|
|
//===- llvm/Supporrt/YAMLTraits.h -------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_YAMLTRAITS_H
#define LLVM_SUPPORT_YAMLTRAITS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/YAMLParser.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include "llvm/Support/type_traits.h"
namespace llvm { namespace yaml {
/// This class should be specialized by any type that needs to be converted
/// to/from a YAML mapping. For example:
///
/// struct ScalarBitSetTraits<MyStruct> {
/// static void mapping(IO &io, MyStruct &s) {
/// io.mapRequired("name", s.name);
/// io.mapRequired("size", s.size);
/// io.mapOptional("age", s.age);
/// }
/// };
template<class T> struct MappingTraits { // Must provide:
// static void mapping(IO &io, T &fields);
};
/// This class should be specialized by any integral type that converts
/// to/from a YAML scalar where there is a one-to-one mapping between
/// in-memory values and a string in YAML. For example:
///
/// struct ScalarEnumerationTraits<Colors> {
/// static void enumeration(IO &io, Colors &value) {
/// io.enumCase(value, "red", cRed);
/// io.enumCase(value, "blue", cBlue);
/// io.enumCase(value, "green", cGreen);
/// }
/// };
template<typename T> struct ScalarEnumerationTraits { // Must provide:
// static void enumeration(IO &io, T &value);
};
/// This class should be specialized by any integer type that is a union
/// of bit values and the YAML representation is a flow sequence of
/// strings. For example:
///
/// struct ScalarBitSetTraits<MyFlags> {
/// static void bitset(IO &io, MyFlags &value) {
/// io.bitSetCase(value, "big", flagBig);
/// io.bitSetCase(value, "flat", flagFlat);
/// io.bitSetCase(value, "round", flagRound);
/// }
/// };
template<typename T> struct ScalarBitSetTraits { // Must provide:
// static void bitset(IO &io, T &value);
};
/// This class should be specialized by type that requires custom conversion
/// to/from a yaml scalar. For example:
///
/// template<>
/// struct ScalarTraits<MyType> {
/// static void output(const MyType &val, void*, llvm::raw_ostream &out) {
/// // stream out custom formatting
/// out << llvm::format("%x", val);
/// }
/// static StringRef input(StringRef scalar, void*, MyType &value) {
/// // parse scalar and set `value`
/// // return empty string on success, or error string
/// return StringRef();
/// }
/// };
template<typename T> struct ScalarTraits { // Must provide:
//
// Function to write the value as a string:
//static void output(const T &value, void *ctxt, llvm::raw_ostream &out);
//
// Function to convert a string to a value. Returns the empty
// StringRef on success or an error string if string is malformed:
//static StringRef input(StringRef scalar, void *ctxt, T &value);
};
/// This class should be specialized by any type that needs to be converted
/// to/from a YAML sequence. For example:
///
/// template<>
/// struct SequenceTraits< std::vector<MyType> > {
/// static size_t size(IO &io, std::vector<MyType> &seq) {
/// return seq.size();
/// }
/// static MyType& element(IO &, std::vector<MyType> &seq, size_t index) {
/// if ( index >= seq.size() )
/// seq.resize(index+1);
/// return seq[index];
/// }
/// };
template<typename T> struct SequenceTraits { // Must provide:
// static size_t size(IO &io, T &seq);
// static T::value_type& element(IO &io, T &seq, size_t index);
//
// The following is option and will cause generated YAML to use
// a flow sequence (e.g. [a,b,c]).
// static const bool flow = true;
};
/// This class should be specialized by any type that needs to be converted
/// to/from a list of YAML documents.
template<typename T> struct DocumentListTraits { // Must provide:
// static size_t size(IO &io, T &seq);
// static T::value_type& element(IO &io, T &seq, size_t index);
};
// Only used by compiler if both template types are the same
template <typename T, T> struct SameType;
// Only used for better diagnostics of missing traits
template <typename T> struct MissingTrait;
// Test if ScalarEnumerationTraits<T> is defined on type T.
template <class T> struct has_ScalarEnumerationTraits { typedef void (*Signature_enumeration)(class IO&, T&);
template <typename U> static char test(SameType<Signature_enumeration, &U::enumeration>*);
template <typename U> static double test(...);
public: static bool const value = (sizeof(test<ScalarEnumerationTraits<T> >(0)) == 1); };
// Test if ScalarBitSetTraits<T> is defined on type T.
template <class T> struct has_ScalarBitSetTraits { typedef void (*Signature_bitset)(class IO&, T&);
template <typename U> static char test(SameType<Signature_bitset, &U::bitset>*);
template <typename U> static double test(...);
public: static bool const value = (sizeof(test<ScalarBitSetTraits<T> >(0)) == 1); };
// Test if ScalarTraits<T> is defined on type T.
template <class T> struct has_ScalarTraits { typedef StringRef (*Signature_input)(StringRef, void*, T&); typedef void (*Signature_output)(const T&, void*, llvm::raw_ostream&);
template <typename U> static char test(SameType<Signature_input, &U::input>*, SameType<Signature_output, &U::output>*);
template <typename U> static double test(...);
public: static bool const value = (sizeof(test<ScalarTraits<T> >(0,0)) == 1); };
// Test if MappingTraits<T> is defined on type T.
template <class T> struct has_MappingTraits { typedef void (*Signature_mapping)(class IO&, T&);
template <typename U> static char test(SameType<Signature_mapping, &U::mapping>*);
template <typename U> static double test(...);
public: static bool const value = (sizeof(test<MappingTraits<T> >(0)) == 1); };
// Test if SequenceTraits<T> is defined on type T.
template <class T> struct has_SequenceMethodTraits { typedef size_t (*Signature_size)(class IO&, T&);
template <typename U> static char test(SameType<Signature_size, &U::size>*);
template <typename U> static double test(...);
public: static bool const value = (sizeof(test<SequenceTraits<T> >(0)) == 1); };
// has_FlowTraits<int> will cause an error with some compilers because
// it subclasses int. Using this wrapper only instantiates the
// real has_FlowTraits only if the template type is a class.
template <typename T, bool Enabled = llvm::is_class<T>::value> class has_FlowTraits { public: static const bool value = false; };
// Some older gcc compilers don't support straight forward tests
// for members, so test for ambiguity cause by the base and derived
// classes both defining the member.
template <class T> struct has_FlowTraits<T, true> { struct Fallback { bool flow; }; struct Derived : T, Fallback { };
template<typename C> static char (&f(SameType<bool Fallback::*, &C::flow>*))[1];
template<typename C> static char (&f(...))[2];
public: static bool const value = sizeof(f<Derived>(0)) == 2; };
// Test if SequenceTraits<T> is defined on type T
template<typename T> struct has_SequenceTraits : public llvm::integral_constant<bool, has_SequenceMethodTraits<T>::value > { };
// Test if DocumentListTraits<T> is defined on type T
template <class T> struct has_DocumentListTraits { typedef size_t (*Signature_size)(class IO&, T&);
template <typename U> static char test(SameType<Signature_size, &U::size>*);
template <typename U> static double test(...);
public: static bool const value = (sizeof(test<DocumentListTraits<T> >(0)) == 1); };
template<typename T> struct missingTraits : public llvm::integral_constant<bool, !has_ScalarEnumerationTraits<T>::value && !has_ScalarBitSetTraits<T>::value && !has_ScalarTraits<T>::value && !has_MappingTraits<T>::value && !has_SequenceTraits<T>::value && !has_DocumentListTraits<T>::value > {};
// Base class for Input and Output.
class IO { public:
IO(void *Ctxt=NULL); virtual ~IO();
virtual bool outputting() = 0;
virtual unsigned beginSequence() = 0; virtual bool preflightElement(unsigned, void *&) = 0; virtual void postflightElement(void*) = 0; virtual void endSequence() = 0;
virtual unsigned beginFlowSequence() = 0; virtual bool preflightFlowElement(unsigned, void *&) = 0; virtual void postflightFlowElement(void*) = 0; virtual void endFlowSequence() = 0;
virtual void beginMapping() = 0; virtual void endMapping() = 0; virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0; virtual void postflightKey(void*) = 0;
virtual void beginEnumScalar() = 0; virtual bool matchEnumScalar(const char*, bool) = 0; virtual void endEnumScalar() = 0;
virtual bool beginBitSetScalar(bool &) = 0; virtual bool bitSetMatch(const char*, bool) = 0; virtual void endBitSetScalar() = 0;
virtual void scalarString(StringRef &) = 0;
virtual void setError(const Twine &) = 0;
template <typename T> void enumCase(T &Val, const char* Str, const T ConstVal) { if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) { Val = ConstVal; } }
// allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
template <typename T> void enumCase(T &Val, const char* Str, const uint32_t ConstVal) { if ( matchEnumScalar(Str, outputting() && Val == static_cast<T>(ConstVal)) ) { Val = ConstVal; } }
template <typename T> void bitSetCase(T &Val, const char* Str, const T ConstVal) { if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) { Val = Val | ConstVal; } }
// allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
template <typename T> void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) { if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) { Val = Val | ConstVal; } }
void *getContext(); void setContext(void *);
template <typename T> void mapRequired(const char* Key, T& Val) { this->processKey(Key, Val, true); }
template <typename T> typename llvm::enable_if_c<has_SequenceTraits<T>::value,void>::type mapOptional(const char* Key, T& Val) { // omit key/value instead of outputting empty sequence
if ( this->outputting() && !(Val.begin() != Val.end()) ) return; this->processKey(Key, Val, false); }
template <typename T> typename llvm::enable_if_c<!has_SequenceTraits<T>::value,void>::type mapOptional(const char* Key, T& Val) { this->processKey(Key, Val, false); }
template <typename T> void mapOptional(const char* Key, T& Val, const T& Default) { this->processKeyWithDefault(Key, Val, Default, false); }
private: template <typename T> void processKeyWithDefault(const char *Key, T &Val, const T& DefaultValue, bool Required) { void *SaveInfo; bool UseDefault; const bool sameAsDefault = outputting() && Val == DefaultValue; if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault, SaveInfo) ) { yamlize(*this, Val, Required); this->postflightKey(SaveInfo); } else { if ( UseDefault ) Val = DefaultValue; } }
template <typename T> void processKey(const char *Key, T &Val, bool Required) { void *SaveInfo; bool UseDefault; if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) { yamlize(*this, Val, Required); this->postflightKey(SaveInfo); } }
private: void *Ctxt; };
template<typename T> typename llvm::enable_if_c<has_ScalarEnumerationTraits<T>::value,void>::type yamlize(IO &io, T &Val, bool) { io.beginEnumScalar(); ScalarEnumerationTraits<T>::enumeration(io, Val); io.endEnumScalar(); }
template<typename T> typename llvm::enable_if_c<has_ScalarBitSetTraits<T>::value,void>::type yamlize(IO &io, T &Val, bool) { bool DoClear; if ( io.beginBitSetScalar(DoClear) ) { if ( DoClear ) Val = static_cast<T>(0); ScalarBitSetTraits<T>::bitset(io, Val); io.endBitSetScalar(); } }
template<typename T> typename llvm::enable_if_c<has_ScalarTraits<T>::value,void>::type yamlize(IO &io, T &Val, bool) { if ( io.outputting() ) { std::string Storage; llvm::raw_string_ostream Buffer(Storage); ScalarTraits<T>::output(Val, io.getContext(), Buffer); StringRef Str = Buffer.str(); io.scalarString(Str); } else { StringRef Str; io.scalarString(Str); StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val); if ( !Result.empty() ) { io.setError(llvm::Twine(Result)); } } }
template<typename T> typename llvm::enable_if_c<has_MappingTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool) { io.beginMapping(); MappingTraits<T>::mapping(io, Val); io.endMapping(); }
template<typename T> typename llvm::enable_if_c<missingTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool) { char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)]; }
template<typename T> typename llvm::enable_if_c<has_SequenceTraits<T>::value,void>::type yamlize(IO &io, T &Seq, bool) { if ( has_FlowTraits< SequenceTraits<T> >::value ) { unsigned incnt = io.beginFlowSequence(); unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt; for(unsigned i=0; i < count; ++i) { void *SaveInfo; if ( io.preflightFlowElement(i, SaveInfo) ) { yamlize(io, SequenceTraits<T>::element(io, Seq, i), true); io.postflightFlowElement(SaveInfo); } } io.endFlowSequence(); } else { unsigned incnt = io.beginSequence(); unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt; for(unsigned i=0; i < count; ++i) { void *SaveInfo; if ( io.preflightElement(i, SaveInfo) ) { yamlize(io, SequenceTraits<T>::element(io, Seq, i), true); io.postflightElement(SaveInfo); } } io.endSequence(); } }
template<> struct ScalarTraits<bool> { static void output(const bool &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, bool &); };
template<> struct ScalarTraits<StringRef> { static void output(const StringRef &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, StringRef &); };
template<> struct ScalarTraits<uint8_t> { static void output(const uint8_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint8_t &); };
template<> struct ScalarTraits<uint16_t> { static void output(const uint16_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint16_t &); };
template<> struct ScalarTraits<uint32_t> { static void output(const uint32_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint32_t &); };
template<> struct ScalarTraits<uint64_t> { static void output(const uint64_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, uint64_t &); };
template<> struct ScalarTraits<int8_t> { static void output(const int8_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int8_t &); };
template<> struct ScalarTraits<int16_t> { static void output(const int16_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int16_t &); };
template<> struct ScalarTraits<int32_t> { static void output(const int32_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int32_t &); };
template<> struct ScalarTraits<int64_t> { static void output(const int64_t &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, int64_t &); };
template<> struct ScalarTraits<float> { static void output(const float &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, float &); };
template<> struct ScalarTraits<double> { static void output(const double &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, double &); };
// Utility for use within MappingTraits<>::mapping() method
// to [de]normalize an object for use with YAML conversion.
template <typename TNorm, typename TFinal> struct MappingNormalization { MappingNormalization(IO &i_o, TFinal &Obj) : io(i_o), BufPtr(NULL), Result(Obj) { if ( io.outputting() ) { BufPtr = new (&Buffer) TNorm(io, Obj); } else { BufPtr = new (&Buffer) TNorm(io); } }
~MappingNormalization() { if ( ! io.outputting() ) { Result = BufPtr->denormalize(io); } BufPtr->~TNorm(); }
TNorm* operator->() { return BufPtr; }
private: typedef llvm::AlignedCharArrayUnion<TNorm> Storage;
Storage Buffer; IO &io; TNorm *BufPtr; TFinal &Result; };
// Utility for use within MappingTraits<>::mapping() method
// to [de]normalize an object for use with YAML conversion.
template <typename TNorm, typename TFinal> struct MappingNormalizationHeap { MappingNormalizationHeap(IO &i_o, TFinal &Obj) : io(i_o), BufPtr(NULL), Result(Obj) { if ( io.outputting() ) { BufPtr = new (&Buffer) TNorm(io, Obj); } else { BufPtr = new TNorm(io); } }
~MappingNormalizationHeap() { if ( io.outputting() ) { BufPtr->~TNorm(); } else { Result = BufPtr->denormalize(io); } }
TNorm* operator->() { return BufPtr; }
private: typedef llvm::AlignedCharArrayUnion<TNorm> Storage;
Storage Buffer; IO &io; TNorm *BufPtr; TFinal &Result; };
///
/// The Input class is used to parse a yaml document into in-memory structs
/// and vectors.
///
/// It works by using YAMLParser to do a syntax parse of the entire yaml
/// document, then the Input class builds a graph of HNodes which wraps
/// each yaml Node. The extra layer is buffering. The low level yaml
/// parser only lets you look at each node once. The buffering layer lets
/// you search and interate multiple times. This is necessary because
/// the mapRequired() method calls may not be in the same order
/// as the keys in the document.
///
class Input : public IO { public: // Construct a yaml Input object from a StringRef and optional user-data.
Input(StringRef InputContent, void *Ctxt=NULL); ~Input(); // Check if there was an syntax or semantic error during parsing.
llvm::error_code error();
// To set alternate error reporting.
void setDiagHandler(llvm::SourceMgr::DiagHandlerTy Handler, void *Ctxt = 0);
private: virtual bool outputting(); virtual void beginMapping(); virtual void endMapping(); virtual bool preflightKey(const char *, bool, bool, bool &, void *&); virtual void postflightKey(void *); virtual unsigned beginSequence(); virtual void endSequence(); virtual bool preflightElement(unsigned index, void *&); virtual void postflightElement(void *); virtual unsigned beginFlowSequence(); virtual bool preflightFlowElement(unsigned , void *&); virtual void postflightFlowElement(void *); virtual void endFlowSequence(); virtual void beginEnumScalar(); virtual bool matchEnumScalar(const char*, bool); virtual void endEnumScalar(); virtual bool beginBitSetScalar(bool &); virtual bool bitSetMatch(const char *, bool ); virtual void endBitSetScalar(); virtual void scalarString(StringRef &); virtual void setError(const Twine &message);
class HNode { public: HNode(Node *n) : _node(n) { } virtual ~HNode() { } static inline bool classof(const HNode *) { return true; }
Node *_node; };
class EmptyHNode : public HNode { public: EmptyHNode(Node *n) : HNode(n) { } virtual ~EmptyHNode() {} static inline bool classof(const HNode *n) { return NullNode::classof(n->_node); } static inline bool classof(const EmptyHNode *) { return true; } };
class ScalarHNode : public HNode { public: ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { } virtual ~ScalarHNode() { }
StringRef value() const { return _value; }
static inline bool classof(const HNode *n) { return ScalarNode::classof(n->_node); } static inline bool classof(const ScalarHNode *) { return true; } protected: StringRef _value; };
class MapHNode : public HNode { public: MapHNode(Node *n) : HNode(n) { } virtual ~MapHNode();
static inline bool classof(const HNode *n) { return MappingNode::classof(n->_node); } static inline bool classof(const MapHNode *) { return true; }
struct StrMappingInfo { static StringRef getEmptyKey() { return StringRef(); } static StringRef getTombstoneKey() { return StringRef(" ", 0); } static unsigned getHashValue(StringRef const val) { return llvm::HashString(val); } static bool isEqual(StringRef const lhs, StringRef const rhs) { return lhs.equals(rhs); } }; typedef llvm::DenseMap<StringRef, HNode*, StrMappingInfo> NameToNode;
bool isValidKey(StringRef key);
NameToNode Mapping; llvm::SmallVector<const char*, 6> ValidKeys; };
class SequenceHNode : public HNode { public: SequenceHNode(Node *n) : HNode(n) { } virtual ~SequenceHNode();
static inline bool classof(const HNode *n) { return SequenceNode::classof(n->_node); } static inline bool classof(const SequenceHNode *) { return true; }
std::vector<HNode*> Entries; };
Input::HNode *createHNodes(Node *node); void setError(HNode *hnode, const Twine &message); void setError(Node *node, const Twine &message);
public: // These are only used by operator>>. They could be private
// if those templated things could be made friends.
bool setCurrentDocument(); void nextDocument();
private: llvm::SourceMgr SrcMgr; // must be before Strm
OwningPtr<llvm::yaml::Stream> Strm; OwningPtr<HNode> TopNode; llvm::error_code EC; llvm::BumpPtrAllocator StringAllocator; llvm::yaml::document_iterator DocIterator; std::vector<bool> BitValuesUsed; HNode *CurrentNode; bool ScalarMatchFound; };
///
/// The Output class is used to generate a yaml document from in-memory structs
/// and vectors.
///
class Output : public IO { public: Output(llvm::raw_ostream &, void *Ctxt=NULL); virtual ~Output();
virtual bool outputting(); virtual void beginMapping(); virtual void endMapping(); virtual bool preflightKey(const char *key, bool, bool, bool &, void *&); virtual void postflightKey(void *); virtual unsigned beginSequence(); virtual void endSequence(); virtual bool preflightElement(unsigned, void *&); virtual void postflightElement(void *); virtual unsigned beginFlowSequence(); virtual bool preflightFlowElement(unsigned, void *&); virtual void postflightFlowElement(void *); virtual void endFlowSequence(); virtual void beginEnumScalar(); virtual bool matchEnumScalar(const char*, bool); virtual void endEnumScalar(); virtual bool beginBitSetScalar(bool &); virtual bool bitSetMatch(const char *, bool ); virtual void endBitSetScalar(); virtual void scalarString(StringRef &); virtual void setError(const Twine &message);
public: // These are only used by operator<<. They could be private
// if that templated operator could be made a friend.
void beginDocuments(); bool preflightDocument(unsigned); void postflightDocument(); void endDocuments();
private: void output(StringRef s); void outputUpToEndOfLine(StringRef s); void newLineCheck(); void outputNewLine(); void paddedKey(StringRef key);
enum InState { inSeq, inFlowSeq, inMapFirstKey, inMapOtherKey };
llvm::raw_ostream &Out; SmallVector<InState, 8> StateStack; int Column; int ColumnAtFlowStart; bool NeedBitValueComma; bool NeedFlowSequenceComma; bool EnumerationMatchFound; bool NeedsNewLine; };
/// YAML I/O does conversion based on types. But often native data types
/// are just a typedef of built in intergral types (e.g. int). But the C++
/// type matching system sees through the typedef and all the typedefed types
/// look like a built in type. This will cause the generic YAML I/O conversion
/// to be used. To provide better control over the YAML conversion, you can
/// use this macro instead of typedef. It will create a class with one field
/// and automatic conversion operators to and from the base type.
/// Based on BOOST_STRONG_TYPEDEF
#define LLVM_YAML_STRONG_TYPEDEF(_base, _type) \
struct _type { \ _type() { } \ _type(const _base v) : value(v) { } \ _type(const _type &v) : value(v.value) {} \ _type &operator=(const _type &rhs) { value = rhs.value; return *this; }\ _type &operator=(const _base &rhs) { value = rhs; return *this; } \ operator const _base & () const { return value; } \ bool operator==(const _type &rhs) const { return value == rhs.value; } \ bool operator==(const _base &rhs) const { return value == rhs; } \ bool operator<(const _type &rhs) const { return value < rhs.value; } \ _base value; \ };
///
/// Use these types instead of uintXX_t in any mapping to have
/// its yaml output formatted as hexadecimal.
///
LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8) LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16) LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32) LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64)
template<> struct ScalarTraits<Hex8> { static void output(const Hex8 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex8 &); };
template<> struct ScalarTraits<Hex16> { static void output(const Hex16 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex16 &); };
template<> struct ScalarTraits<Hex32> { static void output(const Hex32 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex32 &); };
template<> struct ScalarTraits<Hex64> { static void output(const Hex64 &, void*, llvm::raw_ostream &); static StringRef input(StringRef, void*, Hex64 &); };
// Define non-member operator>> so that Input can stream in a document list.
template <typename T> inline typename llvm::enable_if_c<has_DocumentListTraits<T>::value,Input &>::type operator>>(Input &yin, T &docList) { int i = 0; while ( yin.setCurrentDocument() ) { yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true); if ( yin.error() ) return yin; yin.nextDocument(); ++i; } return yin; }
// Define non-member operator>> so that Input can stream in a map as a document.
template <typename T> inline typename llvm::enable_if_c<has_MappingTraits<T>::value,Input &>::type operator>>(Input &yin, T &docMap) { yin.setCurrentDocument(); yamlize(yin, docMap, true); return yin; }
// Define non-member operator>> so that Input can stream in a sequence as
// a document.
template <typename T> inline typename llvm::enable_if_c<has_SequenceTraits<T>::value,Input &>::type operator>>(Input &yin, T &docSeq) { yin.setCurrentDocument(); yamlize(yin, docSeq, true); return yin; }
// Provide better error message about types missing a trait specialization
template <typename T> inline typename llvm::enable_if_c<missingTraits<T>::value,Input &>::type operator>>(Input &yin, T &docSeq) { char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)]; return yin; }
// Define non-member operator<< so that Output can stream out document list.
template <typename T> inline typename llvm::enable_if_c<has_DocumentListTraits<T>::value,Output &>::type operator<<(Output &yout, T &docList) { yout.beginDocuments(); const size_t count = DocumentListTraits<T>::size(yout, docList); for(size_t i=0; i < count; ++i) { if ( yout.preflightDocument(i) ) { yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true); yout.postflightDocument(); } } yout.endDocuments(); return yout; }
// Define non-member operator<< so that Output can stream out a map.
template <typename T> inline typename llvm::enable_if_c<has_MappingTraits<T>::value,Output &>::type operator<<(Output &yout, T &map) { yout.beginDocuments(); if ( yout.preflightDocument(0) ) { yamlize(yout, map, true); yout.postflightDocument(); } yout.endDocuments(); return yout; }
// Define non-member operator<< so that Output can stream out a sequence.
template <typename T> inline typename llvm::enable_if_c<has_SequenceTraits<T>::value,Output &>::type operator<<(Output &yout, T &seq) { yout.beginDocuments(); if ( yout.preflightDocument(0) ) { yamlize(yout, seq, true); yout.postflightDocument(); } yout.endDocuments(); return yout; }
// Provide better error message about types missing a trait specialization
template <typename T> inline typename llvm::enable_if_c<missingTraits<T>::value,Output &>::type operator<<(Output &yout, T &seq) { char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)]; return yout; }
} // namespace yaml
} // namespace llvm
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML sequence.
#define LLVM_YAML_IS_SEQUENCE_VECTOR(_type) \
namespace llvm { \ namespace yaml { \ template<> \ struct SequenceTraits< std::vector<_type> > { \ static size_t size(IO &io, std::vector<_type> &seq) { \ return seq.size(); \ } \ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\ if ( index >= seq.size() ) \ seq.resize(index+1); \ return seq[index]; \ } \ }; \ } \ }
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML flow sequence.
#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(_type) \
namespace llvm { \ namespace yaml { \ template<> \ struct SequenceTraits< std::vector<_type> > { \ static size_t size(IO &io, std::vector<_type> &seq) { \ return seq.size(); \ } \ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\ if ( index >= seq.size() ) \ seq.resize(index+1); \ return seq[index]; \ } \ static const bool flow = true; \ }; \ } \ }
/// Utility for declaring that a std::vector of a particular type
/// should be considered a YAML document list.
#define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type) \
namespace llvm { \ namespace yaml { \ template<> \ struct DocumentListTraits< std::vector<_type> > { \ static size_t size(IO &io, std::vector<_type> &seq) { \ return seq.size(); \ } \ static _type& element(IO &io, std::vector<_type> &seq, size_t index) {\ if ( index >= seq.size() ) \ seq.resize(index+1); \ return seq[index]; \ } \ }; \ } \ }
#endif // LLVM_SUPPORT_YAMLTRAITS_H
|