|
|
//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various classes for working with Instructions and
// ConstantExprs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OPERATOR_H
#define LLVM_OPERATOR_H
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
#include "llvm/Type.h"
namespace llvm {
class GetElementPtrInst; class BinaryOperator; class ConstantExpr;
/// Operator - This is a utility class that provides an abstraction for the
/// common functionality between Instructions and ConstantExprs.
///
class Operator : public User { private: // Do not implement any of these. The Operator class is intended to be used
// as a utility, and is never itself instantiated.
void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; void *operator new(size_t s) LLVM_DELETED_FUNCTION; Operator() LLVM_DELETED_FUNCTION; // NOTE: cannot use LLVM_DELETED_FUNCTION because gcc errors when deleting
// an override of a non-deleted function.
~Operator();
public: /// getOpcode - Return the opcode for this Instruction or ConstantExpr.
///
unsigned getOpcode() const { if (const Instruction *I = dyn_cast<Instruction>(this)) return I->getOpcode(); return cast<ConstantExpr>(this)->getOpcode(); }
/// getOpcode - If V is an Instruction or ConstantExpr, return its
/// opcode. Otherwise return UserOp1.
///
static unsigned getOpcode(const Value *V) { if (const Instruction *I = dyn_cast<Instruction>(V)) return I->getOpcode(); if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) return CE->getOpcode(); return Instruction::UserOp1; }
static inline bool classof(const Operator *) { return true; } static inline bool classof(const Instruction *) { return true; } static inline bool classof(const ConstantExpr *) { return true; } static inline bool classof(const Value *V) { return isa<Instruction>(V) || isa<ConstantExpr>(V); } };
/// OverflowingBinaryOperator - Utility class for integer arithmetic operators
/// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
/// despite that operator having the potential for overflow.
///
class OverflowingBinaryOperator : public Operator { public: enum { NoUnsignedWrap = (1 << 0), NoSignedWrap = (1 << 1) };
private: ~OverflowingBinaryOperator(); // DO NOT IMPLEMENT
friend class BinaryOperator; friend class ConstantExpr; void setHasNoUnsignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap); } void setHasNoSignedWrap(bool B) { SubclassOptionalData = (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap); }
public: /// hasNoUnsignedWrap - Test whether this operation is known to never
/// undergo unsigned overflow, aka the nuw property.
bool hasNoUnsignedWrap() const { return SubclassOptionalData & NoUnsignedWrap; }
/// hasNoSignedWrap - Test whether this operation is known to never
/// undergo signed overflow, aka the nsw property.
bool hasNoSignedWrap() const { return (SubclassOptionalData & NoSignedWrap) != 0; }
static inline bool classof(const OverflowingBinaryOperator *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Sub || I->getOpcode() == Instruction::Mul || I->getOpcode() == Instruction::Shl; } static inline bool classof(const ConstantExpr *CE) { return CE->getOpcode() == Instruction::Add || CE->getOpcode() == Instruction::Sub || CE->getOpcode() == Instruction::Mul || CE->getOpcode() == Instruction::Shl; } static inline bool classof(const Value *V) { return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); } };
/// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
/// "exact", indicating that no bits are destroyed.
class PossiblyExactOperator : public Operator { public: enum { IsExact = (1 << 0) }; private: ~PossiblyExactOperator(); // DO NOT IMPLEMENT
friend class BinaryOperator; friend class ConstantExpr; void setIsExact(bool B) { SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact); } public: /// isExact - Test whether this division is known to be exact, with
/// zero remainder.
bool isExact() const { return SubclassOptionalData & IsExact; } static bool isPossiblyExactOpcode(unsigned OpC) { return OpC == Instruction::SDiv || OpC == Instruction::UDiv || OpC == Instruction::AShr || OpC == Instruction::LShr; } static inline bool classof(const ConstantExpr *CE) { return isPossiblyExactOpcode(CE->getOpcode()); } static inline bool classof(const Instruction *I) { return isPossiblyExactOpcode(I->getOpcode()); } static inline bool classof(const Value *V) { return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); } };
/// FPMathOperator - Utility class for floating point operations which can have
/// information about relaxed accuracy requirements attached to them.
class FPMathOperator : public Operator { private: ~FPMathOperator(); // DO NOT IMPLEMENT
public:
/// \brief Get the maximum error permitted by this operation in ULPs. An
/// accuracy of 0.0 means that the operation should be performed with the
/// default precision.
float getFPAccuracy() const;
static inline bool classof(const FPMathOperator *) { return true; } static inline bool classof(const Instruction *I) { return I->getType()->isFPOrFPVectorTy(); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } };
/// ConcreteOperator - A helper template for defining operators for individual
/// opcodes.
template<typename SuperClass, unsigned Opc> class ConcreteOperator : public SuperClass { ~ConcreteOperator() LLVM_DELETED_FUNCTION; public: static inline bool classof(const ConcreteOperator<SuperClass, Opc> *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Opc; } static inline bool classof(const ConstantExpr *CE) { return CE->getOpcode() == Opc; } static inline bool classof(const Value *V) { return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); } };
class AddOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> { ~AddOperator() LLVM_DELETED_FUNCTION; }; class SubOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> { ~SubOperator() LLVM_DELETED_FUNCTION; }; class MulOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> { ~MulOperator() LLVM_DELETED_FUNCTION; }; class ShlOperator : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> { ~ShlOperator() LLVM_DELETED_FUNCTION; };
class SDivOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> { ~SDivOperator() LLVM_DELETED_FUNCTION; }; class UDivOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> { ~UDivOperator() LLVM_DELETED_FUNCTION; }; class AShrOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> { ~AShrOperator() LLVM_DELETED_FUNCTION; }; class LShrOperator : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> { ~LShrOperator() LLVM_DELETED_FUNCTION; }; class GEPOperator : public ConcreteOperator<Operator, Instruction::GetElementPtr> { ~GEPOperator() LLVM_DELETED_FUNCTION;
enum { IsInBounds = (1 << 0) };
friend class GetElementPtrInst; friend class ConstantExpr; void setIsInBounds(bool B) { SubclassOptionalData = (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds); }
public: /// isInBounds - Test whether this is an inbounds GEP, as defined
/// by LangRef.html.
bool isInBounds() const { return SubclassOptionalData & IsInBounds; }
inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand
}
/// getPointerOperandType - Method to return the pointer operand as a
/// PointerType.
Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
/// getPointerAddressSpace - Method to return the address space of the
/// pointer operand.
unsigned getPointerAddressSpace() const { return cast<PointerType>(getPointerOperandType())->getAddressSpace(); }
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1; }
bool hasIndices() const { return getNumOperands() > 1; }
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const { for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { if (ConstantInt *C = dyn_cast<ConstantInt>(I)) if (C->isZero()) continue; return false; } return true; }
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const { for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { if (!isa<ConstantInt>(I)) return false; } return true; } };
} // End llvm namespace
#endif
|