|
|
//===---- llvm/MDBuilder.h - Builder for LLVM metadata ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MDBuilder class, which is used as a convenient way to
// create LLVM metadata with a consistent and simplified interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MDBUILDER_H
#define LLVM_MDBUILDER_H
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/ADT/APInt.h"
namespace llvm {
class MDBuilder { LLVMContext &Context;
public: MDBuilder(LLVMContext &context) : Context(context) {}
/// \brief Return the given string as metadata.
MDString *createString(StringRef Str) { return MDString::get(Context, Str); }
//===------------------------------------------------------------------===//
// FPMath metadata.
//===------------------------------------------------------------------===//
/// \brief Return metadata with the given settings. The special value 0.0
/// for the Accuracy parameter indicates the default (maximal precision)
/// setting.
MDNode *createFPMath(float Accuracy) { if (Accuracy == 0.0) return 0; assert(Accuracy > 0.0 && "Invalid fpmath accuracy!"); Value *Op = ConstantFP::get(Type::getFloatTy(Context), Accuracy); return MDNode::get(Context, Op); }
//===------------------------------------------------------------------===//
// Prof metadata.
//===------------------------------------------------------------------===//
/// \brief Return metadata containing two branch weights.
MDNode *createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight) { uint32_t Weights[] = { TrueWeight, FalseWeight }; return createBranchWeights(Weights); }
/// \brief Return metadata containing a number of branch weights.
MDNode *createBranchWeights(ArrayRef<uint32_t> Weights) { assert(Weights.size() >= 2 && "Need at least two branch weights!");
SmallVector<Value *, 4> Vals(Weights.size()+1); Vals[0] = createString("branch_weights");
Type *Int32Ty = Type::getInt32Ty(Context); for (unsigned i = 0, e = Weights.size(); i != e; ++i) Vals[i+1] = ConstantInt::get(Int32Ty, Weights[i]);
return MDNode::get(Context, Vals); }
//===------------------------------------------------------------------===//
// Range metadata.
//===------------------------------------------------------------------===//
/// \brief Return metadata describing the range [Lo, Hi).
MDNode *createRange(const APInt &Lo, const APInt &Hi) { assert(Lo.getBitWidth() == Hi.getBitWidth() && "Mismatched bitwidths!"); // If the range is everything then it is useless.
if (Hi == Lo) return 0;
// Return the range [Lo, Hi).
Type *Ty = IntegerType::get(Context, Lo.getBitWidth()); Value *Range[2] = { ConstantInt::get(Ty, Lo), ConstantInt::get(Ty, Hi) }; return MDNode::get(Context, Range); }
//===------------------------------------------------------------------===//
// TBAA metadata.
//===------------------------------------------------------------------===//
/// \brief Return metadata appropriate for a TBAA root node. Each returned
/// node is distinct from all other metadata and will never be identified
/// (uniqued) with anything else.
MDNode *createAnonymousTBAARoot() { // To ensure uniqueness the root node is self-referential.
MDNode *Dummy = MDNode::getTemporary(Context, ArrayRef<Value*>()); MDNode *Root = MDNode::get(Context, Dummy); // At this point we have
// !0 = metadata !{} <- dummy
// !1 = metadata !{metadata !0} <- root
// Replace the dummy operand with the root node itself and delete the dummy.
Root->replaceOperandWith(0, Root); MDNode::deleteTemporary(Dummy); // We now have
// !1 = metadata !{metadata !1} <- self-referential root
return Root; }
/// \brief Return metadata appropriate for a TBAA root node with the given
/// name. This may be identified (uniqued) with other roots with the same
/// name.
MDNode *createTBAARoot(StringRef Name) { return MDNode::get(Context, createString(Name)); }
/// \brief Return metadata for a non-root TBAA node with the given name,
/// parent in the TBAA tree, and value for 'pointsToConstantMemory'.
MDNode *createTBAANode(StringRef Name, MDNode *Parent, bool isConstant = false) { if (isConstant) { Constant *Flags = ConstantInt::get(Type::getInt64Ty(Context), 1); Value *Ops[3] = { createString(Name), Parent, Flags }; return MDNode::get(Context, Ops); } else { Value *Ops[2] = { createString(Name), Parent }; return MDNode::get(Context, Ops); } }
struct TBAAStructField { uint64_t Offset; uint64_t Size; MDNode *TBAA; TBAAStructField(uint64_t Offset, uint64_t Size, MDNode *TBAA) : Offset(Offset), Size(Size), TBAA(TBAA) {} };
/// \brief Return metadata for a tbaa.struct node with the given
/// struct field descriptions.
MDNode *createTBAAStructNode(ArrayRef<TBAAStructField> Fields) { SmallVector<Value *, 4> Vals(Fields.size() * 3); Type *Int64 = IntegerType::get(Context, 64); for (unsigned i = 0, e = Fields.size(); i != e; ++i) { Vals[i * 3 + 0] = ConstantInt::get(Int64, Fields[i].Offset); Vals[i * 3 + 1] = ConstantInt::get(Int64, Fields[i].Size); Vals[i * 3 + 2] = Fields[i].TBAA; } return MDNode::get(Context, Vals); }
};
} // end namespace llvm
#endif
|