|
|
//========= Copyright � 2005, Valve Inc, All rights reserved. ==========
//
// Purpose: Implementation of SHA-1
//
//=============================================================================
/*
100% free public domain implementation of the SHA-1 algorithm by Dominik Reichl <dominik.reichl@t-online.de>
=== Test Vectors (from FIPS PUB 180-1) ===
SHA1("abc") = A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq") = 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
SHA1(A million repetitions of "a") = 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F */
#if !defined(_MINIMUM_BUILD_)
#include "checksum_sha1.h"
#else
//
// This path is build in the CEG/DRM projects where we require that no CRT references are made !
//
#include <intrin.h> // memcpy, memset etc... will be inlined.
#include "tier1/checksum_sha1.h"
#endif
#define MAX_FILE_READ_BUFFER 8000
// Rotate x bits to the left
#ifndef ROL32
#define ROL32(_val32, _nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))
#endif
#ifdef SHA1_LITTLE_ENDIAN
#define SHABLK0(i) (m_block->l[i] = \
(ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF)) #else
#define SHABLK0(i) (m_block->l[i])
#endif
#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \
^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))
// SHA-1 rounds
#define _R0(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
#define _R1(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }
#define _R2(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5); w=ROL32(w,30); }
#define _R3(v,w,x,y,z,i) { z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5); w=ROL32(w,30); }
#define _R4(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5); w=ROL32(w,30); }
#ifdef _MINIMUM_BUILD_
Minimum_CSHA1::Minimum_CSHA1() #else
CSHA1::CSHA1() #endif
{ m_block = (SHA1_WORKSPACE_BLOCK *)m_workspace;
Reset(); } #ifdef _MINIMUM_BUILD_
Minimum_CSHA1::~Minimum_CSHA1() #else
CSHA1::~CSHA1() #endif
{ // Reset();
} #ifdef _MINIMUM_BUILD_
void Minimum_CSHA1::Reset() #else
void CSHA1::Reset() #endif
{ // SHA1 initialization constants
m_state[0] = 0x67452301; m_state[1] = 0xEFCDAB89; m_state[2] = 0x98BADCFE; m_state[3] = 0x10325476; m_state[4] = 0xC3D2E1F0;
m_count[0] = 0; m_count[1] = 0; }
#ifdef _MINIMUM_BUILD_
void Minimum_CSHA1::Transform(uint32 state[5], const uint8 buffer[64]) #else
void CSHA1::Transform(uint32 state[5], const uint8 buffer[64]) #endif
{ uint32 a = 0, b = 0, c = 0, d = 0, e = 0;
memcpy(m_block, buffer, 64);
// Copy state[] to working vars
a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4];
// 4 rounds of 20 operations each. Loop unrolled.
_R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3); _R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7); _R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11); _R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15); _R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19); _R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23); _R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27); _R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31); _R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35); _R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39); _R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43); _R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47); _R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51); _R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55); _R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59); _R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63); _R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67); _R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71); _R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75); _R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);
// Add the working vars back into state[]
state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e;
// Wipe variables
a = b = c = d = e = 0; }
// Use this function to hash in binary data and strings
#ifdef _MINIMUM_BUILD_
void Minimum_CSHA1::Update( const void *pvData, unsigned int len ) #else
void CSHA1::Update( const void *pvData, unsigned int len) #endif
{ const uint8 *data = (const uint8 *)pvData; uint32 i = 0, j;
j = (m_count[0] >> 3) & 63;
if((m_count[0] += len << 3) < (len << 3)) m_count[1]++;
m_count[1] += (len >> 29);
if((j + len) > 63) { memcpy(&m_buffer[j], data, (i = 64 - j)); Transform(m_state, m_buffer);
for (; i+63 < len; i += 64) Transform(m_state, &data[i]);
j = 0; } else i = 0;
memcpy(&m_buffer[j], &data[i], len - i); }
#if !defined(_MINIMUM_BUILD_)
// Hash in file contents
bool CSHA1::HashFile(const char *szFileName) { uint32 ulFileSize = 0, ulRest = 0, ulBlocks = 0; uint32 i = 0; uint8 uData[MAX_FILE_READ_BUFFER]; FILE *fIn = NULL;
if(szFileName == NULL) return(false);
if((fIn = fopen(szFileName, "rb")) == NULL) return(false);
fseek(fIn, 0, SEEK_END); ulFileSize = ftell(fIn); fseek(fIn, 0, SEEK_SET);
ulRest = ulFileSize % MAX_FILE_READ_BUFFER; ulBlocks = ulFileSize / MAX_FILE_READ_BUFFER;
for(i = 0; i < ulBlocks; i++) { fread(uData, 1, MAX_FILE_READ_BUFFER, fIn); Update(uData, MAX_FILE_READ_BUFFER); }
if(ulRest != 0) { fread(uData, 1, ulRest, fIn); Update(uData, ulRest); }
fclose(fIn); fIn = NULL;
return(true); } #endif
#ifdef _MINIMUM_BUILD_
void Minimum_CSHA1::Final() #else
void CSHA1::Final() #endif
{ uint32 i = 0; uint8 finalcount[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
for (i = 0; i < 8; i++) finalcount[i] = (uint8)((m_count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8) ) & 255); // Endian independent
Update((uint8 *)"\200", 1);
while ((m_count[0] & 504) != 448) Update((uint8 *)"\0", 1);
Update(finalcount, 8); // Cause a SHA1Transform()
for (i = 0; i < k_cubHash; i++) { m_digest[i] = (uint8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255); }
// Wipe variables for security reasons
i = 0; memset(m_buffer, 0, sizeof(m_buffer) ); memset(m_state, 0, sizeof(m_state) ); memset(m_count, 0, sizeof(m_count) ); memset(finalcount, 0, sizeof( finalcount) );
Transform(m_state, m_buffer); }
#if !defined(_MINIMUM_BUILD_)
// Get the final hash as a pre-formatted string
void CSHA1::ReportHash(char *szReport, uint8 uReportType) { uint8 i = 0; char szTemp[12];
if(szReport == NULL) return;
if(uReportType == REPORT_HEX) { sprintf(szTemp, "%02X", m_digest[0]); strcat(szReport, szTemp);
for(i = 1; i < k_cubHash; i++) { sprintf(szTemp, " %02X", m_digest[i]); strcat(szReport, szTemp); } } else if(uReportType == REPORT_DIGIT) { sprintf(szTemp, "%u", m_digest[0]); strcat(szReport, szTemp);
for(i = 1; i < k_cubHash; i++) { sprintf(szTemp, " %u", m_digest[i]); strcat(szReport, szTemp); } } else strcpy(szReport, "Error: Unknown report type!"); } #endif // _MINIMUM_BUILD_
// Get the raw message digest
#ifdef _MINIMUM_BUILD_
void Minimum_CSHA1::GetHash(uint8 *uDest) #else
void CSHA1::GetHash(uint8 *uDest) #endif
{ memcpy(uDest, m_digest, k_cubHash); }
#ifndef _MINIMUM_BUILD_
// utility hash comparison function
bool HashLessFunc( SHADigest_t const &lhs, SHADigest_t const &rhs ) { int iRes = memcmp( &lhs, &rhs, sizeof( SHADigest_t ) ); return ( iRes < 0 ); } #endif
|