checkGEPType( getIndexedType(Ptr->getType(), IdxList)), Ptr->getType()->getPointerAddressSpace()); // Vector GEP
if (Ptr->getType()->isVectorTy()) { unsigned NumElem = cast<VectorType>(Ptr->getType())->getNumElements(); return VectorType::get(PtrTy, NumElem); }
// Scalar GEP
return PtrTy; }
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1; }
bool hasIndices() const { return getNumOperands() > 1; }
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const;
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const;
/// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
/// See LangRef.html for the meaning of inbounds on a getelementptr.
void setIsInBounds(bool b = true);
/// isInBounds - Determine whether the GEP has the inbounds flag.
bool isInBounds() const;
/// \brief Accumulate the constant address offset of this GEP if possible.
///
/// This routine accepts an APInt into which it will accumulate the constant
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
/// all-constant, it returns false and the value of the offset APInt is
/// undefined (it is *not* preserved!). The APInt passed into this routine
/// must be at least as wide as the IntPtr type for the address space of
/// the base GEP pointer.
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::GetElementPtr); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<GetElementPtrInst> : public VariadicOperandTraits<GetElementPtrInst, 1> { };
GetElementPtrInst::GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : Instruction(getGEPReturnType(Ptr, IdxList), GetElementPtr, OperandTraits<GetElementPtrInst>::op_end(this) - Values, Values, InsertBefore) { init(Ptr, IdxList, NameStr); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(getGEPReturnType(Ptr, IdxList), GetElementPtr, OperandTraits<GetElementPtrInst>::op_end(this) - Values, Values, InsertAtEnd) { init(Ptr, IdxList, NameStr); }
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
//===----------------------------------------------------------------------===//
// ICmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on integers or pointers. The operands
/// must be identical types.
/// \brief Represent an integer comparison operator.
class ICmpInst: public CmpInst { protected: /// \brief Clone an identical ICmpInst
virtual ICmpInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics.
ICmpInst( Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->getScalarType()->isPointerTy()) && "Invalid operand types for ICmp instruction"); }
/// \brief Constructor with insert-at-end semantics.
ICmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->getScalarType()->isPointerTy()) && "Invalid operand types for ICmp instruction"); }
/// \brief Constructor with no-insertion semantics
ICmpInst( Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr) { assert(pred >= CmpInst::FIRST_ICMP_PREDICATE && pred <= CmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->getScalarType()->isPointerTy()) && "Invalid operand types for ICmp instruction"); }
/// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as signed.
/// \brief Return the signed version of the predicate
Predicate getSignedPredicate() const { return getSignedPredicate(getPredicate()); }
/// This is a static version that you can use without an instruction.
/// \brief Return the signed version of the predicate.
static Predicate getSignedPredicate(Predicate pred);
/// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as unsigned.
/// \brief Return the unsigned version of the predicate
Predicate getUnsignedPredicate() const { return getUnsignedPredicate(getPredicate()); }
/// This is a static version that you can use without an instruction.
/// \brief Return the unsigned version of the predicate.
static Predicate getUnsignedPredicate(Predicate pred);
/// isEquality - Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
static bool isEquality(Predicate P) { return P == ICMP_EQ || P == ICMP_NE; }
/// isEquality - Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
bool isEquality() const { return isEquality(getPredicate()); }
/// @returns true if the predicate of this ICmpInst is commutative
/// \brief Determine if this relation is commutative.
bool isCommutative() const { return isEquality(); }
/// isRelational - Return true if the predicate is relational (not EQ or NE).
///
bool isRelational() const { return !isEquality(); }
/// isRelational - Return true if the predicate is relational (not EQ or NE).
///
static bool isRelational(Predicate P) { return !isEquality(P); }
/// Initialize a set of values that all satisfy the predicate with C.
/// \brief Make a ConstantRange for a relation with a constant value.
static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// \brief Swap operands and adjust predicate.
void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
};
//===----------------------------------------------------------------------===//
// FCmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on floating point values or packed
/// vectors of floating point values. The operands must be identical types.
/// \brief Represents a floating point comparison operator.
class FCmpInst: public CmpInst { protected: /// \brief Clone an identical FCmpInst
virtual FCmpInst *clone_impl() const; public: /// \brief Constructor with insert-before-instruction semantics.
FCmpInst( Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, InsertBefore) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); }
/// \brief Constructor with insert-at-end semantics.
FCmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); }
/// \brief Constructor with no-insertion semantics
FCmpInst( Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr) { assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); }
/// @returns true if the predicate of this instruction is EQ or NE.
/// \brief Determine if this is an equality predicate.
bool isEquality() const { return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE || getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE; }
/// @returns true if the predicate of this instruction is commutative.
/// \brief Determine if this is a commutative predicate.
bool isCommutative() const { return isEquality() || getPredicate() == FCMP_FALSE || getPredicate() == FCMP_TRUE || getPredicate() == FCMP_ORD || getPredicate() == FCMP_UNO; }
/// @returns true if the predicate is relational (not EQ or NE).
/// \brief Determine if this a relational predicate.
bool isRelational() const { return !isEquality(); }
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// \brief Swap operands and adjust predicate.
void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); }
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::FCmp; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention. This class uses low bit of the SubClassData
/// field to indicate whether or not this is a tail call. The rest of the bits
/// hold the calling convention of the call.
///
class CallInst : public Instruction { AttributeSet AttributeList; ///< parameter attributes for call
CallInst(const CallInst &CI); void init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr); void init(Value *Func, const Twine &NameStr);
/// Construct a CallInst given a range of arguments.
/// \brief Construct a CallInst from a range of arguments
inline CallInst(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, Instruction *InsertBefore);
/// Construct a CallInst given a range of arguments.
/// \brief Construct a CallInst from a range of arguments
inline CallInst(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, BasicBlock *InsertAtEnd);
CallInst(Value *F, Value *Actual, const Twine &NameStr, Instruction *InsertBefore); CallInst(Value *F, Value *Actual, const Twine &NameStr, BasicBlock *InsertAtEnd); explicit CallInst(Value *F, const Twine &NameStr, Instruction *InsertBefore); CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual CallInst *clone_impl() const; public: static CallInst *Create(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(unsigned(Args.size() + 1)) CallInst(Func, Args, NameStr, InsertBefore); } static CallInst *Create(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(unsigned(Args.size() + 1)) CallInst(Func, Args, NameStr, InsertAtEnd); } static CallInst *Create(Value *F, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(1) CallInst(F, NameStr, InsertBefore); } static CallInst *Create(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(1) CallInst(F, NameStr, InsertAtEnd); } /// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = 0, Function* MallocF = 0, const Twine &Name = ""); static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = 0, Function* MallocF = 0, const Twine &Name = ""); /// CreateFree - Generate the IR for a call to the builtin free function.
static Instruction* CreateFree(Value* Source, Instruction *InsertBefore); static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
~CallInst();
bool isTailCall() const { return getSubclassDataFromInstruction() & 1; } void setTailCall(bool isTC = true) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | unsigned(isTC)); }
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getNumArgOperands - Return the number of call arguments.
///
unsigned getNumArgOperands() const { return getNumOperands() - 1; }
/// getArgOperand/setArgOperand - Return/set the i-th call argument.
///
Value *getArgOperand(unsigned i) const { return getOperand(i); } void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
/// getCallingConv/setCallingConv - Get or set the calling convention of this
/// function call.
CallingConv::ID getCallingConv() const { return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 1); } void setCallingConv(CallingConv::ID CC) { setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | (static_cast<unsigned>(CC) << 1)); }
/// getAttributes - Return the parameter attributes for this call.
///
const AttributeSet &getAttributes() const { return AttributeList; }
/// setAttributes - Set the parameter attributes for this call.
///
void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
/// addAttribute - adds the attribute to the list of attributes.
void addAttribute(unsigned i, Attribute::AttrKind attr);
/// removeAttribute - removes the attribute from the list of attributes.
void removeAttribute(unsigned i, Attribute attr);
/// \brief Determine whether this call has the given attribute.
bool hasFnAttr(Attribute::AttrKind A) const;
/// \brief Determine whether the call or the callee has the given attributes.
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
/// \brief Extract the alignment for a call or parameter (0=unknown).
unsigned getParamAlignment(unsigned i) const { return AttributeList.getParamAlignment(i); }
/// \brief Return true if the call should not be inlined.
bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } void setIsNoInline() { addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline); }
/// \brief Return true if the call can return twice
bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } void setCanReturnTwice() { addAttribute(AttributeSet::FunctionIndex, Attribute::ReturnsTwice); }
/// \brief Determine if the call does not access memory.
bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); } void setDoesNotAccessMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); }
/// \brief Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const { return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); } void setOnlyReadsMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); }
/// \brief Determine if the call cannot return.
bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } void setDoesNotReturn() { addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn); }
/// \brief Determine if the call cannot unwind.
bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } void setDoesNotThrow() { addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); }
/// \brief Determine if the call cannot be duplicated.
bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); } void setCannotDuplicate() { addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate); }
/// \brief Determine if the call returns a structure through first
/// pointer argument.
bool hasStructRetAttr() const { // Be friendly and also check the callee.
return paramHasAttr(1, Attribute::StructRet); }
/// \brief Determine if any call argument is an aggregate passed by value.
bool hasByValArgument() const { return AttributeList.hasAttrSomewhere(Attribute::ByVal); }
/// getCalledFunction - Return the function called, or null if this is an
/// indirect function invocation.
///
Function *getCalledFunction() const { return dyn_cast<Function>(Op<-1>()); }
/// getCalledValue - Get a pointer to the function that is invoked by this
/// instruction.
const Value *getCalledValue() const { return Op<-1>(); } Value *getCalledValue() { return Op<-1>(); }
/// setCalledFunction - Set the function called.
void setCalledFunction(Value* Fn) { Op<-1>() = Fn; }
/// isInlineAsm - Check if this call is an inline asm statement.
bool isInlineAsm() const { return isa<InlineAsm>(Op<-1>()); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Call; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
template <> struct OperandTraits<CallInst> : public VariadicOperandTraits<CallInst, 1> { };
CallInst::CallInst(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits<CallInst>::op_end(this) - (Args.size() + 1), unsigned(Args.size() + 1), InsertAtEnd) { init(Func, Args, NameStr); }
CallInst::CallInst(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, Instruction *InsertBefore) : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits<CallInst>::op_end(this) - (Args.size() + 1), unsigned(Args.size() + 1), InsertBefore) { init(Func, Args, NameStr); }
// Note: if you get compile errors about private methods then
// please update your code to use the high-level operand
// interfaces. See line 943 above.
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction { void init(Value *C, Value *S1, Value *S2) { assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); Op<0>() = C; Op<1>() = S1; Op<2>() = S2; }
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, Instruction *InsertBefore) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertBefore) { init(C, S1, S2); setName(NameStr); } SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertAtEnd) { init(C, S1, S2); setName(NameStr); } protected: virtual SelectInst *clone_impl() const; public: static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); } static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); }
const Value *getCondition() const { return Op<0>(); } const Value *getTrueValue() const { return Op<1>(); } const Value *getFalseValue() const { return Op<2>(); } Value *getCondition() { return Op<0>(); } Value *getTrueValue() { return Op<1>(); } Value *getFalseValue() { return Op<2>(); }
/// areInvalidOperands - Return a string if the specified operands are invalid
/// for a select operation, otherwise return null.
static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
OtherOps getOpcode() const { return static_cast<OtherOps>(Instruction::getOpcode()); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Select; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
//===----------------------------------------------------------------------===//
// VAArgInst Class
//===----------------------------------------------------------------------===//
/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list and increments that list
///
class VAArgInst : public UnaryInstruction { protected: virtual VAArgInst *clone_impl() const;
public: VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", Instruction *InsertBefore = 0) : UnaryInstruction(Ty, VAArg, List, InsertBefore) { setName(NameStr); } VAArgInst(Value *List, Type *Ty, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { setName(NameStr); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == VAArg; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// ExtractElementInst Class
//===----------------------------------------------------------------------===//
/// ExtractElementInst - This instruction extracts a single (scalar)
/// element from a VectorType value
///
class ExtractElementInst : public Instruction { ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0); ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual ExtractElementInst *clone_impl() const;
public: static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); } static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); }
/// isValidOperands - Return true if an extractelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *Idx);
Value *getVectorOperand() { return Op<0>(); } Value *getIndexOperand() { return Op<1>(); } const Value *getVectorOperand() const { return Op<0>(); } const Value *getIndexOperand() const { return Op<1>(); }
VectorType *getVectorOperandType() const { return cast<VectorType>(getVectorOperand()->getType()); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractElement; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<ExtractElementInst> : public FixedNumOperandTraits<ExtractElementInst, 2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
//===----------------------------------------------------------------------===//
// InsertElementInst Class
//===----------------------------------------------------------------------===//
/// InsertElementInst - This instruction inserts a single (scalar)
/// element into a VectorType value
///
class InsertElementInst : public Instruction { InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0); InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual InsertElementInst *clone_impl() const;
public: static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); } static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); }
/// isValidOperands - Return true if an insertelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx);
/// getType - Overload to return most specific vector type.
///
VectorType *getType() const { return cast<VectorType>(Instruction::getType()); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertElement; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<InsertElementInst> : public FixedNumOperandTraits<InsertElementInst, 3> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Class
//===----------------------------------------------------------------------===//
/// ShuffleVectorInst - This instruction constructs a fixed permutation of two
/// input vectors.
///
class ShuffleVectorInst : public Instruction { protected: virtual ShuffleVectorInst *clone_impl() const;
public: // allocate space for exactly three operands
void *operator new(size_t s) { return User::operator new(s, 3); } ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr = "", Instruction *InsertBefor = 0); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr, BasicBlock *InsertAtEnd);
/// isValidOperands - Return true if a shufflevector instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask);
/// getType - Overload to return most specific vector type.
///
VectorType *getType() const { return cast<VectorType>(Instruction::getType()); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
Constant *getMask() const { return cast<Constant>(getOperand(2)); }
/// getMaskValue - Return the index from the shuffle mask for the specified
/// output result. This is either -1 if the element is undef or a number less
/// than 2*numelements.
static int getMaskValue(Constant *Mask, unsigned i);
int getMaskValue(unsigned i) const { return getMaskValue(getMask(), i); }
/// getShuffleMask - Return the full mask for this instruction, where each
/// element is the element number and undef's are returned as -1.
static void getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result);
void getShuffleMask(SmallVectorImpl<int> &Result) const { return getShuffleMask(getMask(), Result); }
SmallVector<int, 16> getShuffleMask() const { SmallVector<int, 16> Mask; getShuffleMask(Mask); return Mask; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ShuffleVector; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<ShuffleVectorInst> : public FixedNumOperandTraits<ShuffleVectorInst, 3> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
//===----------------------------------------------------------------------===//
// ExtractValueInst Class
//===----------------------------------------------------------------------===//
/// ExtractValueInst - This instruction extracts a struct member or array
/// element value from an aggregate value.
///
class ExtractValueInst : public UnaryInstruction { SmallVector<unsigned, 4> Indices;
ExtractValueInst(const ExtractValueInst &EVI); void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
/// Constructors - Create a extractvalue instruction with a base aggregate
/// value and a list of indices. The first ctor can optionally insert before
/// an existing instruction, the second appends the new instruction to the
/// specified BasicBlock.
inline ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr, Instruction *InsertBefore); inline ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd);
// allocate space for exactly one operand
void *operator new(size_t s) { return User::operator new(s, 1); } protected: virtual ExtractValueInst *clone_impl() const;
public: static ExtractValueInst *Create(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); } static ExtractValueInst *Create(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); }
/// getIndexedType - Returns the type of the element that would be extracted
/// with an extractvalue instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified type.
static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
typedef const unsigned* idx_iterator; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); }
Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand
}
ArrayRef<unsigned> getIndices() const { return Indices; }
unsigned getNumIndices() const { return (unsigned)Indices.size(); }
bool hasIndices() const { return true; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractValue; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr, Instruction *InsertBefore) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertBefore) { init(Idxs, NameStr); } ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertAtEnd) { init(Idxs, NameStr); }
//===----------------------------------------------------------------------===//
// InsertValueInst Class
//===----------------------------------------------------------------------===//
/// InsertValueInst - This instruction inserts a struct field of array element
/// value into an aggregate value.
///
class InsertValueInst : public Instruction { SmallVector<unsigned, 4> Indices;
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; InsertValueInst(const InsertValueInst &IVI); void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr);
/// Constructors - Create a insertvalue instruction with a base aggregate
/// value, a value to insert, and a list of indices. The first ctor can
/// optionally insert before an existing instruction, the second appends
/// the new instruction to the specified BasicBlock.
inline InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr, Instruction *InsertBefore); inline InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd);
/// Constructors - These two constructors are convenience methods because one
/// and two index insertvalue instructions are so common.
InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr = "", Instruction *InsertBefore = 0); InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual InsertValueInst *clone_impl() const; public: // allocate space for exactly two operands
void *operator new(size_t s) { return User::operator new(s, 2); }
static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); } static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
typedef const unsigned* idx_iterator; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); }
Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand
}
Value *getInsertedValueOperand() { return getOperand(1); } const Value *getInsertedValueOperand() const { return getOperand(1); } static unsigned getInsertedValueOperandIndex() { return 1U; // get index for modifying correct operand
}
ArrayRef<unsigned> getIndices() const { return Indices; }
unsigned getNumIndices() const { return (unsigned)Indices.size(); }
bool hasIndices() const { return true; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertValue; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<InsertValueInst> : public FixedNumOperandTraits<InsertValueInst, 2> { };
InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr, Instruction *InsertBefore) : Instruction(Agg->getType(), InsertValue, OperandTraits<InsertValueInst>::op_begin(this), 2, InsertBefore) { init(Agg, Val, Idxs, NameStr); } InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Agg->getType(), InsertValue, OperandTraits<InsertValueInst>::op_begin(this), 2, InsertAtEnd) { init(Agg, Val, Idxs, NameStr); }
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; /// ReservedSpace - The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace; PHINode(const PHINode &PN); // allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s, 0); } explicit PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = 0) : Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore), ReservedSpace(NumReservedValues) { setName(NameStr); OperandList = allocHungoffUses(ReservedSpace); }
PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd), ReservedSpace(NumReservedValues) { setName(NameStr); OperandList = allocHungoffUses(ReservedSpace); } protected: // allocHungoffUses - this is more complicated than the generic
// User::allocHungoffUses, because we have to allocate Uses for the incoming
// values and pointers to the incoming blocks, all in one allocation.
Use *allocHungoffUses(unsigned) const;
virtual PHINode *clone_impl() const; public: /// Constructors - NumReservedValues is a hint for the number of incoming
/// edges that this phi node will have (use 0 if you really have no idea).
static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = 0) { return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); } static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); } ~PHINode();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Block iterator interface. This provides access to the list of incoming
// basic blocks, which parallels the list of incoming values.
typedef BasicBlock **block_iterator; typedef BasicBlock * const *const_block_iterator;
block_iterator block_begin() { Use::UserRef *ref = reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace); return reinterpret_cast<block_iterator>(ref + 1); }
const_block_iterator block_begin() const { const Use::UserRef *ref = reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace); return reinterpret_cast<const_block_iterator>(ref + 1); }
block_iterator block_end() { return block_begin() + getNumOperands(); }
const_block_iterator block_end() const { return block_begin() + getNumOperands(); }
/// getNumIncomingValues - Return the number of incoming edges
///
unsigned getNumIncomingValues() const { return getNumOperands(); }
/// getIncomingValue - Return incoming value number x
///
Value *getIncomingValue(unsigned i) const { return getOperand(i); } void setIncomingValue(unsigned i, Value *V) { setOperand(i, V); } static unsigned getOperandNumForIncomingValue(unsigned i) { return i; } static unsigned getIncomingValueNumForOperand(unsigned i) { return i; }
/// getIncomingBlock - Return incoming basic block number @p i.
///
BasicBlock *getIncomingBlock(unsigned i) const { return block_begin()[i]; }
/// getIncomingBlock - Return incoming basic block corresponding
/// to an operand of the PHI.
///
BasicBlock *getIncomingBlock(const Use &U) const { assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); return getIncomingBlock(unsigned(&U - op_begin())); }
/// getIncomingBlock - Return incoming basic block corresponding
/// to value use iterator.
///
template <typename U> BasicBlock *getIncomingBlock(value_use_iterator<U> I) const { return getIncomingBlock(I.getUse()); }
void setIncomingBlock(unsigned i, BasicBlock *BB) { block_begin()[i] = BB; }
/// addIncoming - Add an incoming value to the end of the PHI list
///
void addIncoming(Value *V, BasicBlock *BB) { assert(V && "PHI node got a null value!"); assert(BB && "PHI node got a null basic block!"); assert(getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"); if (NumOperands == ReservedSpace) growOperands(); // Get more space!
// Initialize some new operands.
++NumOperands; setIncomingValue(NumOperands - 1, V); setIncomingBlock(NumOperands - 1, BB); }
/// removeIncomingValue - Remove an incoming value. This is useful if a
/// predecessor basic block is deleted. The value removed is returned.
///
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
/// is true), the PHI node is destroyed and any uses of it are replaced with
/// dummy values. The only time there should be zero incoming values to a PHI
/// node is when the block is dead, so this strategy is sound.
///
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument to remove!"); return removeIncomingValue(Idx, DeletePHIIfEmpty); }
/// getBasicBlockIndex - Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
///
int getBasicBlockIndex(const BasicBlock *BB) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (block_begin()[i] == BB) return i; return -1; }
Value *getIncomingValueForBlock(const BasicBlock *BB) const { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument!"); return getIncomingValue(Idx); }
/// hasConstantValue - If the specified PHI node always merges together the
/// same value, return the value, otherwise return null.
Value *hasConstantValue() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::PHI; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: void growOperands(); };
template <> struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
//===----------------------------------------------------------------------===//
// LandingPadInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// LandingPadInst - The landingpad instruction holds all of the information
/// necessary to generate correct exception handling. The landingpad instruction
/// cannot be moved from the top of a landing pad block, which itself is
/// accessible only from the 'unwind' edge of an invoke. This uses the
/// SubclassData field in Value to store whether or not the landingpad is a
/// cleanup.
///
class LandingPadInst : public Instruction { /// ReservedSpace - The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace; LandingPadInst(const LandingPadInst &LP); public: enum ClauseType { Catch, Filter }; private: void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; // Allocate space for exactly zero operands.
void *operator new(size_t s) { return User::operator new(s, 0); } void growOperands(unsigned Size); void init(Value *PersFn, unsigned NumReservedValues, const Twine &NameStr);
explicit LandingPadInst(Type *RetTy, Value *PersonalityFn, unsigned NumReservedValues, const Twine &NameStr, Instruction *InsertBefore); explicit LandingPadInst(Type *RetTy, Value *PersonalityFn, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual LandingPadInst *clone_impl() const; public: /// Constructors - NumReservedClauses is a hint for the number of incoming
/// clauses that this landingpad will have (use 0 if you really have no idea).
static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn, unsigned NumReservedClauses, const Twine &NameStr = "", Instruction *InsertBefore = 0); static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn, unsigned NumReservedClauses, const Twine &NameStr, BasicBlock *InsertAtEnd); ~LandingPadInst();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getPersonalityFn - Get the personality function associated with this
/// landing pad.
Value *getPersonalityFn() const { return getOperand(0); }
/// isCleanup - Return 'true' if this landingpad instruction is a
/// cleanup. I.e., it should be run when unwinding even if its landing pad
/// doesn't catch the exception.
bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
/// setCleanup - Indicate that this landingpad instruction is a cleanup.
void setCleanup(bool V) { setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | (V ? 1 : 0)); }
/// addClause - Add a catch or filter clause to the landing pad.
void addClause(Value *ClauseVal);
/// getClause - Get the value of the clause at index Idx. Use isCatch/isFilter
/// to determine what type of clause this is.
Value *getClause(unsigned Idx) const { return OperandList[Idx + 1]; }
/// isCatch - Return 'true' if the clause and index Idx is a catch clause.
bool isCatch(unsigned Idx) const { return !isa<ArrayType>(OperandList[Idx + 1]->getType()); }
/// isFilter - Return 'true' if the clause and index Idx is a filter clause.
bool isFilter(unsigned Idx) const { return isa<ArrayType>(OperandList[Idx + 1]->getType()); }
/// getNumClauses - Get the number of clauses for this landing pad.
unsigned getNumClauses() const { return getNumOperands() - 1; }
/// reserveClauses - Grow the size of the operand list to accommodate the new
/// number of clauses.
void reserveClauses(unsigned Size) { growOperands(Size); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::LandingPad; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
template <> struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
//===----------------------------------------------------------------------===//
// ReturnInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function. Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst { ReturnInst(const ReturnInst &RI);
private: // ReturnInst constructors:
// ReturnInst() - 'ret void' instruction
// ReturnInst( null) - 'ret void' instruction
// ReturnInst(Value* X) - 'ret X' instruction
// ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
//
// NOTE: If the Value* passed is of type void then the constructor behaves as
// if it was passed NULL.
explicit ReturnInst(LLVMContext &C, Value *retVal = 0, Instruction *InsertBefore = 0); ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); protected: virtual ReturnInst *clone_impl() const; public: static ReturnInst* Create(LLVMContext &C, Value *retVal = 0, Instruction *InsertBefore = 0) { return new(!!retVal) ReturnInst(C, retVal, InsertBefore); } static ReturnInst* Create(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) { return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); } static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { return new(0) ReturnInst(C, InsertAtEnd); } virtual ~ReturnInst();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor. Returns null if there is no return value.
Value *getReturnValue() const { return getNumOperands() != 0 ? getOperand(0) : 0; }
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Ret); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); };
template <> struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
//===----------------------------------------------------------------------===//
// BranchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst { /// Ops list - Branches are strange. The operands are ordered:
/// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
/// they don't have to check for cond/uncond branchness. These are mostly
/// accessed relative from op_end().
BranchInst(const BranchInst &BI); void AssertOK(); // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
// BranchInst(BB *B) - 'br B'
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
// BranchInst(BB* B, BB *I) - 'br B' insert at end
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = 0); BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd); protected: virtual BranchInst *clone_impl() const; public: static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) { return new(1) BranchInst(IfTrue, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = 0) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { return new(1) BranchInst(IfTrue, InsertAtEnd); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); }
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
bool isUnconditional() const { return getNumOperands() == 1; } bool isConditional() const { return getNumOperands() == 3; }
Value *getCondition() const { assert(isConditional() && "Cannot get condition of an uncond branch!"); return Op<-3>(); }
void setCondition(Value *V) { assert(isConditional() && "Cannot set condition of unconditional branch!"); Op<-3>() = V; }
unsigned getNumSuccessors() const { return 1+isConditional(); }
BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); }
void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); *(&Op<-1>() - idx) = (Value*)NewSucc; }
/// \brief Swap the successors of this branch instruction.
///
/// Swaps the successors of the branch instruction. This also swaps any
/// branch weight metadata associated with the instruction so that it
/// continues to map correctly to each operand.
void swapSuccessors();
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Br); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); };
template <> struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
//===----------------------------------------------------------------------===//
// SwitchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// SwitchInst - Multiway switch
///
class SwitchInst : public TerminatorInst { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; unsigned ReservedSpace; // Operands format:
// Operand[0] = Value to switch on
// Operand[1] = Default basic block destination
// Operand[2n ] = Value to match
// Operand[2n+1] = BasicBlock to go to on match
// Store case values separately from operands list. We needn't User-Use
// concept here, since it is just a case value, it will always constant,
// and case value couldn't reused with another instructions/values.
// Additionally:
// It allows us to use custom type for case values that is not inherited
// from Value. Since case value is a complex type that implements
// the subset of integers, we needn't extract sub-constants within
// slow getAggregateElement method.
// For case values we will use std::list to by two reasons:
// 1. It allows to add/remove cases without whole collection reallocation.
// 2. In most of cases we needn't random access.
// Currently case values are also stored in Operands List, but it will moved
// out in future commits.
typedef std::list<IntegersSubset> Subsets; typedef Subsets::iterator SubsetsIt; typedef Subsets::const_iterator SubsetsConstIt;
Subsets TheSubsets;
SwitchInst(const SwitchInst &SI); void init(Value *Value, BasicBlock *Default, unsigned NumReserved); void growOperands(); // allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s, 0); } /// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor can also autoinsert before another instruction.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore);
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd); protected: virtual SwitchInst *clone_impl() const; public:
// FIXME: Currently there are a lot of unclean template parameters,
// we need to make refactoring in future.
// All these parameters are used to implement both iterator and const_iterator
// without code duplication.
// SwitchInstTy may be "const SwitchInst" or "SwitchInst"
// ConstantIntTy may be "const ConstantInt" or "ConstantInt"
// SubsetsItTy may be SubsetsConstIt or SubsetsIt
// BasicBlockTy may be "const BasicBlock" or "BasicBlock"
template <class SwitchInstTy, class ConstantIntTy, class SubsetsItTy, class BasicBlockTy> class CaseIteratorT;
typedef CaseIteratorT<const SwitchInst, const ConstantInt, SubsetsConstIt, const BasicBlock> ConstCaseIt; class CaseIt;
// -2
static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore = 0) { return new SwitchInst(Value, Default, NumCases, InsertBefore); } static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd) { return new SwitchInst(Value, Default, NumCases, InsertAtEnd); }
~SwitchInst();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for Switch stmt
Value *getCondition() const { return getOperand(0); } void setCondition(Value *V) { setOperand(0, V); }
BasicBlock *getDefaultDest() const { return cast<BasicBlock>(getOperand(1)); }
void setDefaultDest(BasicBlock *DefaultCase) { setOperand(1, reinterpret_cast<Value*>(DefaultCase)); }
/// getNumCases - return the number of 'cases' in this switch instruction,
/// except the default case
unsigned getNumCases() const { return getNumOperands()/2 - 1; }
/// Returns a read/write iterator that points to the first
/// case in SwitchInst.
CaseIt case_begin() { return CaseIt(this, 0, TheSubsets.begin()); } /// Returns a read-only iterator that points to the first
/// case in the SwitchInst.
ConstCaseIt case_begin() const { return ConstCaseIt(this, 0, TheSubsets.begin()); }
/// Returns a read/write iterator that points one past the last
/// in the SwitchInst.
CaseIt case_end() { return CaseIt(this, getNumCases(), TheSubsets.end()); } /// Returns a read-only iterator that points one past the last
/// in the SwitchInst.
ConstCaseIt case_end() const { return ConstCaseIt(this, getNumCases(), TheSubsets.end()); } /// Returns an iterator that points to the default case.
/// Note: this iterator allows to resolve successor only. Attempt
/// to resolve case value causes an assertion.
/// Also note, that increment and decrement also causes an assertion and
/// makes iterator invalid.
CaseIt case_default() { return CaseIt(this, DefaultPseudoIndex, TheSubsets.end()); } ConstCaseIt case_default() const { return ConstCaseIt(this, DefaultPseudoIndex, TheSubsets.end()); }
/// findCaseValue - Search all of the case values for the specified constant.
/// If it is explicitly handled, return the case iterator of it, otherwise
/// return default case iterator to indicate
/// that it is handled by the default handler.
CaseIt findCaseValue(const ConstantInt *C) { for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) if (i.getCaseValueEx().isSatisfies(IntItem::fromConstantInt(C))) return i; return case_default(); } ConstCaseIt findCaseValue(const ConstantInt *C) const { for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i) if (i.getCaseValueEx().isSatisfies(IntItem::fromConstantInt(C))) return i; return case_default(); }
/// findCaseDest - Finds the unique case value for a given successor. Returns
/// null if the successor is not found, not unique, or is the default case.
ConstantInt *findCaseDest(BasicBlock *BB) { if (BB == getDefaultDest()) return NULL;
ConstantInt *CI = NULL; for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) { if (i.getCaseSuccessor() == BB) { if (CI) return NULL; // Multiple cases lead to BB.
else CI = i.getCaseValue(); } } return CI; }
/// addCase - Add an entry to the switch instruction...
/// @deprecated
/// Note:
/// This action invalidates case_end(). Old case_end() iterator will
/// point to the added case.
void addCase(ConstantInt *OnVal, BasicBlock *Dest);
/// addCase - Add an entry to the switch instruction.
/// Note:
/// This action invalidates case_end(). Old case_end() iterator will
/// point to the added case.
void addCase(IntegersSubset& OnVal, BasicBlock *Dest);
/// removeCase - This method removes the specified case and its successor
/// from the switch instruction. Note that this operation may reorder the
/// remaining cases at index idx and above.
/// Note:
/// This action invalidates iterators for all cases following the one removed,
/// including the case_end() iterator.
void removeCase(CaseIt& i);
unsigned getNumSuccessors() const { return getNumOperands()/2; } BasicBlock *getSuccessor(unsigned idx) const { assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); return cast<BasicBlock>(getOperand(idx*2+1)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); setOperand(idx*2+1, (Value*)NewSucc); }
uint16_t hash() const { uint32_t NumberOfCases = (uint32_t)getNumCases(); uint16_t Hash = (0xFFFF & NumberOfCases) ^ (NumberOfCases >> 16); for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i) { uint32_t NumItems = (uint32_t)i.getCaseValueEx().getNumItems(); Hash = (Hash << 1) ^ (0xFFFF & NumItems) ^ (NumItems >> 16); } return Hash; }
// Case iterators definition.
template <class SwitchInstTy, class ConstantIntTy, class SubsetsItTy, class BasicBlockTy> class CaseIteratorT { protected:
SwitchInstTy *SI; unsigned Index; SubsetsItTy SubsetIt;
/// Initializes case iterator for given SwitchInst and for given
/// case number.
friend class SwitchInst; CaseIteratorT(SwitchInstTy *SI, unsigned SuccessorIndex, SubsetsItTy CaseValueIt) { this->SI = SI; Index = SuccessorIndex; this->SubsetIt = CaseValueIt; }
public: typedef typename SubsetsItTy::reference IntegersSubsetRef; typedef CaseIteratorT<SwitchInstTy, ConstantIntTy, SubsetsItTy, BasicBlockTy> Self;
CaseIteratorT(SwitchInstTy *SI, unsigned CaseNum) { this->SI = SI; Index = CaseNum; SubsetIt = SI->TheSubsets.begin(); std::advance(SubsetIt, CaseNum); }
/// Initializes case iterator for given SwitchInst and for given
/// TerminatorInst's successor index.
static Self fromSuccessorIndex(SwitchInstTy *SI, unsigned SuccessorIndex) { assert(SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"); return SuccessorIndex != 0 ? Self(SI, SuccessorIndex - 1) : Self(SI, DefaultPseudoIndex); }
/// Resolves case value for current case.
/// @deprecated
ConstantIntTy *getCaseValue() { assert(Index < SI->getNumCases() && "Index out the number of cases."); IntegersSubsetRef CaseRanges = *SubsetIt;
// FIXME: Currently we work with ConstantInt based cases.
// So return CaseValue as ConstantInt.
return CaseRanges.getSingleNumber(0).toConstantInt(); }
/// Resolves case value for current case.
IntegersSubsetRef getCaseValueEx() { assert(Index < SI->getNumCases() && "Index out the number of cases."); return *SubsetIt; }
/// Resolves successor for current case.
BasicBlockTy *getCaseSuccessor() { assert((Index < SI->getNumCases() || Index == DefaultPseudoIndex) && "Index out the number of cases."); return SI->getSuccessor(getSuccessorIndex()); }
/// Returns number of current case.
unsigned getCaseIndex() const { return Index; }
/// Returns TerminatorInst's successor index for current case successor.
unsigned getSuccessorIndex() const { assert((Index == DefaultPseudoIndex || Index < SI->getNumCases()) && "Index out the number of cases."); return Index != DefaultPseudoIndex ? Index + 1 : 0; }
Self operator++() { // Check index correctness after increment.
// Note: Index == getNumCases() means end().
assert(Index+1 <= SI->getNumCases() && "Index out the number of cases."); ++Index; if (Index == 0) SubsetIt = SI->TheSubsets.begin(); else ++SubsetIt; return *this; } Self operator++(int) { Self tmp = *this; ++(*this); return tmp; } Self operator--() { // Check index correctness after decrement.
// Note: Index == getNumCases() means end().
// Also allow "-1" iterator here. That will became valid after ++.
unsigned NumCases = SI->getNumCases(); assert((Index == 0 || Index-1 <= NumCases) && "Index out the number of cases."); --Index; if (Index == NumCases) { SubsetIt = SI->TheSubsets.end(); return *this; }
if (Index != -1U) --SubsetIt;
return *this; } Self operator--(int) { Self tmp = *this; --(*this); return tmp; } bool operator==(const Self& RHS) const { assert(RHS.SI == SI && "Incompatible operators."); return RHS.Index == Index; } bool operator!=(const Self& RHS) const { assert(RHS.SI == SI && "Incompatible operators."); return RHS.Index != Index; } };
class CaseIt : public CaseIteratorT<SwitchInst, ConstantInt, SubsetsIt, BasicBlock> { typedef CaseIteratorT<SwitchInst, ConstantInt, SubsetsIt, BasicBlock> ParentTy;
protected: friend class SwitchInst; CaseIt(SwitchInst *SI, unsigned CaseNum, SubsetsIt SubsetIt) : ParentTy(SI, CaseNum, SubsetIt) {}
void updateCaseValueOperand(IntegersSubset& V) { SI->setOperand(2 + Index*2, reinterpret_cast<Value*>((Constant*)V)); }
public:
CaseIt(SwitchInst *SI, unsigned CaseNum) : ParentTy(SI, CaseNum) {}
CaseIt(const ParentTy& Src) : ParentTy(Src) {}
/// Sets the new value for current case.
/// @deprecated.
void setValue(ConstantInt *V) { assert(Index < SI->getNumCases() && "Index out the number of cases."); IntegersSubsetToBB Mapping; // FIXME: Currently we work with ConstantInt based cases.
// So inititalize IntItem container directly from ConstantInt.
Mapping.add(IntItem::fromConstantInt(V)); *SubsetIt = Mapping.getCase(); updateCaseValueOperand(*SubsetIt); }
/// Sets the new value for current case.
void setValueEx(IntegersSubset& V) { assert(Index < SI->getNumCases() && "Index out the number of cases."); *SubsetIt = V; updateCaseValueOperand(*SubsetIt); }
/// Sets the new successor for current case.
void setSuccessor(BasicBlock *S) { SI->setSuccessor(getSuccessorIndex(), S); } };
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Switch; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); };
template <> struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
//===----------------------------------------------------------------------===//
// IndirectBrInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// IndirectBrInst - Indirect Branch Instruction.
///
class IndirectBrInst : public TerminatorInst { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; unsigned ReservedSpace; // Operand[0] = Value to switch on
// Operand[1] = Default basic block destination
// Operand[2n ] = Value to match
// Operand[2n+1] = BasicBlock to go to on match
IndirectBrInst(const IndirectBrInst &IBI); void init(Value *Address, unsigned NumDests); void growOperands(); // allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s, 0); } /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
/// Address to jump to. The number of expected destinations can be specified
/// here to make memory allocation more efficient. This constructor can also
/// autoinsert before another instruction.
IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
/// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
/// Address to jump to. The number of expected destinations can be specified
/// here to make memory allocation more efficient. This constructor also
/// autoinserts at the end of the specified BasicBlock.
IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); protected: virtual IndirectBrInst *clone_impl() const; public: static IndirectBrInst *Create(Value *Address, unsigned NumDests, Instruction *InsertBefore = 0) { return new IndirectBrInst(Address, NumDests, InsertBefore); } static IndirectBrInst *Create(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd) { return new IndirectBrInst(Address, NumDests, InsertAtEnd); } ~IndirectBrInst();
/// Provide fast operand accessors.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for IndirectBrInst instruction.
Value *getAddress() { return getOperand(0); } const Value *getAddress() const { return getOperand(0); } void setAddress(Value *V) { setOperand(0, V); }
/// getNumDestinations - return the number of possible destinations in this
/// indirectbr instruction.
unsigned getNumDestinations() const { return getNumOperands()-1; }
/// getDestination - Return the specified destination.
BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
/// addDestination - Add a destination.
///
void addDestination(BasicBlock *Dest);
/// removeDestination - This method removes the specified successor from the
/// indirectbr instruction.
void removeDestination(unsigned i);
unsigned getNumSuccessors() const { return getNumOperands()-1; } BasicBlock *getSuccessor(unsigned i) const { return cast<BasicBlock>(getOperand(i+1)); } void setSuccessor(unsigned i, BasicBlock *NewSucc) { setOperand(i+1, (Value*)NewSucc); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::IndirectBr; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); };
template <> struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
//===----------------------------------------------------------------------===//
// InvokeInst Class
//===----------------------------------------------------------------------===//
/// InvokeInst - Invoke instruction. The SubclassData field is used to hold the
/// calling convention of the call.
///
class InvokeInst : public TerminatorInst { AttributeSet AttributeList; InvokeInst(const InvokeInst &BI); void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, const Twine &NameStr);
/// Construct an InvokeInst given a range of arguments.
///
/// \brief Construct an InvokeInst from a range of arguments
inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, unsigned Values, const Twine &NameStr, Instruction *InsertBefore);
/// Construct an InvokeInst given a range of arguments.
///
/// \brief Construct an InvokeInst from a range of arguments
inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: virtual InvokeInst *clone_impl() const; public: static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, const Twine &NameStr = "", Instruction *InsertBefore = 0) { unsigned Values = unsigned(Args.size()) + 3; return new(Values) InvokeInst(Func, IfNormal, IfException, Args, Values, NameStr, InsertBefore); } static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = unsigned(Args.size()) + 3; return new(Values) InvokeInst(Func, IfNormal, IfException, Args, Values, NameStr, InsertAtEnd); }
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getNumArgOperands - Return the number of invoke arguments.
///
unsigned getNumArgOperands() const { return getNumOperands() - 3; }
/// getArgOperand/setArgOperand - Return/set the i-th invoke argument.
///
Value *getArgOperand(unsigned i) const { return getOperand(i); } void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
/// getCallingConv/setCallingConv - Get or set the calling convention of this
/// function call.
CallingConv::ID getCallingConv() const { return static_cast<CallingConv::ID>(getSubclassDataFromInstruction()); } void setCallingConv(CallingConv::ID CC) { setInstructionSubclassData(static_cast<unsigned>(CC)); }
/// getAttributes - Return the parameter attributes for this invoke.
///
const AttributeSet &getAttributes() const { return AttributeList; }
/// setAttributes - Set the parameter attributes for this invoke.
///
void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
/// addAttribute - adds the attribute to the list of attributes.
void addAttribute(unsigned i, Attribute::AttrKind attr);
/// removeAttribute - removes the attribute from the list of attributes.
void removeAttribute(unsigned i, Attribute attr);
/// \brief Determine whether this call has the NoAlias attribute.
bool hasFnAttr(Attribute::AttrKind A) const;
/// \brief Determine whether the call or the callee has the given attributes.
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
/// \brief Extract the alignment for a call or parameter (0=unknown).
unsigned getParamAlignment(unsigned i) const { return AttributeList.getParamAlignment(i); }
/// \brief Return true if the call should not be inlined.
bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } void setIsNoInline() { addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline); }
/// \brief Determine if the call does not access memory.
bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); } void setDoesNotAccessMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); }
/// \brief Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const { return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); } void setOnlyReadsMemory() { addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); }
/// \brief Determine if the call cannot return.
bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } void setDoesNotReturn() { addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn); }
/// \brief Determine if the call cannot unwind.
bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } void setDoesNotThrow() { addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); }
/// \brief Determine if the call returns a structure through first
/// pointer argument.
bool hasStructRetAttr() const { // Be friendly and also check the callee.
return paramHasAttr(1, Attribute::StructRet); }
/// \brief Determine if any call argument is an aggregate passed by value.
bool hasByValArgument() const { return AttributeList.hasAttrSomewhere(Attribute::ByVal); }
/// getCalledFunction - Return the function called, or null if this is an
/// indirect function invocation.
///
Function *getCalledFunction() const { return dyn_cast<Function>(Op<-3>()); }
/// getCalledValue - Get a pointer to the function that is invoked by this
/// instruction
const Value *getCalledValue() const { return Op<-3>(); } Value *getCalledValue() { return Op<-3>(); }
/// setCalledFunction - Set the function called.
void setCalledFunction(Value* Fn) { Op<-3>() = Fn; }
// get*Dest - Return the destination basic blocks...
BasicBlock *getNormalDest() const { return cast<BasicBlock>(Op<-2>()); } BasicBlock *getUnwindDest() const { return cast<BasicBlock>(Op<-1>()); } void setNormalDest(BasicBlock *B) { Op<-2>() = reinterpret_cast<Value*>(B); } void setUnwindDest(BasicBlock *B) { Op<-1>() = reinterpret_cast<Value*>(B); }
/// getLandingPadInst - Get the landingpad instruction from the landing pad
/// block (the unwind destination).
LandingPadInst *getLandingPadInst() const;
BasicBlock *getSuccessor(unsigned i) const { assert(i < 2 && "Successor # out of range for invoke!"); return i == 0 ? getNormalDest() : getUnwindDest(); }
void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < 2 && "Successor # out of range for invoke!"); *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc); }
unsigned getNumSuccessors() const { return 2; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Invoke); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); }
private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B);
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) { Instruction::setInstructionSubclassData(D); } };
template <> struct OperandTraits<InvokeInst> : public VariadicOperandTraits<InvokeInst, 3> { };
InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, OperandTraits<InvokeInst>::op_end(this) - Values, Values, InsertBefore) { init(Func, IfNormal, IfException, Args, NameStr); } InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType()) ->getElementType())->getReturnType(), Instruction::Invoke, OperandTraits<InvokeInst>::op_end(this) - Values, Values, InsertAtEnd) { init(Func, IfNormal, IfException, Args, NameStr); }
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
//===----------------------------------------------------------------------===//
// ResumeInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// ResumeInst - Resume the propagation of an exception.
///
class ResumeInst : public TerminatorInst { ResumeInst(const ResumeInst &RI);
explicit ResumeInst(Value *Exn, Instruction *InsertBefore=0); ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); protected: virtual ResumeInst *clone_impl() const; public: static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = 0) { return new(1) ResumeInst(Exn, InsertBefore); } static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { return new(1) ResumeInst(Exn, InsertAtEnd); }
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor.
Value *getValue() const { return Op<0>(); }
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Resume; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); };
template <> struct OperandTraits<ResumeInst> : public FixedNumOperandTraits<ResumeInst, 1> { };
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
//===----------------------------------------------------------------------===//
// UnreachableInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// UnreachableInst - This function has undefined behavior. In particular, the
/// presence of this instruction indicates some higher level knowledge that the
/// end of the block cannot be reached.
///
class UnreachableInst : public TerminatorInst { void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; protected: virtual UnreachableInst *clone_impl() const;
public: // allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s, 0); } explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = 0); explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unreachable; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } private: virtual BasicBlock *getSuccessorV(unsigned idx) const; virtual unsigned getNumSuccessorsV() const; virtual void setSuccessorV(unsigned idx, BasicBlock *B); };
//===----------------------------------------------------------------------===//
// TruncInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a truncation of integer types.
class TruncInst : public CastInst { protected: /// \brief Clone an identical TruncInst
virtual TruncInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
TruncInst( Value *S, ///< The value to be truncated
Type *Ty, ///< The (smaller) type to truncate to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
TruncInst( Value *S, ///< The value to be truncated
Type *Ty, ///< The (smaller) type to truncate to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == Trunc; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// ZExtInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents zero extension of integer types.
class ZExtInst : public CastInst { protected: /// \brief Clone an identical ZExtInst
virtual ZExtInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
ZExtInst( Value *S, ///< The value to be zero extended
Type *Ty, ///< The type to zero extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end semantics.
ZExtInst( Value *S, ///< The value to be zero extended
Type *Ty, ///< The type to zero extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == ZExt; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// SExtInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a sign extension of integer types.
class SExtInst : public CastInst { protected: /// \brief Clone an identical SExtInst
virtual SExtInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
SExtInst( Value *S, ///< The value to be sign extended
Type *Ty, ///< The type to sign extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
SExtInst( Value *S, ///< The value to be sign extended
Type *Ty, ///< The type to sign extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == SExt; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// FPTruncInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a truncation of floating point types.
class FPTruncInst : public CastInst { protected: /// \brief Clone an identical FPTruncInst
virtual FPTruncInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
FPTruncInst( Value *S, ///< The value to be truncated
Type *Ty, ///< The type to truncate to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-before-instruction semantics
FPTruncInst( Value *S, ///< The value to be truncated
Type *Ty, ///< The type to truncate to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == FPTrunc; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// FPExtInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents an extension of floating point types.
class FPExtInst : public CastInst { protected: /// \brief Clone an identical FPExtInst
virtual FPExtInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
FPExtInst( Value *S, ///< The value to be extended
Type *Ty, ///< The type to extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
FPExtInst( Value *S, ///< The value to be extended
Type *Ty, ///< The type to extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == FPExt; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// UIToFPInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a cast unsigned integer to floating point.
class UIToFPInst : public CastInst { protected: /// \brief Clone an identical UIToFPInst
virtual UIToFPInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
UIToFPInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
UIToFPInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == UIToFP; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// SIToFPInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a cast from signed integer to floating point.
class SIToFPInst : public CastInst { protected: /// \brief Clone an identical SIToFPInst
virtual SIToFPInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
SIToFPInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
SIToFPInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == SIToFP; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// FPToUIInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a cast from floating point to unsigned integer
class FPToUIInst : public CastInst { protected: /// \brief Clone an identical FPToUIInst
virtual FPToUIInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
FPToUIInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
FPToUIInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< Where to insert the new instruction
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToUI; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// FPToSIInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a cast from floating point to signed integer.
class FPToSIInst : public CastInst { protected: /// \brief Clone an identical FPToSIInst
virtual FPToSIInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
FPToSIInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
FPToSIInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == FPToSI; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// IntToPtrInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a cast from an integer to a pointer.
class IntToPtrInst : public CastInst { public: /// \brief Constructor with insert-before-instruction semantics
IntToPtrInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
IntToPtrInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Clone an identical IntToPtrInst
virtual IntToPtrInst *clone_impl() const;
/// \brief Returns the address space of this instruction's pointer type.
unsigned getAddressSpace() const { return getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == IntToPtr; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// PtrToIntInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a cast from a pointer to an integer
class PtrToIntInst : public CastInst { protected: /// \brief Clone an identical PtrToIntInst
virtual PtrToIntInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
PtrToIntInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
PtrToIntInst( Value *S, ///< The value to be converted
Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// \brief Gets the pointer operand.
Value *getPointerOperand() { return getOperand(0); } /// \brief Gets the pointer operand.
const Value *getPointerOperand() const { return getOperand(0); } /// \brief Gets the operand index of the pointer operand.
static unsigned getPointerOperandIndex() { return 0U; }
/// \brief Returns the address space of the pointer operand.
unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == PtrToInt; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
//===----------------------------------------------------------------------===//
// BitCastInst Class
//===----------------------------------------------------------------------===//
/// \brief This class represents a no-op cast from one type to another.
class BitCastInst : public CastInst { protected: /// \brief Clone an identical BitCastInst
virtual BitCastInst *clone_impl() const;
public: /// \brief Constructor with insert-before-instruction semantics
BitCastInst( Value *S, ///< The value to be casted
Type *Ty, ///< The type to casted to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// \brief Constructor with insert-at-end-of-block semantics
BitCastInst( Value *S, ///< The value to be casted
Type *Ty, ///< The type to casted to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) { return I->getOpcode() == BitCast; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
} // End llvm namespace
#endif
|