|
|
//-------------------------------------------------------------------------------------
// CpuTopology.cpp
//
// CpuToplogy class implementation.
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//-------------------------------------------------------------------------------------
#include "pch_tier0.h"
#if defined(_WIN32) && !defined(_X360) && !defined( _PS3 )
#include "cputopology.h"
#include <stdlib.h>
#include <crtdbg.h>
#undef malloc
#undef free
#ifdef _WIN64
#include "intrin.h"
#endif
//---------------------------------------------------------------------------------
// Name: ICpuToplogy
// Desc: Specifies the interface that each class that provides an implementation
// for extracting cpu topology must conform to. This is the Implementor
// class in the traditional Bridge Pattern.
//---------------------------------------------------------------------------------
class ICpuTopology { public: virtual ~ICpuTopology() { } virtual BOOL IsDefaultImpl() const = 0; virtual DWORD NumberOfProcessCores() const = 0; virtual DWORD NumberOfSystemCores() const = 0; virtual DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const = 0; };
namespace { ///////////////////////////////////////////////////////////////////////////////////
// Local Class Definitions
///////////////////////////////////////////////////////////////////////////////////
//---------------------------------------------------------------------------------
// Name: DefaultImpl
// Desc: Provides a default implementation for the ICpuTopology interface when
// GetLogicalProcessorInformation and CPUID are not supported for whatever
// reason. This is a ConcreteImplementor class in the traditional Bridge
// Pattern.
//---------------------------------------------------------------------------------
class DefaultImpl : public ICpuTopology { public: //-----------------------------------------------------------------------------
// DefaultImpl::IsDefaultImpl
//-----------------------------------------------------------------------------
/*virtual*/ BOOL IsDefaultImpl() const { return TRUE; }
//-----------------------------------------------------------------------------
// DefaultImpl::NumberOfProcessCores
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfProcessCores() const { return 1; }
//-----------------------------------------------------------------------------
// DefaultImpl::IsNumberOfSystemCores
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfSystemCores() const { return 1; }
//-----------------------------------------------------------------------------
// DefaultImpl::CoreAffinityMask
//-----------------------------------------------------------------------------
/*virtual*/ DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const { DWORD_PTR coreAffinity = 0; if( 1 == coreIdx ) { DWORD_PTR dwSystemAffinity; GetProcessAffinityMask( GetCurrentProcess(), &coreAffinity, &dwSystemAffinity ); } return coreAffinity; } };
//---------------------------------------------------------------------------------
// Name: GlpiImpl
// Desc: Provides the GetLogicalProcessorInformation implementation for the
// ICpuTopology interface. This is a ConcreteImplementor class in the
// traditional Bridge Pattern.
//---------------------------------------------------------------------------------
class GlpiImpl : public ICpuTopology { public:
//-----------------------------------------------------------------------------
// Name: GlpiImpl::GlpiImpl
// Desc: Initializes the internal structures/data with information retrieved
// from a call to GetLogicalProcessorInformation.
//-----------------------------------------------------------------------------
GlpiImpl() : m_pSlpi( NULL ), m_nItems( 0 ) { _ASSERT( IsSupported() );
GlpiFnPtr pGlpi = GetGlpiFn_(); _ASSERT( pGlpi );
DWORD cbBuffer = 0; pGlpi( 0, &cbBuffer );
m_pSlpi = ( SYSTEM_LOGICAL_PROCESSOR_INFORMATION* )malloc( cbBuffer ); pGlpi( m_pSlpi, &cbBuffer ); m_nItems = cbBuffer / sizeof( SYSTEM_LOGICAL_PROCESSOR_INFORMATION ); }
//-----------------------------------------------------------------------------
// Name: GlpiImpl::~GlpiImpl
//-----------------------------------------------------------------------------
/*virtual*/ ~GlpiImpl() { free( m_pSlpi ); m_pSlpi = 0; m_nItems = 0; }
//-----------------------------------------------------------------------------
// Name: GlpiImpl::IsDefaultImpl
//-----------------------------------------------------------------------------
/*virtual*/ BOOL IsDefaultImpl() const { return FALSE; }
//-----------------------------------------------------------------------------
// Name: GlpiImpl::NumberOfProcessCores
// Desc: Gets the total number of physical processor cores available to the
// current process.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfProcessCores() const { DWORD_PTR dwProcessAffinity, dwSystemAffinity; GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
DWORD nCores = 0; for( DWORD i = 0; i < m_nItems; ++i ) { if( ( RelationProcessorCore == m_pSlpi[i].Relationship ) && ( m_pSlpi[i].ProcessorMask & dwProcessAffinity ) ) { ++nCores; } } return nCores; }
//-----------------------------------------------------------------------------
// Name: GlpiImpl::NumberOfSystemCores
// Desc: Gets the total number of physical processor cores enabled on the
// system.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfSystemCores() const { DWORD nCores = 0; for( DWORD i = 0; i < m_nItems; ++i ) { if( RelationProcessorCore == m_pSlpi[i].Relationship ) ++nCores; } return nCores; }
//-----------------------------------------------------------------------------
// Name: GlpiImpl::CoreAffinityMask
// Desc: Gets an affinity mask that corresponds to the requested processor
// core.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const { DWORD_PTR dwProcessAffinity, dwSystemAffinity; GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
for( DWORD i = 0; i < m_nItems; ++i ) { if( RelationProcessorCore == m_pSlpi[i].Relationship ) { if( !coreIdx-- ) { return m_pSlpi[i].ProcessorMask & dwProcessAffinity; } } } return 0; }
//-----------------------------------------------------------------------------
// Name: GlpiImpl::IsSupported
//-----------------------------------------------------------------------------
static BOOL IsSupported() { return NULL != GetGlpiFn_(); }
private: // GetLogicalProcessorInformation function pointer
typedef BOOL( WINAPI* GlpiFnPtr )( SYSTEM_LOGICAL_PROCESSOR_INFORMATION*, PDWORD );
//-----------------------------------------------------------------------------
// Name: GlpiImpl::VerifyGlpiFn_
// Desc: Gets a pointer to the GetLogicalProcessorInformation function only if
// it is supported on the current platform.
// GetLogicalProcessorInformation is supported on Windows Server 2003 and
// XP64, however there is a bug with the implementation. Therefore, only
// GetLogicalProcessorInformation on Windows Vista is supported in this
// sample.
//-----------------------------------------------------------------------------
static GlpiFnPtr VerifyGlpiFn_() { // VerifyVersionInfo function pointer
typedef BOOL ( WINAPI* VviFnPtr )( LPOSVERSIONINFOEX, DWORD, DWORDLONG );
HMODULE hMod = GetModuleHandle( TEXT( "kernel32" ) ); #ifdef _UNICODE
VviFnPtr pVvi = (VviFnPtr) GetProcAddress( hMod, "VerifyVersionInfoW" ); #else
VviFnPtr pVvi = ( VviFnPtr )GetProcAddress( hMod, "VerifyVersionInfoA" ); #endif
GlpiFnPtr pGlpi = NULL;
if( pVvi ) { // VerSetConditionMask function pointer
typedef ULONGLONG ( WINAPI* VscmFnPtr )( ULONGLONG, DWORD, BYTE );
VscmFnPtr pVscm = ( VscmFnPtr )GetProcAddress( hMod, "VerSetConditionMask" );
_ASSERT( pVscm );
// Check for Windows Vista
OSVERSIONINFOEX osvi = { sizeof( OSVERSIONINFOEX ) }; osvi.dwMajorVersion = 6; osvi.dwMinorVersion = 0; osvi.wServicePackMajor = 0; osvi.wServicePackMinor = 0;
ULONGLONG dwlMask = 0; dwlMask = pVscm( dwlMask, VER_MAJORVERSION, VER_GREATER_EQUAL ); dwlMask = pVscm( dwlMask, VER_MINORVERSION, VER_GREATER_EQUAL ); dwlMask = pVscm( dwlMask, VER_SERVICEPACKMAJOR, VER_GREATER_EQUAL ); dwlMask = pVscm( dwlMask, VER_SERVICEPACKMINOR, VER_GREATER_EQUAL );
if( pVvi( &osvi, VER_MAJORVERSION | VER_MINORVERSION | VER_SERVICEPACKMAJOR | VER_SERVICEPACKMINOR, dwlMask ) ) { pGlpi = ( GlpiFnPtr )GetProcAddress( hMod, "GetLogicalProcessorInformation" ); _ASSERT( pGlpi ); } }
return pGlpi;
}
//-----------------------------------------------------------------------------
// Name: GlpiImpl::GetGlpiFn_
// Desc: Gets a cached pointer to the GetLogicalProcessorInformation function.
//-----------------------------------------------------------------------------
static GlpiFnPtr GetGlpiFn_() { static GlpiFnPtr pGlpi = VerifyGlpiFn_(); return pGlpi; }
// Private Members
SYSTEM_LOGICAL_PROCESSOR_INFORMATION* m_pSlpi; DWORD m_nItems; };
//---------------------------------------------------------------------------------
// Name: ApicExtractor
// Desc: A utility class that provides an interface for decoding a processor
// APIC ID. An APIC ID is an 8-bit identifier given to each logical
// processor on system boot and can be retrieved by the CPUID instruction.
// Each APIC ID is composed of a PACKAGE_ID, CORE_ID and SMT_ID that describe
// the relationship of a logical processor within the processor topology of
// the system.
//---------------------------------------------------------------------------------
class ApicExtractor { public: //-----------------------------------------------------------------------------
// Name: ApicExtractor::ApicExtractor
//-----------------------------------------------------------------------------
ApicExtractor( DWORD nLogProcsPerPkg = 1, DWORD nCoresPerPkg = 1 ) { SetPackageTopology( nLogProcsPerPkg, nCoresPerPkg ); }
//-----------------------------------------------------------------------------
// Name: ApicExtractor::SmtId
//-----------------------------------------------------------------------------
BYTE SmtId( BYTE apicId ) const { return apicId & m_smtIdMask.mask; }
//-----------------------------------------------------------------------------
// Name: ApicExtractor::CoreId
//-----------------------------------------------------------------------------
BYTE CoreId( BYTE apicId ) const { return ( apicId & m_coreIdMask.mask ) >> m_smtIdMask.width; }
//-----------------------------------------------------------------------------
// Name: ApicExtractor::PackageId
//-----------------------------------------------------------------------------
BYTE PackageId( BYTE apicId ) const { return ( apicId & m_pkgIdMask.mask ) >> ( m_smtIdMask.width + m_coreIdMask.width ); }
//-----------------------------------------------------------------------------
// Name: ApicExtractor::PackageCoreId
//-----------------------------------------------------------------------------
BYTE PackageCoreId( BYTE apicId ) const { return ( apicId & ( m_pkgIdMask.mask | m_coreIdMask.mask ) ) >> m_smtIdMask.width; }
//-----------------------------------------------------------------------------
// Name: ApicExtractor::GetLogProcsPerPkg
//-----------------------------------------------------------------------------
DWORD GetLogProcsPerPkg() const { return m_nLogProcsPerPkg; }
//-----------------------------------------------------------------------------
// Name: ApicExtractor::GetCoresPerPkg
//-----------------------------------------------------------------------------
DWORD GetCoresPerPkg() const { return m_nCoresPerPkg; }
//-----------------------------------------------------------------------------
// Name: ApicExtractor::SetPackageTopology
// Desc: You should call SetPackageTopology with the number of logical
// processors per package and number of cores per package before calling
// the sub id accessors (SmtId(), CoreId(), PackageId(), PackageCoreId())
// as this information is required to effectively decode an APIC ID into
// its sub parts.
//-----------------------------------------------------------------------------
void SetPackageTopology( DWORD nLogProcsPerPkg, DWORD nCoresPerPkg ) { m_nLogProcsPerPkg = ( BYTE )nLogProcsPerPkg; m_nCoresPerPkg = ( BYTE )nCoresPerPkg;
// fix for Phenom x3 and similar CPUs - it reports 3 logical processors per package, and 4 cores per package
// so one core is probably just disabled for yield, but it causes a bug in GetMaskWidth that propagates
if( m_nCoresPerPkg > m_nLogProcsPerPkg ) { m_nCoresPerPkg = m_nLogProcsPerPkg; }
m_smtIdMask.width = GetMaskWidth_( m_nLogProcsPerPkg / m_nCoresPerPkg ); m_coreIdMask.width = GetMaskWidth_( m_nCoresPerPkg ); m_pkgIdMask.width = 8 - ( m_smtIdMask.width + m_coreIdMask.width );
m_pkgIdMask.mask = ( BYTE )( 0xFF << ( m_smtIdMask.width + m_coreIdMask.width ) ); m_coreIdMask.mask = ( BYTE )( ( 0xFF << m_smtIdMask.width ) ^ m_pkgIdMask.mask ); m_smtIdMask.mask = ( BYTE )~( 0xFF << m_smtIdMask.width );
}
private: //-----------------------------------------------------------------------------
// Name: ApicExtractor::GetMaskWidth_
// Desc: Gets the width of a sub id bit field in an APIC ID. The width of a
// sub id (CORE_ID, SMT_ID) is only wide enough to support the maximum
// number of ids that needs to be represented in the topology.
//-----------------------------------------------------------------------------
static BYTE GetMaskWidth_( BYTE maxIds ) { --maxIds;
// find index of msb
BYTE msbIdx = 8; BYTE msbMask = 0x80; while( msbMask && !( msbMask & maxIds ) ) { --msbIdx; msbMask >>= 1; } return msbIdx; }
struct IdMask { BYTE width; BYTE mask; };
// Private Members
BYTE m_nLogProcsPerPkg; BYTE m_nCoresPerPkg; IdMask m_smtIdMask; IdMask m_coreIdMask; IdMask m_pkgIdMask; };
//---------------------------------------------------------------------------------
// Name: Cpuid
// Desc: A utility class that wraps the functionality of the CPUID instruction.
// Call the Call() method with the desired CPUID function, and use the
// register accessors to retrieve the register values.
//---------------------------------------------------------------------------------
class Cpuid { public: // FnSet values are used to indicate a CPUID function set.
enum FnSet { Std = 0x00000000, Ext = 0x80000000 };
//-----------------------------------------------------------------------------
// Name: Cpuid::Cpuid
//-----------------------------------------------------------------------------
Cpuid() : m_eax( 0 ), m_ebx( 0 ), m_ecx( 0 ), m_edx( 0 ) { }
// Register accessors
DWORD Eax() const { return m_eax; } DWORD Ebx() const { return m_ebx; } DWORD Ecx() const { return m_ecx; } DWORD Edx() const { return m_edx; }
//-----------------------------------------------------------------------------
// Name: Cpuid::Call
// Desc: Calls the CPUID instruction with the specified function. Returns TRUE
// if the CPUID function was supported, FALSE if it wasn't.
//-----------------------------------------------------------------------------
BOOL Call( FnSet fnSet, DWORD fn ) { if( IsFnSupported( fnSet, fn ) ) { UncheckedCall_( fnSet, fn ); return true; } return false; }
//-----------------------------------------------------------------------------
// Name: Cpuid::IsVendor
// Desc: Compares a string with the vendor string encoded in the CPUID
// instruction.
//-----------------------------------------------------------------------------
static BOOL IsVendor( const char* strVendor ) { // Cache the vendor string
static const Cpuid cpu( Std ); return cpu.Ebx() == *reinterpret_cast<const DWORD*>( strVendor ) && cpu.Ecx() == *reinterpret_cast<const DWORD*>( strVendor + 8 ) && cpu.Edx() == *reinterpret_cast<const DWORD*>( strVendor + 4 ); }
//-----------------------------------------------------------------------------
// Name: Cpuid::IsFnSupported
// Desc: Checks to see if a CPUID function is supported. Different processors
// support different functions. This method is automatically called from
// the Call() method, so you don't need to call it beforehand.
//-----------------------------------------------------------------------------
static BOOL IsFnSupported( FnSet fnSet, DWORD fn ) { // Cache the maximum supported standard function
static const DWORD MaxStdFn = Cpuid( Std ).Eax(); // Cache the maximum supported extended function
static const DWORD MaxExtFn = Cpuid( Ext ).Eax();
bool ret = false; switch( fnSet ) { case Std: ret = ( fn <= MaxStdFn ); break; case Ext: ret = ( fn <= MaxExtFn ); break; default: _ASSERT( 0 ); // should never get here
break; } return ret; }
private: //-----------------------------------------------------------------------------
// Name: Cpuid::Cpuid
// Desc: This constructor is private and is only used to set a Cpuid object to
// initial values retrieved from CPUID functions 0x00000000 and
// 0x80000000. Good for caching values from the CPUID instruction that
// are not variable, like the encoded vendor string and the maximum
// supported CPUID function values.
//-----------------------------------------------------------------------------
explicit Cpuid( FnSet fnSet ) { UncheckedCall_( fnSet, 0 ); }
//-----------------------------------------------------------------------------
// Name: Cpuid::UncheckedCall_
// Desc: Calls the CPUID instruction without checking for CPUID function
// support.
//-----------------------------------------------------------------------------
void UncheckedCall_( FnSet fnSet, DWORD fn ) { #ifdef _WIN64
int out[4]; __cpuidex( out, fnSet | fn, 0 ); m_eax = out[0]; m_ebx = out[1]; m_ecx = out[2]; m_edx = out[3]; #else
__asm { mov ecx, 0 mov eax, fn or eax, fnSet cpuid mov edi, this mov [edi].m_eax, eax mov [edi].m_ebx, ebx mov [edi].m_ecx, ecx mov [edi].m_edx, edx } #endif
}
// Private Members
DWORD m_eax; DWORD m_ebx; DWORD m_ecx; DWORD m_edx; };
//---------------------------------------------------------------------------------
// Name: CpuidImpl
// Desc: Provides the CPUID instruction implementation for the ICpuTopology
// interface. This is a ConcreteImplementor class in the traditional Bridge
// Pattern.
//---------------------------------------------------------------------------------
class CpuidImpl : public ICpuTopology { public: // CpuidFnMasks are used when extracting bit-encoded information retrieved from
// the CPUID instruction
enum CpuidFnMasks { HTT = 0x10000000, // Fn0000_0001 EDX[28]
LogicalProcessorCount = 0x00FF0000, // Fn0000_0001 EBX[23:16]
ApicId = 0xFF000000, // Fn0000_0001 EBX[31:24]
NC_Intel = 0xFC000000, // Fn0000_0004 EAX[31:26]
NC_Amd = 0x000000FF, // Fn8000_0008 ECX[7:0]
CmpLegacy_Amd = 0x00000002, // Fn8000_0001 ECX[1]
ApicIdCoreIdSize_Amd = 0x0000F000 // Fn8000_0008 ECX[15:12]
};
enum { MaxLogicalProcessors = sizeof( DWORD_PTR ) * 8 };
//-----------------------------------------------------------------------------
// Name: CpuidImpl::CpuidImpl
// Desc: Initializes internal structures/data with information retrieved from
// calling the CPUID instruction.
//-----------------------------------------------------------------------------
CpuidImpl() : m_nItems( 0 ) { _ASSERT( IsSupported() );
DWORD nLogProcsPerPkg = 1; DWORD nCoresPerPkg = 1;
Cpuid cpu;
// Determine if hardware threading is enabled.
cpu.Call( Cpuid::Std, 1 ); if( cpu.Edx() & HTT ) { // Determine the total number of logical processors per package.
nLogProcsPerPkg = ( cpu.Ebx() & LogicalProcessorCount ) >> 16;
// Determine the total number of cores per package. This info
// is extracted differently dependending on the cpu vendor.
if( Cpuid::IsVendor( GenuineIntel ) ) { if( cpu.Call( Cpuid::Std, 4 ) ) { nCoresPerPkg = ( ( cpu.Eax() & NC_Intel ) >> 26 ) + 1; } } else { _ASSERT( Cpuid::IsVendor( AuthenticAMD ) ); if( cpu.Call( Cpuid::Ext, 8 ) ) { // AMD reports the msb width of the CORE_ID bit field of the APIC ID
// in ApicIdCoreIdSize_Amd. The maximum value represented by the msb
// width is the theoretical number of cores the processor can support
// and not the actual number of current cores, which is how the msb width
// of the CORE_ID bit field has been traditionally determined. If the
// ApicIdCoreIdSize_Amd value is zero, then you use the traditional method
// to determine the CORE_ID msb width.
DWORD msbWidth = cpu.Ecx() & ApicIdCoreIdSize_Amd; if( msbWidth ) { // Set nCoresPerPkg to the maximum theortical number of cores
// the processor package can support (2 ^ width) so the APIC
// extractor object can be configured to extract the proper
// values from an APIC.
nCoresPerPkg = 1 << ( msbWidth >> 12 ); } else { // Set nCoresPerPkg to the actual number of cores being reported
// by the CPUID instruction.
nCoresPerPkg = ( cpu.Ecx() & NC_Amd ) + 1; } } } }
// Configure the APIC extractor object with the information it needs to
// be able to decode the APIC.
m_apicExtractor.SetPackageTopology( nLogProcsPerPkg, nCoresPerPkg );
DWORD_PTR dwProcessAffinity, dwSystemAffinity; HANDLE hProcess = GetCurrentProcess(); HANDLE hThread = GetCurrentThread(); GetProcessAffinityMask( hProcess, &dwProcessAffinity, &dwSystemAffinity ); if( 1 == dwSystemAffinity ) { // Since we only have 1 logical processor present on the system, we
// can explicitly set a single APIC ID to zero.
_ASSERT( 1 == nLogProcsPerPkg ); m_apicIds[m_nItems++] = 0; } else { // Set the process affinity to the system affinity if they are not
// equal so that all logical processors can be accounted for.
if( dwProcessAffinity != dwSystemAffinity ) { SetProcessAffinityMask( hProcess, dwSystemAffinity ); }
// Call cpuid on each active logical processor in the system affinity.
DWORD_PTR dwPrevThreadAffinity = 0; for( DWORD_PTR dwThreadAffinity = 1; dwThreadAffinity && dwThreadAffinity <= dwSystemAffinity; dwThreadAffinity <<= 1 ) { if( dwSystemAffinity & dwThreadAffinity ) { if( 0 == dwPrevThreadAffinity ) { // Save the previous thread affinity so we can return
// the executing thread affinity back to this state.
_ASSERT( 0 == m_nItems ); dwPrevThreadAffinity = SetThreadAffinityMask( hThread, dwThreadAffinity ); } else { _ASSERT( m_nItems > 0 ); SetThreadAffinityMask( hThread, dwThreadAffinity ); }
// Allow the thread to switch to masked logical processor.
Sleep( 0 );
// Store the APIC ID
cpu.Call( Cpuid::Std, 1 ); m_apicIds[m_nItems++] = ( BYTE )( ( cpu.Ebx() & ApicId ) >> 24 ); } }
// Restore the previous process and thread affinity state.
SetProcessAffinityMask( hProcess, dwProcessAffinity ); SetThreadAffinityMask( hThread, dwPrevThreadAffinity ); Sleep( 0 ); }
}
//-----------------------------------------------------------------------------
// Name: CpuidImpl::IsDefaultImpl
//-----------------------------------------------------------------------------
/*virtual*/ BOOL IsDefaultImpl() const { return FALSE; }
//-----------------------------------------------------------------------------
// Name: CpuidImpl::NumberOfProcessCores
// Desc: Gets the number of processor cores available to the current process.
// The total accounts for cores that may have been masked out by process
// affinity.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfProcessCores() const { DWORD_PTR dwProcessAffinity, dwSystemAffinity; GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
BYTE pkgCoreIds[MaxLogicalProcessors] = { 0 }; DWORD nPkgCoreIds = 0;
for( DWORD i = 0; i < m_nItems; ++i ) { if( dwProcessAffinity & ( ( DWORD_PTR )1 << i ) ) { AddUniquePkgCoreId_( i, pkgCoreIds, nPkgCoreIds ); } } return nPkgCoreIds; }
//-----------------------------------------------------------------------------
// Name: CpuidImpl::NumberOfSystemCores
// Desc: Gets the number of processor cores on the system.
//-----------------------------------------------------------------------------
/*virtual*/ DWORD NumberOfSystemCores() const { BYTE pkgCoreIds[MaxLogicalProcessors] = { 0 }; DWORD nPkgCoreIds = 0; for( DWORD i = 0; i < m_nItems; ++i ) { AddUniquePkgCoreId_( i, pkgCoreIds, nPkgCoreIds ); } return nPkgCoreIds; }
//-----------------------------------------------------------------------------
// Name: CpuidImpl::CoreAffinityMask
// Desc: Gets an affinity mask that corresponds to a specific processor core.
// coreIdx must be less than the total number of processor cores
// recognized by the operating system (NumberOfSystemCores()).
//-----------------------------------------------------------------------------
/*virtual*/ DWORD_PTR CoreAffinityMask( DWORD coreIdx ) const { BYTE pkgCoreIds[MaxLogicalProcessors] = { 0 }; DWORD nPkgCoreIds = 0; for( DWORD i = 0; i < m_nItems; ++i ) { AddUniquePkgCoreId_( i, pkgCoreIds, nPkgCoreIds ); }
DWORD_PTR dwProcessAffinity, dwSystemAffinity; GetProcessAffinityMask( GetCurrentProcess(), &dwProcessAffinity, &dwSystemAffinity );
DWORD_PTR coreAffinity = 0; if( coreIdx < nPkgCoreIds ) { for( DWORD i = 0; i < m_nItems; ++i ) { if( m_apicExtractor.PackageCoreId( m_apicIds[i] ) == pkgCoreIds[coreIdx] ) { coreAffinity |= ( dwProcessAffinity & ( ( DWORD_PTR )1 << i ) ); } } } return coreAffinity; }
//-----------------------------------------------------------------------------
// Name: CpuidImpl::IsSupported
// Desc: Indicates if a CpuidImpl object is supported on this platform.
// Support is only granted on Intel and AMD platforms where the current
// calling process has security rights to query process affinity and
// change it if the process and system affinity differ. CpuidImpl is
// also not supported if thread affinity cannot be set on systems with
// more than 1 logical processor.
//-----------------------------------------------------------------------------
static BOOL IsSupported() { BOOL bSupported = Cpuid::IsVendor( GenuineIntel ) || Cpuid::IsVendor( AuthenticAMD );
if( bSupported ) { DWORD_PTR dwProcessAffinity, dwSystemAffinity; HANDLE hProcess = GetCurrentProcess();
// Query process affinity mask
bSupported = GetProcessAffinityMask( hProcess, &dwProcessAffinity, &dwSystemAffinity ); if( bSupported ) { if( dwProcessAffinity != dwSystemAffinity ) { // The process and system affinities differ. Attempt to set
// the process affinity to the system affinity.
bSupported = SetProcessAffinityMask( hProcess, dwSystemAffinity ); if( bSupported ) { // Restore previous process affinity
bSupported = SetProcessAffinityMask( hProcess, dwProcessAffinity ); } }
if( bSupported && ( dwSystemAffinity > 1 ) ) { // Attempt to set the thread affinity
HANDLE hThread = GetCurrentThread(); DWORD_PTR dwThreadAffinity = SetThreadAffinityMask( hThread, dwProcessAffinity ); if( dwThreadAffinity ) { // Restore the previous thread affinity
bSupported = 0 != SetThreadAffinityMask( hThread, dwThreadAffinity ); } else { bSupported = FALSE; } } } } return bSupported; }
private:
//-----------------------------------------------------------------------------
// Name: CpuidImpl::AddUniquePkgCoreId_
// Desc: Adds the package/core id extracted from the APIC ID at m_apicIds[idx]
// in the if the package/core id is unique to the pkgCoreIds array.
// nPkgCore is an in/out parm that will reflect the total number of items
// in pkgCoreIds array. It will be incrememted if a unique package/core
// id is found and added.
//-----------------------------------------------------------------------------
void AddUniquePkgCoreId_( DWORD idx, BYTE* pkgCoreIds, DWORD& nPkgCoreIds ) const { _ASSERT( idx < m_nItems ); _ASSERT( NULL != pkgCoreIds );
DWORD j; for( j = 0; j < nPkgCoreIds; ++j ) { if( pkgCoreIds[j] == m_apicExtractor.PackageCoreId( m_apicIds[idx] ) ) break; } if( j == nPkgCoreIds ) { pkgCoreIds[j] = m_apicExtractor.PackageCoreId( m_apicIds[idx] ); ++nPkgCoreIds; } }
// Private Members
BYTE m_apicIds[MaxLogicalProcessors]; BYTE m_nItems; ApicExtractor m_apicExtractor;
// Supported Vendor Strings
static const char GenuineIntel[]; static const char AuthenticAMD[]; };
// Static initialization of vendor strings
const char CpuidImpl::GenuineIntel[] = "GenuineIntel"; const char CpuidImpl::AuthenticAMD[] = "AuthenticAMD";
} // unnamed-namespace
//-------------------------------------------------------------------------------------
// Name: CpuTopology::CpuTopology
// Desc: Initializes this object with the appropriately supported cpu topology
// implementation object.
//-------------------------------------------------------------------------------------
CpuTopology::CpuTopology( BOOL bForceCpuid ) : m_pImpl( NULL ) { ForceCpuid( bForceCpuid ); }
//-------------------------------------------------------------------------------------
// Name: CpuTopology::~CpuTopology
//-------------------------------------------------------------------------------------
CpuTopology::~CpuTopology() { Destroy_(); }
//-------------------------------------------------------------------------------------
// Name: CpuTopology::NumberOfProcessCores
// Desc: Gets the total number of physical processor cores available to the current
// process.
//-------------------------------------------------------------------------------------
DWORD CpuTopology::NumberOfProcessCores() const { return m_pImpl->NumberOfProcessCores(); }
//-------------------------------------------------------------------------------------
// Name: CpuTopology::NumberOfSystemCores
// Desc: Gets the total number of physical processor cores enabled on the system.
//-------------------------------------------------------------------------------------
DWORD CpuTopology::NumberOfSystemCores() const { return m_pImpl->NumberOfSystemCores(); }
//-------------------------------------------------------------------------------------
// Name: CpuTopology::CoreAffinityMask
// Desc: Gets an affinity mask that corresponds to the requested processor core.
//-------------------------------------------------------------------------------------
DWORD_PTR CpuTopology::CoreAffinityMask( DWORD coreIdx ) const { return m_pImpl->CoreAffinityMask( coreIdx ); }
//-------------------------------------------------------------------------------------
// Name: CpuTopology::IsDefaultImpl
// Desc: Returns TRUE if m_pImpl is a DefaultImpl object, FALSE if not. Used to
// indicate whether or not the prescribed methods (CPUID or
// GetLogicalProcessorInformation) are supported on the system.
//-------------------------------------------------------------------------------------
BOOL CpuTopology::IsDefaultImpl() const { return m_pImpl->IsDefaultImpl(); }
//-------------------------------------------------------------------------------------
// Name: CpuTopology::ForceCpuid
// Desc: Constructs a cpu topology object. If bForce is FALSE, then a GlpiImpl object
// is first attempted, then CpuidImpl, then finally DefaultImpl. If bForce is
// TRUE, then GlpiImpl is never attempted.
//-------------------------------------------------------------------------------------
void CpuTopology::ForceCpuid( BOOL bForce ) { Destroy_();
if( !bForce && GlpiImpl::IsSupported() ) { m_pImpl = new GlpiImpl(); } else if( CpuidImpl::IsSupported() ) { m_pImpl = new CpuidImpl(); } else { m_pImpl = new DefaultImpl(); } }
//-------------------------------------------------------------------------------------
// Name: CpuTopology::Destroy_
//-------------------------------------------------------------------------------------
void CpuTopology::Destroy_() { delete m_pImpl; m_pImpl = NULL; } #endif
|