|
|
//===== Copyright 1996-2005, Valve Corporation, All rights reserved. ======//
//
// Purpose:
//
//===========================================================================//
#include "basetypes.h"
#include "commonmacros.h"
#include "checksum_md5.h"
#include <string.h>
#include <stdio.h>
#include "tier1/strtools.h"
#include "tier0/dbg.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
// The four core functions - F1 is optimized somewhat
// #define F1(x, y, z) (x & y | ~x & z)
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
// This is the central step in the MD5 algorithm.
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
//-----------------------------------------------------------------------------
// Purpose: The core of the MD5 algorithm, this alters an existing MD5 hash to
// reflect the addition of 16 longwords of new data. MD5Update blocks
// the data and converts bytes into longwords for this routine.
// Input : buf[4] -
// in[16] -
// Output : static void
//-----------------------------------------------------------------------------
#if ( PLAT_BIG_ENDIAN == 1 )
static void MD5Transform(unsigned int buf[4], unsigned int const in_big[16]) {
unsigned int in[16]; for( int i = 0; i != 16; ++i ) { in[i] = LittleDWord(in_big[i]); } #else
static void MD5Transform(unsigned int buf[4], unsigned int const in[16]) { #endif
register unsigned int a, b, c, d;
a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; }
//-----------------------------------------------------------------------------
// Purpose: Start MD5 accumulation. Set bit count to 0 and buffer to mysterious initialization constants.
// Input : *ctx -
//-----------------------------------------------------------------------------
void MD5Init(MD5Context_t *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0; ctx->bits[1] = 0; }
//-----------------------------------------------------------------------------
// Purpose: Update context to reflect the concatenation of another buffer full of bytes.
// Input : *ctx -
// *buf -
// len -
//-----------------------------------------------------------------------------
void MD5Update(MD5Context_t *ctx, unsigned char const *buf, unsigned int len) { unsigned int t;
/* Update bitcount */
t = ctx->bits[0]; if ((ctx->bits[0] = t + ((unsigned int) len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t) { unsigned char *p = (unsigned char *) ctx->in + t;
t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); //byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (unsigned int *) ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */
while (len >= 64) { memcpy(ctx->in, buf, 64); //byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (unsigned int *) ctx->in); buf += 64; len -= 64; }
/* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); }
//-----------------------------------------------------------------------------
// Purpose: Final wrapup - pad to 64-byte boundary with the bit pattern
// 1 0* (64-bit count of bits processed, MSB-first)
// Input : digest[MD5_DIGEST_LENGTH] -
// *ctx -
//-----------------------------------------------------------------------------
void MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5Context_t *ctx) { unsigned count; unsigned char *p;
/* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */ p = ctx->in + count; *p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count;
/* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); //byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (unsigned int *) ctx->in);
/* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } //byteReverse(ctx->in, 14);
/* Append length in bits and transform */ ((unsigned int *) ctx->in)[14] = LittleDWord( ctx->bits[0] ); ((unsigned int *) ctx->in)[15] = LittleDWord( ctx->bits[1] );
MD5Transform(ctx->buf, (unsigned int *) ctx->in); //byteReverse((unsigned char *) ctx->buf, 4);
#if ( PLAT_BIG_ENDIAN == 1 )
COMPILE_TIME_ASSERT( MD5_DIGEST_LENGTH == (sizeof(unsigned int) * 4) ); ((unsigned int *)digest)[0] = LittleDWord( ctx->buf[0] ); ((unsigned int *)digest)[1] = LittleDWord( ctx->buf[1] ); ((unsigned int *)digest)[2] = LittleDWord( ctx->buf[2] ); ((unsigned int *)digest)[3] = LittleDWord( ctx->buf[3] ); #else
memcpy(digest, ctx->buf, MD5_DIGEST_LENGTH); #endif
memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ }
//-----------------------------------------------------------------------------
// Purpose:
// Input : *hash -
// hashlen -
// Output : char
//-----------------------------------------------------------------------------
char *MD5_Print( unsigned char *hash, int hashlen ) { static char szReturn[64];
Assert( hashlen <= 32 );
Q_binarytohex( hash, hashlen, szReturn, sizeof( szReturn ) ); return szReturn; }
//-----------------------------------------------------------------------------
// Purpose: generate pseudo random number from a seed number
// Input : seed number
// Output : pseudo random number
//-----------------------------------------------------------------------------
unsigned int MD5_PseudoRandom(unsigned int nSeed) { nSeed = LittleDWord( nSeed ); MD5Context_t ctx; unsigned char digest[MD5_DIGEST_LENGTH]; // The MD5 Hash
memset( &ctx, 0, sizeof( ctx ) ); MD5Init(&ctx); MD5Update(&ctx, (unsigned char*)&nSeed, sizeof(nSeed) ); MD5Final(digest, &ctx);
return LittleDWord(*(unsigned int*)(digest+6)); // use 4 middle bytes for random value
}
//-----------------------------------------------------------------------------
bool MD5_Compare( const MD5Value_t &data, const MD5Value_t &compare ) { return V_memcmp( data.bits, compare.bits, MD5_DIGEST_LENGTH ) == 0; }
//-----------------------------------------------------------------------------
void MD5Value_t::Zero() { V_memset( bits, 0, sizeof( bits ) ); }
//-----------------------------------------------------------------------------
bool MD5Value_t::IsZero() const { for ( int i = 0 ; i < Q_ARRAYSIZE( bits ) ; ++i ) { if ( bits[i] != 0 ) return false; }
return true; }
//-----------------------------------------------------------------------------
void MD5_ProcessSingleBuffer( const void *p, int len, MD5Value_t &md5Result ) { Assert( len >= 0 ); MD5Context_t ctx; MD5Init( &ctx ); MD5Update( &ctx, (unsigned char const *)p, len ); MD5Final( md5Result.bits, &ctx ); }
|