|
|
//===-- llvm/IntegersSubset.h - The subset of integers ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains class that implements constant set of ranges:
/// [<Low0,High0>,...,<LowN,HighN>]. Initially, this class was created for
/// SwitchInst and was used for case value representation that may contain
/// multiple ranges for a single successor.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_INTEGERSSUBSET_H
#define LLVM_SUPPORT_INTEGERSSUBSET_H
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include <list>
namespace llvm {
// The IntItem is a wrapper for APInt.
// 1. It determines sign of integer, it allows to use
// comparison operators >,<,>=,<=, and as result we got shorter and cleaner
// constructions.
// 2. It helps to implement PR1255 (case ranges) as a series of small patches.
// 3. Currently we can interpret IntItem both as ConstantInt and as APInt.
// It allows to provide SwitchInst methods that works with ConstantInt for
// non-updated passes. And it allows to use APInt interface for new methods.
// 4. IntItem can be easily replaced with APInt.
// The set of macros that allows to propagate APInt operators to the IntItem.
#define INT_ITEM_DEFINE_COMPARISON(op,func) \
bool operator op (const APInt& RHS) const { \ return getAPIntValue().func(RHS); \ }
#define INT_ITEM_DEFINE_UNARY_OP(op) \
IntItem operator op () const { \ APInt res = op(getAPIntValue()); \ Constant *NewVal = ConstantInt::get(ConstantIntVal->getContext(), res); \ return IntItem(cast<ConstantInt>(NewVal)); \ }
#define INT_ITEM_DEFINE_BINARY_OP(op) \
IntItem operator op (const APInt& RHS) const { \ APInt res = getAPIntValue() op RHS; \ Constant *NewVal = ConstantInt::get(ConstantIntVal->getContext(), res); \ return IntItem(cast<ConstantInt>(NewVal)); \ }
#define INT_ITEM_DEFINE_ASSIGNMENT_BY_OP(op) \
IntItem& operator op (const APInt& RHS) {\ APInt res = getAPIntValue();\ res op RHS; \ Constant *NewVal = ConstantInt::get(ConstantIntVal->getContext(), res); \ ConstantIntVal = cast<ConstantInt>(NewVal); \ return *this; \ }
#define INT_ITEM_DEFINE_PREINCDEC(op) \
IntItem& operator op () { \ APInt res = getAPIntValue(); \ op(res); \ Constant *NewVal = ConstantInt::get(ConstantIntVal->getContext(), res); \ ConstantIntVal = cast<ConstantInt>(NewVal); \ return *this; \ }
#define INT_ITEM_DEFINE_POSTINCDEC(op) \
IntItem& operator op (int) { \ APInt res = getAPIntValue();\ op(res); \ Constant *NewVal = ConstantInt::get(ConstantIntVal->getContext(), res); \ OldConstantIntVal = ConstantIntVal; \ ConstantIntVal = cast<ConstantInt>(NewVal); \ return IntItem(OldConstantIntVal); \ }
#define INT_ITEM_DEFINE_OP_STANDARD_INT(RetTy, op, IntTy) \
RetTy operator op (IntTy RHS) const { \ return (*this) op APInt(getAPIntValue().getBitWidth(), RHS); \ }
class IntItem { ConstantInt *ConstantIntVal; const APInt* APIntVal; IntItem(const ConstantInt *V) : ConstantIntVal(const_cast<ConstantInt*>(V)), APIntVal(&ConstantIntVal->getValue()){} const APInt& getAPIntValue() const { return *APIntVal; } public:
IntItem() {}
operator const APInt&() const { return getAPIntValue(); }
// Propagate APInt operators.
// Note, that
// /,/=,>>,>>= are not implemented in APInt.
// <<= is implemented for unsigned RHS, but not implemented for APInt RHS.
INT_ITEM_DEFINE_COMPARISON(<, ult) INT_ITEM_DEFINE_COMPARISON(>, ugt) INT_ITEM_DEFINE_COMPARISON(<=, ule) INT_ITEM_DEFINE_COMPARISON(>=, uge)
INT_ITEM_DEFINE_COMPARISON(==, eq) INT_ITEM_DEFINE_OP_STANDARD_INT(bool,==,uint64_t)
INT_ITEM_DEFINE_COMPARISON(!=, ne) INT_ITEM_DEFINE_OP_STANDARD_INT(bool,!=,uint64_t)
INT_ITEM_DEFINE_BINARY_OP(*) INT_ITEM_DEFINE_BINARY_OP(+) INT_ITEM_DEFINE_OP_STANDARD_INT(IntItem,+,uint64_t) INT_ITEM_DEFINE_BINARY_OP(-) INT_ITEM_DEFINE_OP_STANDARD_INT(IntItem,-,uint64_t) INT_ITEM_DEFINE_BINARY_OP(<<) INT_ITEM_DEFINE_OP_STANDARD_INT(IntItem,<<,unsigned) INT_ITEM_DEFINE_BINARY_OP(&) INT_ITEM_DEFINE_BINARY_OP(^) INT_ITEM_DEFINE_BINARY_OP(|)
INT_ITEM_DEFINE_ASSIGNMENT_BY_OP(*=) INT_ITEM_DEFINE_ASSIGNMENT_BY_OP(+=) INT_ITEM_DEFINE_ASSIGNMENT_BY_OP(-=) INT_ITEM_DEFINE_ASSIGNMENT_BY_OP(&=) INT_ITEM_DEFINE_ASSIGNMENT_BY_OP(^=) INT_ITEM_DEFINE_ASSIGNMENT_BY_OP(|=)
// Special case for <<=
IntItem& operator <<= (unsigned RHS) { APInt res = getAPIntValue(); res <<= RHS; Constant *NewVal = ConstantInt::get(ConstantIntVal->getContext(), res); ConstantIntVal = cast<ConstantInt>(NewVal); return *this; }
INT_ITEM_DEFINE_UNARY_OP(-) INT_ITEM_DEFINE_UNARY_OP(~)
INT_ITEM_DEFINE_PREINCDEC(++) INT_ITEM_DEFINE_PREINCDEC(--)
// The set of workarounds, since currently we use ConstantInt implemented
// integer.
static IntItem fromConstantInt(const ConstantInt *V) { return IntItem(V); } static IntItem fromType(Type* Ty, const APInt& V) { ConstantInt *C = cast<ConstantInt>(ConstantInt::get(Ty, V)); return fromConstantInt(C); } static IntItem withImplLikeThis(const IntItem& LikeThis, const APInt& V) { ConstantInt *C = cast<ConstantInt>(ConstantInt::get( LikeThis.ConstantIntVal->getContext(), V)); return fromConstantInt(C); } ConstantInt *toConstantInt() const { return ConstantIntVal; } };
template<class IntType> class IntRange { protected: IntType Low; IntType High; bool IsEmpty : 1; bool IsSingleNumber : 1;
public: typedef IntRange<IntType> self; typedef std::pair<self, self> SubRes;
IntRange() : IsEmpty(true) {} IntRange(const self &RHS) : Low(RHS.Low), High(RHS.High), IsEmpty(RHS.IsEmpty), IsSingleNumber(RHS.IsSingleNumber) {} IntRange(const IntType &C) : Low(C), High(C), IsEmpty(false), IsSingleNumber(true) {}
IntRange(const IntType &L, const IntType &H) : Low(L), High(H), IsEmpty(false), IsSingleNumber(Low == High) {}
bool isEmpty() const { return IsEmpty; } bool isSingleNumber() const { return IsSingleNumber; }
const IntType& getLow() const { assert(!IsEmpty && "Range is empty."); return Low; } const IntType& getHigh() const { assert(!IsEmpty && "Range is empty."); return High; }
bool operator<(const self &RHS) const { assert(!IsEmpty && "Left range is empty."); assert(!RHS.IsEmpty && "Right range is empty."); if (Low == RHS.Low) { if (High > RHS.High) return true; return false; } if (Low < RHS.Low) return true; return false; }
bool operator==(const self &RHS) const { assert(!IsEmpty && "Left range is empty."); assert(!RHS.IsEmpty && "Right range is empty."); return Low == RHS.Low && High == RHS.High; }
bool operator!=(const self &RHS) const { return !operator ==(RHS); }
static bool LessBySize(const self &LHS, const self &RHS) { return (LHS.High - LHS.Low) < (RHS.High - RHS.Low); }
bool isInRange(const IntType &IntVal) const { assert(!IsEmpty && "Range is empty."); return IntVal >= Low && IntVal <= High; }
SubRes sub(const self &RHS) const { SubRes Res;
// RHS is either more global and includes this range or
// if it doesn't intersected with this range.
if (!isInRange(RHS.Low) && !isInRange(RHS.High)) {
// If RHS more global (it is enough to check
// only one border in this case.
if (RHS.isInRange(Low)) return std::make_pair(self(Low, High), self());
return Res; }
if (Low < RHS.Low) { Res.first.Low = Low; IntType NewHigh = RHS.Low; --NewHigh; Res.first.High = NewHigh; } if (High > RHS.High) { IntType NewLow = RHS.High; ++NewLow; Res.second.Low = NewLow; Res.second.High = High; } return Res; } };
//===----------------------------------------------------------------------===//
/// IntegersSubsetGeneric - class that implements the subset of integers. It
/// consists from ranges and single numbers.
template <class IntTy> class IntegersSubsetGeneric { public: // Use Chris Lattner idea, that was initially described here:
// http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120213/136954.html
// In short, for more compact memory consumption we can store flat
// numbers collection, and define range as pair of indices.
// In that case we can safe some memory on 32 bit machines.
typedef std::vector<IntTy> FlatCollectionTy; typedef std::pair<IntTy*, IntTy*> RangeLinkTy; typedef std::vector<RangeLinkTy> RangeLinksTy; typedef typename RangeLinksTy::const_iterator RangeLinksConstIt;
typedef IntegersSubsetGeneric<IntTy> self;
protected:
FlatCollectionTy FlatCollection; RangeLinksTy RangeLinks;
bool IsSingleNumber; bool IsSingleNumbersOnly;
public:
template<class RangesCollectionTy> explicit IntegersSubsetGeneric(const RangesCollectionTy& Links) { assert(Links.size() && "Empty ranges are not allowed.");
// In case of big set of single numbers consumes additional RAM space,
// but allows to avoid additional reallocation.
FlatCollection.reserve(Links.size() * 2); RangeLinks.reserve(Links.size()); IsSingleNumbersOnly = true; for (typename RangesCollectionTy::const_iterator i = Links.begin(), e = Links.end(); i != e; ++i) { RangeLinkTy RangeLink; FlatCollection.push_back(i->getLow()); RangeLink.first = &FlatCollection.back(); if (i->getLow() != i->getHigh()) { FlatCollection.push_back(i->getHigh()); IsSingleNumbersOnly = false; } RangeLink.second = &FlatCollection.back(); RangeLinks.push_back(RangeLink); } IsSingleNumber = IsSingleNumbersOnly && RangeLinks.size() == 1; }
IntegersSubsetGeneric(const self& RHS) { *this = RHS; }
self& operator=(const self& RHS) { FlatCollection.clear(); RangeLinks.clear(); FlatCollection.reserve(RHS.RangeLinks.size() * 2); RangeLinks.reserve(RHS.RangeLinks.size()); for (RangeLinksConstIt i = RHS.RangeLinks.begin(), e = RHS.RangeLinks.end(); i != e; ++i) { RangeLinkTy RangeLink; FlatCollection.push_back(*(i->first)); RangeLink.first = &FlatCollection.back(); if (i->first != i->second) FlatCollection.push_back(*(i->second)); RangeLink.second = &FlatCollection.back(); RangeLinks.push_back(RangeLink); } IsSingleNumber = RHS.IsSingleNumber; IsSingleNumbersOnly = RHS.IsSingleNumbersOnly; return *this; }
typedef IntRange<IntTy> Range;
/// Checks is the given constant satisfies this case. Returns
/// true if it equals to one of contained values or belongs to the one of
/// contained ranges.
bool isSatisfies(const IntTy &CheckingVal) const { if (IsSingleNumber) return FlatCollection.front() == CheckingVal; if (IsSingleNumbersOnly) return std::find(FlatCollection.begin(), FlatCollection.end(), CheckingVal) != FlatCollection.end();
for (unsigned i = 0, e = getNumItems(); i < e; ++i) { if (RangeLinks[i].first == RangeLinks[i].second) { if (*RangeLinks[i].first == CheckingVal) return true; } else if (*RangeLinks[i].first <= CheckingVal && *RangeLinks[i].second >= CheckingVal) return true; } return false; }
/// Returns set's item with given index.
Range getItem(unsigned idx) const { const RangeLinkTy &Link = RangeLinks[idx]; if (Link.first != Link.second) return Range(*Link.first, *Link.second); else return Range(*Link.first); }
/// Return number of items (ranges) stored in set.
unsigned getNumItems() const { return RangeLinks.size(); }
/// Returns true if whole subset contains single element.
bool isSingleNumber() const { return IsSingleNumber; }
/// Returns true if whole subset contains only single numbers, no ranges.
bool isSingleNumbersOnly() const { return IsSingleNumbersOnly; }
/// Does the same like getItem(idx).isSingleNumber(), but
/// works faster, since we avoid creation of temporary range object.
bool isSingleNumber(unsigned idx) const { return RangeLinks[idx].first == RangeLinks[idx].second; }
/// Returns set the size, that equals number of all values + sizes of all
/// ranges.
/// Ranges set is considered as flat numbers collection.
/// E.g.: for range [<0>, <1>, <4,8>] the size will 7;
/// for range [<0>, <1>, <5>] the size will 3
unsigned getSize() const { APInt sz(((const APInt&)getItem(0).getLow()).getBitWidth(), 0); for (unsigned i = 0, e = getNumItems(); i != e; ++i) { const APInt Low = getItem(i).getLow(); const APInt High = getItem(i).getHigh(); APInt S = High - Low + 1; sz += S; } return sz.getZExtValue(); }
/// Allows to access single value even if it belongs to some range.
/// Ranges set is considered as flat numbers collection.
/// [<1>, <4,8>] is considered as [1,4,5,6,7,8]
/// For range [<1>, <4,8>] getSingleValue(3) returns 6.
APInt getSingleValue(unsigned idx) const { APInt sz(((const APInt&)getItem(0).getLow()).getBitWidth(), 0); for (unsigned i = 0, e = getNumItems(); i != e; ++i) { const APInt Low = getItem(i).getLow(); const APInt High = getItem(i).getHigh(); APInt S = High - Low + 1; APInt oldSz = sz; sz += S; if (sz.ugt(idx)) { APInt Res = Low; APInt Offset(oldSz.getBitWidth(), idx); Offset -= oldSz; Res += Offset; return Res; } } assert(0 && "Index exceeds high border."); return sz; }
/// Does the same as getSingleValue, but works only if subset contains
/// single numbers only.
const IntTy& getSingleNumber(unsigned idx) const { assert(IsSingleNumbersOnly && "This method works properly if subset " "contains single numbers only."); return FlatCollection[idx]; } };
//===----------------------------------------------------------------------===//
/// IntegersSubset - currently is extension of IntegersSubsetGeneric
/// that also supports conversion to/from Constant* object.
class IntegersSubset : public IntegersSubsetGeneric<IntItem> {
typedef IntegersSubsetGeneric<IntItem> ParentTy;
Constant *Holder;
static unsigned getNumItemsFromConstant(Constant *C) { return cast<ArrayType>(C->getType())->getNumElements(); }
static Range getItemFromConstant(Constant *C, unsigned idx) { const Constant *CV = C->getAggregateElement(idx);
unsigned NumEls = cast<VectorType>(CV->getType())->getNumElements(); switch (NumEls) { case 1: return Range(IntItem::fromConstantInt( cast<ConstantInt>(CV->getAggregateElement(0U))), IntItem::fromConstantInt(cast<ConstantInt>( cast<ConstantInt>(CV->getAggregateElement(0U))))); case 2: return Range(IntItem::fromConstantInt( cast<ConstantInt>(CV->getAggregateElement(0U))), IntItem::fromConstantInt( cast<ConstantInt>(CV->getAggregateElement(1)))); default: assert(0 && "Only pairs and single numbers are allowed here."); return Range(); } }
std::vector<Range> rangesFromConstant(Constant *C) { unsigned NumItems = getNumItemsFromConstant(C); std::vector<Range> r; r.reserve(NumItems); for (unsigned i = 0, e = NumItems; i != e; ++i) r.push_back(getItemFromConstant(C, i)); return r; }
public:
explicit IntegersSubset(Constant *C) : ParentTy(rangesFromConstant(C)), Holder(C) {}
IntegersSubset(const IntegersSubset& RHS) : ParentTy(*(const ParentTy *)&RHS), // FIXME: tweak for msvc.
Holder(RHS.Holder) {}
template<class RangesCollectionTy> explicit IntegersSubset(const RangesCollectionTy& Src) : ParentTy(Src) { std::vector<Constant*> Elts; Elts.reserve(Src.size()); for (typename RangesCollectionTy::const_iterator i = Src.begin(), e = Src.end(); i != e; ++i) { const Range &R = *i; std::vector<Constant*> r; if (R.isSingleNumber()) { r.reserve(2); // FIXME: Since currently we have ConstantInt based numbers
// use hack-conversion of IntItem to ConstantInt
r.push_back(R.getLow().toConstantInt()); r.push_back(R.getHigh().toConstantInt()); } else { r.reserve(1); r.push_back(R.getLow().toConstantInt()); } Constant *CV = ConstantVector::get(r); Elts.push_back(CV); } ArrayType *ArrTy = ArrayType::get(Elts.front()->getType(), (uint64_t)Elts.size()); Holder = ConstantArray::get(ArrTy, Elts); }
operator Constant*() { return Holder; } operator const Constant*() const { return Holder; } Constant *operator->() { return Holder; } const Constant *operator->() const { return Holder; } };
}
#endif /* CLLVM_SUPPORT_INTEGERSSUBSET_H */
|