|
|
//===- llvm/Support/ValueHandle.h - Value Smart Pointer classes -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the ValueHandle class and its sub-classes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_VALUEHANDLE_H
#define LLVM_SUPPORT_VALUEHANDLE_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/IR/Value.h"
namespace llvm { class ValueHandleBase; template<typename From> struct simplify_type;
// ValueHandleBase** is only 4-byte aligned.
template<> class PointerLikeTypeTraits<ValueHandleBase**> { public: static inline void *getAsVoidPointer(ValueHandleBase** P) { return P; } static inline ValueHandleBase **getFromVoidPointer(void *P) { return static_cast<ValueHandleBase**>(P); } enum { NumLowBitsAvailable = 2 }; };
/// ValueHandleBase - This is the common base class of value handles.
/// ValueHandle's are smart pointers to Value's that have special behavior when
/// the value is deleted or ReplaceAllUsesWith'd. See the specific handles
/// below for details.
///
class ValueHandleBase { friend class Value; protected: /// HandleBaseKind - This indicates what sub class the handle actually is.
/// This is to avoid having a vtable for the light-weight handle pointers. The
/// fully general Callback version does have a vtable.
enum HandleBaseKind { Assert, Callback, Tracking, Weak };
private: PointerIntPair<ValueHandleBase**, 2, HandleBaseKind> PrevPair; ValueHandleBase *Next;
// A subclass may want to store some information along with the value
// pointer. Allow them to do this by making the value pointer a pointer-int
// pair. The 'setValPtrInt' and 'getValPtrInt' methods below give them this
// access.
PointerIntPair<Value*, 2> VP;
ValueHandleBase(const ValueHandleBase&) LLVM_DELETED_FUNCTION; public: explicit ValueHandleBase(HandleBaseKind Kind) : PrevPair(0, Kind), Next(0), VP(0, 0) {} ValueHandleBase(HandleBaseKind Kind, Value *V) : PrevPair(0, Kind), Next(0), VP(V, 0) { if (isValid(VP.getPointer())) AddToUseList(); } ValueHandleBase(HandleBaseKind Kind, const ValueHandleBase &RHS) : PrevPair(0, Kind), Next(0), VP(RHS.VP) { if (isValid(VP.getPointer())) AddToExistingUseList(RHS.getPrevPtr()); } ~ValueHandleBase() { if (isValid(VP.getPointer())) RemoveFromUseList(); }
Value *operator=(Value *RHS) { if (VP.getPointer() == RHS) return RHS; if (isValid(VP.getPointer())) RemoveFromUseList(); VP.setPointer(RHS); if (isValid(VP.getPointer())) AddToUseList(); return RHS; }
Value *operator=(const ValueHandleBase &RHS) { if (VP.getPointer() == RHS.VP.getPointer()) return RHS.VP.getPointer(); if (isValid(VP.getPointer())) RemoveFromUseList(); VP.setPointer(RHS.VP.getPointer()); if (isValid(VP.getPointer())) AddToExistingUseList(RHS.getPrevPtr()); return VP.getPointer(); }
Value *operator->() const { return getValPtr(); } Value &operator*() const { return *getValPtr(); }
protected: Value *getValPtr() const { return VP.getPointer(); }
void setValPtrInt(unsigned K) { VP.setInt(K); } unsigned getValPtrInt() const { return VP.getInt(); }
static bool isValid(Value *V) { return V && V != DenseMapInfo<Value *>::getEmptyKey() && V != DenseMapInfo<Value *>::getTombstoneKey(); }
public: // Callbacks made from Value.
static void ValueIsDeleted(Value *V); static void ValueIsRAUWd(Value *Old, Value *New);
private: // Internal implementation details.
ValueHandleBase **getPrevPtr() const { return PrevPair.getPointer(); } HandleBaseKind getKind() const { return PrevPair.getInt(); } void setPrevPtr(ValueHandleBase **Ptr) { PrevPair.setPointer(Ptr); }
/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
/// List is the address of either the head of the list or a Next node within
/// the existing use list.
void AddToExistingUseList(ValueHandleBase **List);
/// AddToExistingUseListAfter - Add this ValueHandle to the use list after
/// Node.
void AddToExistingUseListAfter(ValueHandleBase *Node);
/// AddToUseList - Add this ValueHandle to the use list for VP.
void AddToUseList(); /// RemoveFromUseList - Remove this ValueHandle from its current use list.
void RemoveFromUseList(); };
/// WeakVH - This is a value handle that tries hard to point to a Value, even
/// across RAUW operations, but will null itself out if the value is destroyed.
/// this is useful for advisory sorts of information, but should not be used as
/// the key of a map (since the map would have to rearrange itself when the
/// pointer changes).
class WeakVH : public ValueHandleBase { public: WeakVH() : ValueHandleBase(Weak) {} WeakVH(Value *P) : ValueHandleBase(Weak, P) {} WeakVH(const WeakVH &RHS) : ValueHandleBase(Weak, RHS) {}
Value *operator=(Value *RHS) { return ValueHandleBase::operator=(RHS); } Value *operator=(const ValueHandleBase &RHS) { return ValueHandleBase::operator=(RHS); }
operator Value*() const { return getValPtr(); } };
// Specialize simplify_type to allow WeakVH to participate in
// dyn_cast, isa, etc.
template<> struct simplify_type<WeakVH> { typedef Value* SimpleType; static SimpleType getSimplifiedValue(WeakVH &WVH) { return WVH; } };
/// AssertingVH - This is a Value Handle that points to a value and asserts out
/// if the value is destroyed while the handle is still live. This is very
/// useful for catching dangling pointer bugs and other things which can be
/// non-obvious. One particularly useful place to use this is as the Key of a
/// map. Dangling pointer bugs often lead to really subtle bugs that only occur
/// if another object happens to get allocated to the same address as the old
/// one. Using an AssertingVH ensures that an assert is triggered as soon as
/// the bad delete occurs.
///
/// Note that an AssertingVH handle does *not* follow values across RAUW
/// operations. This means that RAUW's need to explicitly update the
/// AssertingVH's as it moves. This is required because in non-assert mode this
/// class turns into a trivial wrapper around a pointer.
template <typename ValueTy> class AssertingVH #ifndef NDEBUG
: public ValueHandleBase #endif
{
#ifndef NDEBUG
ValueTy *getValPtr() const { return static_cast<ValueTy*>(ValueHandleBase::getValPtr()); } void setValPtr(ValueTy *P) { ValueHandleBase::operator=(GetAsValue(P)); } #else
ValueTy *ThePtr; ValueTy *getValPtr() const { return ThePtr; } void setValPtr(ValueTy *P) { ThePtr = P; } #endif
// Convert a ValueTy*, which may be const, to the type the base
// class expects.
static Value *GetAsValue(Value *V) { return V; } static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
public: #ifndef NDEBUG
AssertingVH() : ValueHandleBase(Assert) {} AssertingVH(ValueTy *P) : ValueHandleBase(Assert, GetAsValue(P)) {} AssertingVH(const AssertingVH &RHS) : ValueHandleBase(Assert, RHS) {} #else
AssertingVH() : ThePtr(0) {} AssertingVH(ValueTy *P) : ThePtr(P) {} #endif
operator ValueTy*() const { return getValPtr(); }
ValueTy *operator=(ValueTy *RHS) { setValPtr(RHS); return getValPtr(); } ValueTy *operator=(const AssertingVH<ValueTy> &RHS) { setValPtr(RHS.getValPtr()); return getValPtr(); }
ValueTy *operator->() const { return getValPtr(); } ValueTy &operator*() const { return *getValPtr(); } };
// Specialize DenseMapInfo to allow AssertingVH to participate in DenseMap.
template<typename T> struct DenseMapInfo<AssertingVH<T> > { typedef DenseMapInfo<T*> PointerInfo; static inline AssertingVH<T> getEmptyKey() { return AssertingVH<T>(PointerInfo::getEmptyKey()); } static inline T* getTombstoneKey() { return AssertingVH<T>(PointerInfo::getTombstoneKey()); } static unsigned getHashValue(const AssertingVH<T> &Val) { return PointerInfo::getHashValue(Val); } static bool isEqual(const AssertingVH<T> &LHS, const AssertingVH<T> &RHS) { return LHS == RHS; } }; template <typename T> struct isPodLike<AssertingVH<T> > { #ifdef NDEBUG
static const bool value = true; #else
static const bool value = false; #endif
};
/// TrackingVH - This is a value handle that tracks a Value (or Value subclass),
/// even across RAUW operations.
///
/// TrackingVH is designed for situations where a client needs to hold a handle
/// to a Value (or subclass) across some operations which may move that value,
/// but should never destroy it or replace it with some unacceptable type.
///
/// It is an error to do anything with a TrackingVH whose value has been
/// destroyed, except to destruct it.
///
/// It is an error to attempt to replace a value with one of a type which is
/// incompatible with any of its outstanding TrackingVHs.
template<typename ValueTy> class TrackingVH : public ValueHandleBase { void CheckValidity() const { Value *VP = ValueHandleBase::getValPtr();
// Null is always ok.
if (!VP) return;
// Check that this value is valid (i.e., it hasn't been deleted). We
// explicitly delay this check until access to avoid requiring clients to be
// unnecessarily careful w.r.t. destruction.
assert(ValueHandleBase::isValid(VP) && "Tracked Value was deleted!");
// Check that the value is a member of the correct subclass. We would like
// to check this property on assignment for better debugging, but we don't
// want to require a virtual interface on this VH. Instead we allow RAUW to
// replace this value with a value of an invalid type, and check it here.
assert(isa<ValueTy>(VP) && "Tracked Value was replaced by one with an invalid type!"); }
ValueTy *getValPtr() const { CheckValidity(); return (ValueTy*)ValueHandleBase::getValPtr(); } void setValPtr(ValueTy *P) { CheckValidity(); ValueHandleBase::operator=(GetAsValue(P)); }
// Convert a ValueTy*, which may be const, to the type the base
// class expects.
static Value *GetAsValue(Value *V) { return V; } static Value *GetAsValue(const Value *V) { return const_cast<Value*>(V); }
public: TrackingVH() : ValueHandleBase(Tracking) {} TrackingVH(ValueTy *P) : ValueHandleBase(Tracking, GetAsValue(P)) {} TrackingVH(const TrackingVH &RHS) : ValueHandleBase(Tracking, RHS) {}
operator ValueTy*() const { return getValPtr(); }
ValueTy *operator=(ValueTy *RHS) { setValPtr(RHS); return getValPtr(); } ValueTy *operator=(const TrackingVH<ValueTy> &RHS) { setValPtr(RHS.getValPtr()); return getValPtr(); }
ValueTy *operator->() const { return getValPtr(); } ValueTy &operator*() const { return *getValPtr(); } };
/// CallbackVH - This is a value handle that allows subclasses to define
/// callbacks that run when the underlying Value has RAUW called on it or is
/// destroyed. This class can be used as the key of a map, as long as the user
/// takes it out of the map before calling setValPtr() (since the map has to
/// rearrange itself when the pointer changes). Unlike ValueHandleBase, this
/// class has a vtable and a virtual destructor.
class CallbackVH : public ValueHandleBase { protected: CallbackVH(const CallbackVH &RHS) : ValueHandleBase(Callback, RHS) {}
virtual ~CallbackVH() {}
void setValPtr(Value *P) { ValueHandleBase::operator=(P); }
public: CallbackVH() : ValueHandleBase(Callback) {} CallbackVH(Value *P) : ValueHandleBase(Callback, P) {}
operator Value*() const { return getValPtr(); }
/// Called when this->getValPtr() is destroyed, inside ~Value(), so you may
/// call any non-virtual Value method on getValPtr(), but no subclass methods.
/// If WeakVH were implemented as a CallbackVH, it would use this method to
/// call setValPtr(NULL). AssertingVH would use this method to cause an
/// assertion failure.
///
/// All implementations must remove the reference from this object to the
/// Value that's being destroyed.
virtual void deleted();
/// Called when this->getValPtr()->replaceAllUsesWith(new_value) is called,
/// _before_ any of the uses have actually been replaced. If WeakVH were
/// implemented as a CallbackVH, it would use this method to call
/// setValPtr(new_value). AssertingVH would do nothing in this method.
virtual void allUsesReplacedWith(Value *); };
} // End llvm namespace
#endif
|